Skip to main content

Calcium Dynamics and Synaptic Plasticity

  • Chapter
  • First Online:
Calcium Signaling

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1131))

Abstract

Synaptic plasticity is a fundamental property of neurons referring to the activity-dependent changes in the strength and efficacy of synaptic transmission at preexisting synapses. Such changes can last from milliseconds to hours, days, or even longer and are involved in learning and memory as well as in development and response of the brain to injuries. Several types of synaptic plasticity have been described across neuronal types, brain regions, and species, but all of them share in one way or another capital importance of Ca2+-mediated processes. In this chapter, we will focus on the Ca2+-dependent events necessary for the induction and expression of multiple forms of synaptic plasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Clapham DE (2007) Calcium signaling. Cell 131(6):1047–1058

    CAS  PubMed  Google Scholar 

  2. Berridge MJ (1998) Neuronal calcium signaling. Neuron 21(1):13–26

    Article  CAS  PubMed  Google Scholar 

  3. Citri A, Malenka RC (2008) Synaptic plasticity: multiple forms, functions, and mechanisms. Neuropsychopharmacology 33(1):18–41

    Article  PubMed  Google Scholar 

  4. Cramer SC, Sur M, Dobkin BH, O’Brien C, Sanger TD, Trojanowski JQ et al (2011) Harnessing neuroplasticity for clinical applications. Brain 134(6):1591–1609

    Article  PubMed  PubMed Central  Google Scholar 

  5. Cooke SF, Bliss TVP (2006) Plasticity in the human central nervous system. Brain 129(7):1659–1673

    Article  CAS  PubMed  Google Scholar 

  6. Lalanne T, Oyrer J, Farrant M, Sjöström PJ (2018) Synapse type-dependent expression of calcium-permeable AMPA receptors. Front Synaptic Neurosci 10:34

    Article  PubMed  PubMed Central  Google Scholar 

  7. Sihra TS, Flores G, Rodríguez-Moreno A (2014) Kainate receptors: multiple roles in neuronal plasticity. Neuroscientist 20(1):29–43

    Article  PubMed  CAS  Google Scholar 

  8. Negrete-Díaz JV, Duque-Feria P, Andrade-Talavera Y, Carrión M, Flores G, Rodríguez-Moreno A (2012) Kainate receptor-mediated depression of glutamatergic transmission involving protein kinase A in the lateral amygdala. J Neurochem 121(1):36–43

    Article  PubMed  CAS  Google Scholar 

  9. Rodríguez-Moreno A, Sihra TS (2011) Kainate receptors. Novel signaling insights. Adv Exp Med Biol 717:vii–xi, xiii

    PubMed  Google Scholar 

  10. Rodríguez-Moreno A, Sihra TS (2007) Kainate receptors with a metabotropic modus operandi. Trends Neurosci 30(12):630–637

    Article  PubMed  CAS  Google Scholar 

  11. Negrete-Díaz JV, Sihra TS, Delgado-García JM, Rodríguez-Moreno A (2007) Kainate receptor-mediated presynaptic inhibition converges with presynaptic inhibition mediated by Group II mGluRs and long-term depression at the hippocampal mossy fiber-CA3 synapse. J Neural Transm (Vienna) 114(11):1425–1431

    Article  CAS  Google Scholar 

  12. Negrete-Díaz JV, Sihra TS, Delgado-García JM, Rodríguez-Moreno A (2006) Kainate receptor-mediated inhibition of glutamate release involves protein kinase A in the mouse hippocampus. J Neurophysiol 96(4):1829–1837

    Article  PubMed  CAS  Google Scholar 

  13. Rodríguez-Moreno A, Lerma J (1998) Kainate receptor modulation of GABA release involves a metabotropic function. Neuron 20(6):1211–1218

    Article  PubMed  Google Scholar 

  14. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. Nanou E, Catterall WA (2018) Calcium Channels, Synaptic Plasticity, and Neuropsychiatric Disease. Neuron 98(3):466–481

    Article  CAS  PubMed  Google Scholar 

  16. Zamponi GW, Striessnig J, Koschak A, Dolphin AC (2015) The physiology, pathology, and pharmacology of voltage-gated calcium channels and their future therapeutic potential. Pharmacol Rev 67(4):821–870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Foskett JK, White C, Cheung K-H, Mak D-OD (2007) Inositol trisphosphate receptor Ca2+ release channels. Physiol Rev 87(2):593–658

