Skip to main content

On Bi-objective Convex-Quadratic Problems

  • Conference paper
  • First Online:
Evolutionary Multi-Criterion Optimization (EMO 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11411))

Included in the following conference series:

Abstract

In this paper, we analyze theoretical properties of bi-objective convex-quadratic problems. We give a complete description of their Pareto set and prove the convexity of their Pareto front. We show that the Pareto set is a line segment when both Hessian matrices are proportional. We then propose a novel set of convex-quadratic test problems, describe their theoretical properties and the algorithm abilities required by those test problems. This includes in particular testing the sensitivity with respect to separability, ill-conditioned problems, rotational invariance, and whether the Pareto set is aligned with the coordinate axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In that scenario, we set , (\(f_{1}\) and \(f_{2}\) are seen as squares of the Mahalanobis distance to the optima, with respect to the Hessian matrices), \(g_{1}(u) = 1-\frac{h_{1}}{ 1+\frac{\sqrt{u}}{r_{1}} }\), \(g_{2}(u) = 1-\frac{h_{2}}{ 1+\frac{\sqrt{u}}{r_{2}} }\).

References

  1. Auger, A., Bader, J., Brockhoff, D., Zitzler, E.: Theory of the hypervolume indicator: optimal \(\mu \)-distributions and the choice of the reference point. In: Foundations of Genetic Algorithms (FOGA 2009), pp. 87–102. ACM (2009)

    Google Scholar 

  2. Brockhoff, D., Tran, T.D., Hansen, N.: Benchmarking numerical multiobjective optimizers revisited. In: Genetic and Evolutionary Computation Conference (GECCO 2015), pp. 639–646. ACM (2015). https://doi.org/10.1145/2739480.2754777

  3. Collange, G., Delattre, N., Hansen, N., Quinquis, I., Schoenauer, M.: Multidisciplinary optimisation in the design of future space launchers. In: Multidisciplinary Design Optimization in Computational Mechanics, pp. 487–496. Wiley (2010)

    Google Scholar 

  4. Emmerich, M.T.M., Deutz, A.H.: Test problems based on Lamé superspheres. In: Obayashi, S., Deb, K., Poloni, C., Hiroyasu, T., Murata, T. (eds.) EMO 2007. LNCS, vol. 4403, pp. 922–936. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-70928-2_68

    Chapter  Google Scholar 

  5. Grodzevich, O., Romanko, O.: Normalization and other topics in multi-objective optimization. In: Proceedings of the Fields-MITACS Industrial Problems Workshop 2006, pp. 89–101. Fields-MITACS (2006)

    Google Scholar 

  6. Hansen, N., Ostermeier, A.: Completely derandomized self-adaptation in evolution strategies. Evol. Comput. 9(2), 159–195 (2001)

    Article  Google Scholar 

  7. Igel, C., Hansen, N., Roth, S.: Covariance matrix adaptation for multi-objective optimization. Evol. Comput. 15(1), 1–28 (2007)

    Article  Google Scholar 

  8. Jahn, J.: Vector Optimization: Theory, Applications and Extensions. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-642-17005-8

    Book  MATH  Google Scholar 

  9. Kerschke, P., et al.: Search dynamics on multimodal multi-objective problems. Evol. Comput. 1–30 (2018)

    Google Scholar 

  10. Kerschke, P., et al.: Towards analyzing multimodality of continuous multiobjective landscapes. In: Handl, J., Hart, E., Lewis, P.R., López-Ibáñez, M., Ochoa, G., Paechter, B. (eds.) PPSN 2016. LNCS, vol. 9921, pp. 962–972. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-45823-6_90

    Chapter  Google Scholar 

  11. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer, New York (2006). https://doi.org/10.1007/b98874

    Book  MATH  Google Scholar 

  12. Powell, M.J.: The NEWUOA software for unconstrained optimization without derivatives. Technical report. DAMTP 2004/NA05, CMS, University of Cambridge, Cambridge CB3 0WA, UK, November 2004

    Google Scholar 

  13. Tušar, T., Brockhoff, D., Hansen, N., Auger, A.: COCO: the bi-objective black box optimization benchmarking (bbob-biobj) test suite. CoRR abs/1604.00359 (2016). http://arxiv.org/abs/1604.00359

Download references

Acknowledgments

The Ph.D. of Cheikh Touré is funded by Inria and Storengy. We particularly thank F. Huguet and A. Lange from Storengy for their strong support, practical ideas and expertise.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cheikh Toure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Toure, C., Auger, A., Brockhoff, D., Hansen, N. (2019). On Bi-objective Convex-Quadratic Problems. In: Deb, K., et al. Evolutionary Multi-Criterion Optimization. EMO 2019. Lecture Notes in Computer Science(), vol 11411. Springer, Cham. https://doi.org/10.1007/978-3-030-12598-1_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-12598-1_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-12597-4

  • Online ISBN: 978-3-030-12598-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics