Skip to main content

Measuring Ca2+ in Living Cells

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Measuring free Ca2+ concentration ([Ca2+]) in the cytosol or organelles is routine in many fields of research. The availability of membrane permeant forms of indicators coupled with the relative ease of transfecting cell lines with biological Ca2+ sensors have led to the situation where cellular and subcellular [Ca2+] is examined by many non-specialists. In this chapter, we evaluate the most used Ca2+ indicators and highlight what their major advantages and disadvantages are. We stress the potential pitfalls of non-ratiometric techniques for measuring Ca2+ and the clear advantages of ratiometric methods. Likely improvements and new directions for Ca2+ measurement are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Agetsuma M, Matsuda T, Nagai T (2017) Methods for monitoring signaling molecules in cellular compartments. Cell Calcium 64:12–19

    Article  CAS  Google Scholar 

  2. Alonso MT, Rodríguez-Prados M, Navas-Navarro P, Rojo-Ruiz J, García-Sancho J (2017) Using aequorin probes to measure Ca2+ in intracellular organelles. Cell Calcium 64:3–11

    Article  CAS  Google Scholar 

  3. Blinks JR, Wier WG, Hess P, Prendergast FG (1982) Measurement of intracellular Ca2+ in living cells. Prog Biophys Mol Biol 40:1–114

    Article  CAS  Google Scholar 

  4. Borle AB (1981) Control, modulation, and regulation of cell calcium. Rev Physiol Biochem Pharmacol 90:13–153

    Article  CAS  Google Scholar 

  5. Bruton JD, Lemmens R, Shi CL, Persson-Sjögren S, Westerblad H, Ahmed M, Pyne NJ, Frame M, Furman BL, Islam MS (2003) Ryanodine receptors of pancreatic beta-cells mediate a distinct context-dependent signal for insulin secretion. FASEB J 17:301–303

    Article  CAS  Google Scholar 

  6. Hell SW (2009) Microscopy and its focal switch. Nat Methods 6:24–32

    Article  CAS  Google Scholar 

  7. Hossain MN, Suzuki K, Iwano M, Matsuda T, Nagai T (2018) Bioluminescent low-affinity Ca2+ indicator for ER with multicolor calcium imaging in single living cells. ACS Chem Biol 13:1862–1871

    Article  CAS  Google Scholar 

  8. Hove-Madsen L, Baudet S, Bers DM (2010) Making and using calcium-selective mini- and microelectrodes. Methods Cell Biol 99:67–89

    Article  CAS  Google Scholar 

  9. Jobsis PD, Rothstein EC, Balaban RS (2007) Limited utility of acetoxymethyl (AM) based intracellular delivery systems, in vivo: interference by extracellular esterases. J Microsc 226:74–81

    Article  CAS  Google Scholar 

  10. Kloskowska E, Malkiewicz K, Winblad B, Benedikz E, Bruton JD (2008) APPswe mutation increases the frequency of spontaneous Ca2+-oscillations in rat hippocampal neurons. Neurosci Lett 436:250–254

    Article  CAS  Google Scholar 

  11. Llano-Diez M, Sinclair J, Yamada T, Zong M, Fauconnier J, Zhang SJ, Katz A, Jardemark K, Westerblad H, Andersson DC, Lanner JT (2016) The role of reactive oxygen species in β-adrenergic signaling in cardiomyocytes from mice with the metabolic syndrome. PLoS One 11(12):e0167090. https://doi.org/10.1371/journal.pone.0167090

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Olsson K, Cheng AJ, Alam S, Al-Ameri M, Rullman E, Westerblad H, Lanner JT, Bruton JD, Gustafsson T (2015) Intracellular Ca2+-handling differs markedly between intact human muscle fibers and myotubes. Skelet Muscle 162(3):285–293. https://doi.org/10.1186/s13395-015-0050-x

    Article  CAS  Google Scholar 

  13. Scheenen WJ, Makings LR, Gross LR, Pozzan T, Tsien RY (1996) Photodegradation of indo-1 and its effect on apparent Ca2+ concentrations. Chem Biol 3:765–774

    Article  CAS  Google Scholar 

  14. Tsien RY (1980) New calcium indicators and buffers with high selectivity against magnesium and protons: design, synthesis, and properties of prototype structures. Biochemistry 19:2396–2404

    Article  CAS  Google Scholar 

  15. Westerblad H, Allen DG (1996) Intracellular calibration of the calcium indicator indo-1 in isolated fibers of Xenopus muscle. Biophys J 71:908–917

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Research reported from our laboratory was supported by the Swedish Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bruton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bruton, J., Cheng, A.J., Westerblad, H. (2020). Measuring Ca2+ in Living Cells. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_2

Download citation

Publish with us

Policies and ethics