    Article  CAS  PubMed  Google Scholar 

  18. Ferris CD, Huganir RL, Supattapone S, Snyder SH (1989) Purified inositol 1,4,5-trisphosphate receptor mediates calcium flux in reconstituted lipid vesicles. Nature 342(6245):87–89

    Article  CAS  PubMed  Google Scholar 

  19. Maeda N, Kawasaki T, Nakade S, Yokota N, Taguchi T, Kasai M et al (1991) Structural and functional characterization of inositol 1,4,5-trisphosphate receptor channel from mouse cerebellum. J Biol Chem 266(2):1109–1116

    CAS  PubMed  Google Scholar 

  20. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996-a

    Article  CAS  Google Scholar 

  21. Eggermann E, Bucurenciu I, Goswami SP, Jonas P (2011) Nanodomain coupling between Ca2+ channels and sensors of exocytosis at fast mammalian synapses. Nat Rev Neurosci 13(1):7–21

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. McCue HV, Haynes LP, Burgoyne RD (2010) The diversity of calcium sensor proteins in the regulation of neuronal function. Cold Spring Harb Perspect Biol 2(8):a004085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  23. Chen C, Arai I, Satterfield R, Young SM Jr, Jonas P (2017) Synaptotagmin 2 Is the Fast Ca2+ Sensor at a Central Inhibitory Synapse. Cell Rep 18(3):723–736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chen C, Jonas P (2017) Synaptotagmins: that’s why so many. Neuron 94(4):694–696

    Article  CAS  PubMed  Google Scholar 

  25. Chen C, Satterfield R, Young SM Jr, Jonas P (2017) Triple function of synaptotagmin 7 ensures efficiency of high-frequency transmission at central GABAergic synapses. Cell Rep 21(8):2082–2089

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Luo F, Südhof TC (2017) Synaptotagmin-7-mediated asynchronous release boosts high-fidelity synchronous transmission at a central synapse. Neuron 94(4):826–39 e3

    Article  CAS  PubMed  Google Scholar 

  27. Burgoyne RD (2007) Neuronal calcium sensor proteins: generating diversity in neuronal Ca2+ signalling. Nat Rev Neurosci 8(3):182–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Burgoyne RD, Haynes LP (2012) Understanding the physiological roles of the neuronal calcium sensor proteins. Mol Brain 5(1):2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Malenka RC, Kauer JA, Perkel DJ, Mauk MD, Kelly PT, Nicoll RA et al (1989) An essential role for postsynaptic calmodulin and protein kinase activity in long-term potentiation. Nature 340(6234):554–557

    Article  CAS  PubMed  Google Scholar 

  30. Lledo PM, Hjelmstad GO, Mukherji S, Soderling TR, Malenka RC, Nicoll RA (1995) Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. Proc Natl Acad Sci U S A 92(24):11175–11179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lisman J, Malenka RC, Nicoll RA, Malinow R (1997) Learning mechanisms: the case for CaM-KII. Science 276(5321):2001–2002

    Article  CAS  PubMed  Google Scholar 

  32. Schwaller B (2010) Cytosolic Ca2+ buffers. Cold Spring Harb Perspect Biol 2(11):a004051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Blaustein MP (1988) Calcium transport and buffering in neurons. Trends Neurosci 11(10):438–443

    Article  CAS  PubMed  Google Scholar 

  34. Matthews EA, Dietrich D (2015) Buffer mobility and the regulation of neuronal calcium domains. Front Cell Neurosci 9:48

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Zucker RS, Regehr WG (2002) Short-term synaptic plasticity. Annu Rev Physiol 64:355–405

    Article  CAS  PubMed  Google Scholar 

  36. Südhof TC (2013) Neurotransmitter release: the last millisecond in the life of a synaptic vesicle. Neuron 80(3):675–690

    Article  PubMed  CAS  Google Scholar 

  37. Regehr WG (2012) Short-term presynaptic plasticity. Cold Spring Harb Perspect Biol 4(7):a005702

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Borst JG, Sakmann B (1998) Facilitation of presynaptic calcium currents in the rat brainstem. J Physiol 513(Pt 1):149–155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Cuttle MF, Tsujimoto T, Forsythe ID, Takahashi T (1998) Facilitation of the presynaptic calcium current at an auditory synapse in rat brainstem. J Physiol 512(Pt 3):723–729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lee A, Scheuer T, Catterall WA (2000) Ca2+/calmodulin-dependent facilitation and inactivation of P/Q-type Ca2+ channels. J Neurosci 20(18):6830–6838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Lee A, Westenbroek RE, Haeseleer F, Palczewski K, Scheuer T, Catterall WA (2002) Differential modulation of Ca(v)2.1 channels by calmodulin and Ca2+-binding protein 1. Nat Neurosci 5(3):210–217

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T et al (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399(6732):155–159

    Article  CAS  PubMed  Google Scholar 

  43. Lee A, Zhou H, Scheuer T, Catterall WA (2003) Molecular determinants of Ca2+/calmodulin-dependent regulation of Ca(v)2.1 channels. Proc Natl Acad Sci U S A 100(26):16059–16064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Liang H, DeMaria CD, Erickson MG, Mori MX, Alseikhan BA, Yue DT (2003) Unified mechanisms of Ca2+ regulation across the Ca2+ channel family. Neuron 39(6):951–960

    Article  CAS  PubMed  Google Scholar 

  45. Katz B, Miledi R (1968) The role of calcium in neuromuscular facilitation. J Physiol 195(2):481–492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Schneggenburger R, Neher E (2005) Presynaptic calcium and control of vesicle fusion. Curr Opin Neurobiol 15(3):266–274

    Article  CAS  PubMed  Google Scholar 

  47. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901

    Article  CAS  PubMed  Google Scholar 

  48. Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57(2):210–216

    Article  CAS  PubMed  Google Scholar 

  49. Chen G, Harata NC, Tsien RW (2004) Paired-pulse depression of unitary quantal amplitude at single hippocampal synapses. Proc Natl Acad Sci U S A 101(4):1063–1068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Collingridge GL, Peineau S, Howland JG, Wang YT (2010) Long-term depression in the CNS. Nat Rev Neurosci 11:459–473

    Article  CAS  PubMed  Google Scholar 

  51. Malenka RC, Nicoll RA (1993) NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms. Trends Neurosci 16(12):521–527

    Article  CAS  PubMed  Google Scholar 

  52. Nicoll RA (2017) A brief history of long-term potentiation. Neuron 93(2):281–290

    Article  CAS  PubMed  Google Scholar 

  53. Malenka RC (1991) Postsynaptic factors control the duration of synaptic enhancement in area CA1 of the hippocampus. Neuron 6(1):53–60

    Article  CAS  PubMed  Google Scholar 

  54. Malenka RC (1991) The role of postsynaptic calcium in the induction of long-term potentiation. Mol Neurobiol 5(2–4):289–295

    Article  CAS  PubMed  Google Scholar 

  55. Herring BE, Nicoll RA (2016) Long-term potentiation: from CaMKII to AMPA receptor trafficking. Annu Rev Physiol 78(1):351–365

    Article  CAS  PubMed  Google Scholar 

  56. Markram H, Lubke J, Frotscher M, Sakmann B (1997) Regulation of synaptic efficacy by coincidence of postsynaptic APs and EPSPs. Science 275(5297):213–215

    Article  CAS  PubMed  Google Scholar 

  57. Pettit DL, Perlman S, Malinow R (1994) Potentiated transmission and prevention of further LTP by increased CaMKII activity in postsynaptic hippocampal slice neurons. Science 266(5192):1881–1885

    Article  CAS  PubMed  Google Scholar 

  58. Silva AJ, Stevens CF, Tonegawa S, Wang Y (1992) Deficient hippocampal long-term potentiation in alpha-calcium-calmodulin kinase II mutant mice. Science 257(5067):201–206

    Article  CAS  PubMed  Google Scholar 

  59. Silva AJ, Wang Y, Paylor R, Wehner JM, Stevens CF, Tonegawa S (1992) Alpha calcium/calmodulin kinase II mutant mice: deficient long-term potentiation and impaired spatial learning. Cold Spring Harb Symp Quant Biol 57:527–539

    Article  CAS  PubMed  Google Scholar 

  60. Blitzer RD, Connor JH, Brown GP, Wong T, Shenolikar S, Iyengar R et al (1998) Gating of CaMKII by cAMP-regulated protein phosphatase activity during LTP. Science 280(5371):1940–1942

    Article  CAS  PubMed  Google Scholar 

  61. Lisman J (1989) A mechanism for the Hebb and the anti-Hebb processes underlying learning and memory. Proc Natl Acad Sci U S A 86(23):9574–9578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Makhinson M, Chotiner JK, Watson JB, O’Dell TJ (1999) Adenylyl cyclase activation modulates activity-dependent changes in synaptic strength and Ca2+/calmodulin-dependent kinase II autophosphorylation. J Neurosci 19(7):2500–2510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Colgan LA, Hu M, Misler JA, Parra-Bueno P, Moran CM, Leitges M et al (2018) PKCα integrates spatiotemporally distinct Ca2+ and autocrine BDNF signaling to facilitate synaptic plasticity. Nat Neurosci 21:1027–1037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Benke TA, Luthi A, Isaac JT, Collingridge GL (1998) Modulation of AMPA receptor unitary conductance by synaptic activity. Nature 393(6687):793–797

    Article  CAS  PubMed  Google Scholar 

  65. Soderling TR, Derkach VA (2000) Postsynaptic protein phosphorylation and LTP. Trends Neurosci 23(2):75–80

    Article  CAS  PubMed  Google Scholar 

  66. Bredt DS, Nicoll RA (2003) AMPA receptor trafficking at excitatory synapses. Neuron 40(2):361–379

    Article  CAS  PubMed  Google Scholar 

  67. Collingridge GL, Isaac JT, Wang YT (2004) Receptor trafficking and synaptic plasticity. Nat Rev Neurosci 5(12):952–962

    Article  CAS  PubMed  Google Scholar 

  68. Sheng M, Kim MJ (2002) Postsynaptic signaling and plasticity mechanisms. Science 298(5594):776–780

    Article  CAS  PubMed  Google Scholar 

  69. Song I, Huganir RL (2002) Regulation of AMPA receptors during synaptic plasticity. Trends Neurosci 25(11):578–588

    Article  CAS  PubMed  Google Scholar 

  70. Huber KM, Mauk MD, Kelly PT (1995) LTP induced by activation of voltage-dependent Ca2+ channels requires protein kinase activity. Neuroreport 6(9):1281–1284

    Article  CAS  PubMed  Google Scholar 

  71. Huber KM, Mauk MD, Kelly PT (1995) Distinct LTP induction mechanisms: contribution of NMDA receptors and voltage-dependent calcium channels. J Neurophysiol 73(1):270–279

    Article  CAS  PubMed  Google Scholar 

  72. Freir DB, Herron CE (2003) Inhibition of L-type voltage dependent calcium channels causes impairment of long-term potentiation in the hippocampal CA1 region in vivo. Brain Res 967(1–2):27–36

    Article  CAS  PubMed  Google Scholar 

  73. Moosmang S, Haider N, Klugbauer N, Adelsberger H, Langwieser N, Muller J et al (2005) Role of hippocampal Cav1.2 Ca2+ channels in NMDA receptor-independent synaptic plasticity and spatial memory. J Neurosci 25(43):9883–9892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Staubli U, Lynch G (1987) Stable hippocampal long-term potentiation elicited by ‘theta’ pattern stimulation. Brain Res 435(1–2):227–234

    Article  CAS  PubMed  Google Scholar 

  75. Castillo PE (2012) Presynaptic LTP and LTD of excitatory and inhibitory synapses. Cold Spring Harb Perspect Biol 4(2):pii: a005728

    Article  CAS  Google Scholar 

  76. Monday HR, Younts TJ, Castillo PE (2018) Long-term plasticity of neurotransmitter release: emerging mechanisms and contributions to brain function and disease. Annu Rev Neurosci 41(1):299–322

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Yang Y, Calakos N (2013) Presynaptic long-term plasticity. Front Synaptic Neurosci 5:8

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Nicoll RA, Schmitz D (2005) Synaptic plasticity at hippocampal mossy fibre synapses. Nat Rev Neurosci 6:863–876

    Article  CAS  PubMed  Google Scholar 

  79. Gundlfinger A, Breustedt J, Sullivan D, Schmitz D (2010) Natural spike trains trigger short- and long-lasting dynamics at hippocampal mossy fiber synapses in rodents. PLoS One 5(4):e9961

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Mistry R, Dennis S, Frerking M, Mellor JR (2011) Dentate gyrus granule cell firing patterns can induce mossy fiber long-term potentiation in vitro. Hippocampus 21(11):1157–1168

    Article  PubMed  Google Scholar 

  81. Mellor J, Nicoll RA (2001) Hippocampal mossy fiber LTP is independent of postsynaptic calcium. Nat Neurosci 4(2):125–126

    Article  CAS  PubMed  Google Scholar 

  82. Zalutsky RA, Nicoll RA (1990) Comparison of two forms of long-term potentiation in single hippocampal neurons. Science 248(4963):1619–1624

    Article  CAS  PubMed  Google Scholar 

  83. Zalutsky RA, Nicoll RA (1991) Comparison of two forms of long-term potentiation in single hippocampus neurons. Correct Sci 251(4996):856

    CAS  Google Scholar 

  84. Breustedt J, Vogt KE, Miller RJ, Nicoll RA, Schmitz D (2003) Alpha1E-containing Ca2+ channels are involved in synaptic plasticity. Proc Natl Acad Sci U S A 100(21):12450–12455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Dietrich D, Kirschstein T, Kukley M, Pereverzev A, von der Brelie C, Schneider T et al (2003) Functional specialization of presynaptic Cav2.3 Ca2+ channels. Neuron 39(3):483–496

    Article  CAS  PubMed  Google Scholar 

  86. Huang YY, Li XC, Kandel ER (1994) cAMP contributes to mossy fiber LTP by initiating both a covalently mediated early phase and macromolecular synthesis-dependent late phase. Cell 79(1):69–79

    Article  CAS  PubMed  Google Scholar 

  87. Villacres EC, Wong ST, Chavkin C, Storm DR (1998) Type I adenylyl cyclase mutant mice have impaired mossy fiber long-term potentiation. J Neurosci 18(9):3186–3194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Wang H, Pineda VV, Chan GC, Wong ST, Muglia LJ, Storm DR (2003) Type 8 adenylyl cyclase is targeted to excitatory synapses and required for mossy fiber long-term potentiation. J Neurosci 23(30):9710–9718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Weisskopf MG, Castillo PE, Zalutsky RA, Nicoll RA (1994) Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. Science 265(5180):1878–1882

    Article  CAS  PubMed  Google Scholar 

  90. Andrade-Talavera Y, Duque-Feria P, Negrete-Díaz JV, Sihra TS, Flores G, Rodríguez-Moreno A (2012) Presynaptic kainate receptor-mediated facilitation of glutamate release involves Ca2+ -calmodulin at mossy fiber-CA3 synapses. J Neurochem 122(5):891–899

    Article  CAS  PubMed  Google Scholar 

  91. Salin PA, Malenka RC, Nicoll RA (1996) Cyclic AMP mediates a presynaptic form of LTP at cerebellar parallel fiber synapses. Neuron 16(4):797–803

    Article  CAS  PubMed  Google Scholar 

  92. Castro-Alamancos MA, Calcagnotto ME (1999) Presynaptic long-term potentiation in corticothalamic synapses. J Neurosci 19(20):9090–9097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Behr J, Wozny C, Fidzinski P, Schmitz D (2009) Synaptic plasticity in the subiculum. Prog Neurobiol 89(4):334–342

    Article  PubMed  Google Scholar 

  94. Lόpez de Armentia M, Sah P (2007) Bidirectional synaptic plasticity at nociceptive afferents in the rat central amygdala. J Physiol 581(Pt 3):961–970

    Article  CAS  Google Scholar 

  95. Chen HX, Jiang M, Akakin D, Roper SN (2009) Long-term potentiation of excitatory synapses on neocortical somatostatin-expressing interneurons. J Neurophysiol 102(6):3251–3259

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Galván EJ, Calixto E, Barrionuevo G (2008) Bidirectional Hebbian plasticity at hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci 28(52):14042–14055

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Galván EJ, Cosgrove KE, Barrionuevo G (2011) Multiple forms of long-term synaptic plasticity at hippocampal mossy fiber synapses on interneurons. Neuropharmacology 60(5):740–747

    Article  PubMed  CAS  Google Scholar 

  98. Galván EJ, Cosgrove KE, Mauna JC, Card JP, Thiels E, Meriney SD et al (2010) Critical involvement of postsynaptic protein kinase activation in long-term potentiation at hippocampal mossy fiber synapses on CA3 interneurons. J Neurosci 30(8):2844–2855

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  99. Jaffe D, Johnston D (1990) Induction of long-term potentiation at hippocampal mossy-fiber synapses follows a Hebbian rule. J Neurophysiol 64(3):948–960

    Article  CAS  PubMed  Google Scholar 

  100. Kapur A, Yeckel MF, Gray R, Johnston D (1998) L-Type calcium channels are required for one form of hippocampal mossy fiber LTP. J Neurophysiol 79(4):2181–2190

    Article  CAS  PubMed  Google Scholar 

  101. Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism. Nat Neurosci 2(7):625–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Bouvier G, Larsen RS, Rodríguez-Moreno A, Paulsen O, Sjöström PJ (2018) Towards resolving the presynaptic NMDA receptor debate. Curr Opin Neurobiol 51:1–7

    Article  CAS  PubMed  Google Scholar 

  103. Fourcaudot E, Gambino F, Humeau Y, Casassus G, Shaban H, Poulain B et al (2008) cAMP/PKA signaling and RIM1alpha mediate presynaptic LTP in the lateral amygdala. Proc Natl Acad Sci U S A 105(39):15130–15135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Lachamp PM, Liu Y, Liu SJ (2009) Glutamatergic modulation of cerebellar interneuron activity is mediated by an enhancement of GABA release and requires protein kinase A/RIM1alpha signaling. J Neurosci 29(2):381–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Liu SJ, Lachamp P (2006) The activation of excitatory glutamate receptors evokes a long-lasting increase in the release of GABA from cerebellar stellate cells. J Neurosci 26(36):9332–9339

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Samson RD, Pare D (2005) Activity-dependent synaptic plasticity in the central nucleus of the amygdala. J Neurosci 25(7):1847–1855

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Ahmed MS, Siegelbaum SA (2009) Recruitment of N-Type Ca2+ channels during LTP enhances low release efficacy of hippocampal CA1 perforant path synapses. Neuron 63(3):372–385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Fourcaudot E, Gambino F, Casassus G, Poulain B, Humeau Y, Luthi A (2009) L-type voltage-dependent Ca2+ channels mediate expression of presynaptic LTP in amygdala. Nat Neurosci 12(9):1093–1095

    Article  CAS  PubMed  Google Scholar 

  109. Kamiya H, Umeda K, Ozawa S, Manabe T (2002) Presynaptic Ca2+ entry is unchanged during hippocampal mossy fiber long-term potentiation. J Neurosci 22(24):10524–10528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Regehr WG, Tank DW (1991) The maintenance of LTP at hippocampal mossy fiber synapses is independent of sustained presynaptic calcium. Neuron 7(3):451–459

    Article  CAS  PubMed  Google Scholar 

  111. Reid CA, Dixon DB, Takahashi M, Bliss TV, Fine A (2004) Optical quantal analysis indicates that long-term potentiation at single hippocampal mossy fiber synapses is expressed through increased release probability, recruitment of new release sites, and activation of silent synapses. J Neurosci 24(14):3618–3626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Chen C, Regehr WG (1997) The mechanism of cAMP-mediated enhancement at a cerebellar synapse. J Neurosci 17(22):8687–8694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Dudek SM, Bear MF (1992) Homosynaptic long-term depression in area CA1 of hippocampus and effects of N-methyl-D-aspartate receptor blockade. Proc Natl Acad Sci U S A 89(10):4363–4367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Mulkey RM, Malenka RC (1992) Mechanisms underlying induction of homosynaptic long-term depression in area CA1 of the hippocampus. Neuron 9(5):967–975

    Article  CAS  PubMed  Google Scholar 

  115. Kirkwood A, Dudek SM, Gold JT, Aizenman CD, Bear MF (1993) Common forms of synaptic plasticity in the hippocampus and neocortex in vitro. Science 260(5113):1518–1521

    Article  CAS  PubMed  Google Scholar 

  116. Cummings JA, Mulkey RM, Nicoll RA, Malenka RC (1996) Ca2+ signaling requirements for long-term depression in the hippocampus. Neuron 16(4):825–833

    Article  CAS  PubMed  Google Scholar 

  117. Evans RC, Blackwell KT (2015) Calcium: amplitude, duration, or location? Biol Bull 228(1):75–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Isaac J (2001) Protein phosphatase 1 and LTD: synapses are the architects of depression. Neuron 32(6):963–966

    Article  CAS  PubMed  Google Scholar 

  119. Morishita W, Connor JH, Xia H, Quinlan EM, Shenolikar S, Malenka RC (2001) Regulation of synaptic strength by protein phosphatase 1. Neuron 32(6):1133–1148

    Article  CAS  PubMed  Google Scholar 

  120. Kirkwood A, Bear MF (1994) Homosynaptic long-term depression in the visual cortex. J Neurosci 14(5 Pt 2):3404–3412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Palmer CL, Lim W, Hastie PG, Toward M, Korolchuk VI, Burbidge SA et al (2005) Hippocalcin functions as a calcium sensor in hippocampal LTD. Neuron 47(4):487–494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Oliet SH, Malenka RC, Nicoll RA (1997) Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells. Neuron 18(6):969–982

    Article  CAS  PubMed  Google Scholar 

  123. Linden DJ, Connor JA (1991) Participation of postsynaptic PKC in cerebellar long-term depression in culture. Science 254(5038):1656–1659

    Article  CAS  PubMed  Google Scholar 

  124. Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM et al (2008) Metabotropic glutamate receptor-mediated LTD involves two interacting Ca2+ sensors, NCS-1 and PICK1. Neuron 60(6):1095–1111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Lüscher C, Huber KM (2010) Group 1 mGluR-dependent synaptic long-term depression: mechanisms and implications for circuitry and disease. Neuron 65(4):445–459

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  126. Bellone C, Luscher C, Mameli M (2008) Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol Life Sci 65(18):2913–2923

    Article  CAS  PubMed  Google Scholar 

  127. Fitzjohn SM, Palmer MJ, May JE, Neeson A, Morris SA, Collingridge GL (2001) A characterisation of long-term depression induced by metabotropic glutamate receptor activation in the rat hippocampus in vitro. J Physiol 537(Pt 2):421–430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schnabel R, Kilpatrick IC, Collingridge GL (1999) An investigation into signal transduction mechanisms involved in DHPG-induced LTD in the CA1 region of the hippocampus. Neuropharmacology 38(10):1585–1596

    Article  CAS  PubMed  Google Scholar 

  129. Hagena H, Manahan-Vaughan D (2011) Learning-facilitated synaptic plasticity at CA3 mossy fiber and commissural-associational synapses reveals different roles in information processing. Cereb Cortex 21(11):2442–2449

    Article  PubMed  PubMed Central  Google Scholar 

  130. Cho JH, Deisseroth K, Bolshakov VY (2013) Synaptic encoding of fear extinction in mPFC-amygdala circuits. Neuron 80(6):1491–1507

    Article  CAS  PubMed  Google Scholar 

  131. Rodríguez-Moreno A, Gonzalez-Rueda A, Banerjee A, Upton AL, Craig MT, Paulsen O (2013) Presynaptic self-depression at developing neocortical synapses. Neuron 77(1):35–42

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Bender VA, Bender KJ, Brasier DJ, Feldman DE (2006) Two coincidence detectors for spike timing-dependent plasticity in somatosensory cortex. J Neurosci 26(16):4166–4177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Bender KJ, Allen CB, Bender VA, Feldman DE (2006) Synaptic basis for Whisker deprivation-induced synaptic depression in rat somatosensory cortex. J Neurosci 26(16):4155–4165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Larsen Rylan S, Smith Ikuko T, Miriyala J, Han Ji E, Corlew Rebekah J, Smith Spencer L et al (2014) Synapse-specific control of experience-dependent plasticity by presynaptic NMDA receptors. Neuron 83(4):879–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Rodríguez-Moreno A, Paulsen O (2008) Spike timing-dependent long-term depression requires presynaptic NMDA receptors. Nat Neurosci 11(7):744–745

    Article  PubMed  CAS  Google Scholar 

  136. Nevian T, Sakmann B (2006) Spine Ca2+ signaling in spike-timing-dependent plasticity. J Neurosci 26(43):11001–11013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Sjöström PJ, Turrigiano GG, Nelson SB (2003) Neocortical LTD via coincident activation of presynaptic NMDA and cannabinoid receptors. Neuron 39(4):641–654

    Article  PubMed  Google Scholar 

  138. Rodríguez-Moreno A, Banerjee A, Paulsen O (2010) Presynaptic NMDA receptors and spike timing-dependent depression at cortical synapses. Front Synaptic Neurosci 2:18

    PubMed  PubMed Central  Google Scholar 

  139. Andrade-Talavera Y, Duque-Feria P, Paulsen O, Rodríguez-Moreno A (2016) Presynaptic spike timing-dependent long-term depression in the mouse hippocampus. Cereb Cortex 26(8):3637–3654

    Article  PubMed  PubMed Central  Google Scholar 

  140. Banerjee A, Gonzalez-Rueda A, Sampaio-Baptista C, Paulsen O, Rodríguez-Moreno A (2014) Distinct mechanisms of spike timing-dependent LTD at vertical and horizontal inputs onto L2/3 pyramidal neurons in mouse barrel cortex. Phys Rep 2(3):e00271

    Article  CAS  Google Scholar 

  141. Pérez-Rodríguez M, Arroyo-García LE, Prius-Mengual J, Andrade-Talavera Y, Armengol JA, Pérez-Villegas EM et al (2018) Adenosine receptor-mediated developmental loss of spike timing-dependent depression in the hippocampus. Cereb Cortex. https://doi.org/10.1093/cercor/bhy194

  142. Rodríguez-Moreno A, Kohl MM, Reeve JE, Eaton TR, Collins HA, Anderson HL et al (2011) Presynaptic induction and expression of timing-dependent long-term depression demonstrated by compartment-specific photorelease of a use-dependent NMDA receptor antagonist. J Neurosci 31(23):8564–8569

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  143. Duguid I, Sjöström PJ (2006) Novel presynaptic mechanisms for coincidence detection in synaptic plasticity. Curr Opin Neurobiol 16(3):312–322

    Article  CAS  PubMed  Google Scholar 

  144. Yokoi M, Kobayashi K, Manabe T, Takahashi T, Sakaguchi I, Katsuura G et al (1996) Impairment of hippocampal mossy fiber LTD in mice lacking mGluR2. Science 273(5275):645–647

    Article  CAS  PubMed  Google Scholar 

  145. Kobayashi K, Manabe T, Takahashi T (1996) Presynaptic long-term depression at the hippocampal mossy fiber-CA3 synapse. Science 273(5275):648–650

    Article  CAS  PubMed  Google Scholar 

  146. Tzounopoulos T, Janz R, Südhof TC, Nicoll RA, Malenka RC (1998) A role for cAMP in long-term depression at hippocampal mossy fiber synapses. Neuron 21(4):837–845

    Article  CAS  PubMed  Google Scholar 

  147. Kobayashi K, Manabe T, Takahashi T (1999) Calcium-dependent mechanisms involved in presynaptic long-term depression at the hippocampal mossy fibre-CA3 synapse. Eur J Neurosci 11(5):1633–1638

    Article  CAS  PubMed  Google Scholar 

  148. Lyon L, Borel M, Carrion M, Kew JN, Corti C, Harrison PJ et al (2011) Hippocampal mossy fiber long-term depression in Grm2/3 double knockout mice. Synapse 65(9):945–954

    Article  CAS  PubMed  Google Scholar 

  149. Maccaferri G, Toth K, McBain CJ (1998) Target-specific expression of presynaptic mossy fiber plasticity. Science 279(5355):1368–1370

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowlegments

Work in the group is supported by the Ministerio de Economía y Competitividad (MINECO/FEDER) of Spain (Grant BFU2015-68655-P to A.R.-M.). P.M.-A. is supported by a postdoctoral “Juan de la Cierva-Formación” Fellowship from MINECO.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Pedro Mateos-Aparicio or Antonio Rodríguez-Moreno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mateos-Aparicio, P., Rodríguez-Moreno, A. (2020). Calcium Dynamics and Synaptic Plasticity. In: Islam, M. (eds) Calcium Signaling. Advances in Experimental Medicine and Biology, vol 1131. Springer, Cham. https://doi.org/10.1007/978-3-030-12457-1_38

Download citation

Publish with us

Policies and ethics