Skip to main content

Active Fibre Mode-locked Lasers in Synchronization for STED Microscopy

  • Chapter
  • First Online:
Optics, Photonics and Laser Technology 2017

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 222))

  • 1092 Accesses

Abstract

Mode-locked fibre ring lasers can generate picosecond optical pulse widths with MHz repetition rates. Applications in optical imaging, or in experiments with pump-probe lasers, benefit from being able synchronize two lasers at high repetition rates, while retaining the narrow optical pulse widths. We investigate the characteristics of an actively mode-locked fibre ring laser, designed as a slave laser and driven by a commercial Ti:Sapphire laser acting as a master. The master-slave synchronization was stabilized for frequency detuning by matching the cavity lengths, and the dependence of the output pulse width of the slave laser was studied as its cavity was detuned. The increase in pulse width was asymmetric about the ring cavity resonance frequency, a phenomenon that we were able to establish as a consequence of an asymmetry in the detuning range of the higher order cavity modes. We observed that the detuning range decreased linearly with the mode number, an observation that was supported by a theoretical perturbative analysis of cavity locking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The depletion trace in Fig. 11.1 is a simulation using actual fluorescence traces, not actual data.

References

  1. G. Binnig, H. Rohrer, C. Gerber, E. Weibel, Surface studies by scanning tunneling microscopy. Phys. Rev. Lett. 49, 57–61 (1982)

    Article  ADS  Google Scholar 

  2. S.L. Jacques, Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37 (2013)

    Article  ADS  Google Scholar 

  3. X. Zhang, Z. Liu, Superlenses to overcome the diffraction limit. Nat. Mater. 7, 435 (2008)

    Article  ADS  Google Scholar 

  4. J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85, 3966–3969 (2000)

    Article  ADS  Google Scholar 

  5. M.G.L. Gustafsson, Surpassing the lateral resolution limit by a factor of two using structured illumination microscopy. J. Microsc. 198, 82–87 (2000)

    Article  Google Scholar 

  6. W. Denk, J. Strickler, W. Webb, Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990)

    Article  ADS  Google Scholar 

  7. D. Axelrod, Cell-substrate contacts illuminated by total internal reflection fluorescence. J. Cell Biol. 89, 141–145 (1981)

    Article  Google Scholar 

  8. S.W. Hell, Nobel lecture: nanoscopy with freely propagating light. Rev. Mod. Phys. 87, 1169 (2015)

    Article  ADS  Google Scholar 

  9. E. Betzig, Single molecules, cells, and super-resolution optics (nobel lecture). Angew. Chem. Int. Ed. 54, 8034–8053 (2015)

    Article  Google Scholar 

  10. W.E. Moerner, Single-molecule spectroscopy, imaging, and photocontrol: Foundations for super-resolution microscopy (nobel lecture). Angew. Chem. Int. Ed. 54, 8067–8093 (2015)

    Article  Google Scholar 

  11. K. Nienhaus, G.U. Nienhaus, Where do we stand with super-resolution optical microscopy? J. Mol. Bio. 428, 308–322 (2016). Study of biomolecules and biological systems: Proteins

    Article  Google Scholar 

  12. S.W. Hell, J. Wichmann, Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy. Opt. Lett. 19, 780–782 (1994)

    Article  ADS  Google Scholar 

  13. S.W. Hell, Far-field optical nanoscopy. Science 316, 1153–1158 (2007)

    Article  ADS  Google Scholar 

  14. G. Vicidomini, A. Schönle, H. Ta, K.Y. Han, G. Moneron, C. Eggeling, S.W. Hell, STED nanoscopy with time-gated detection: theoretical and experimental aspects. PLOS ONE 8, 1–12 (2013)

    Article  ADS  Google Scholar 

  15. J.N. Farahani, M.J. Schibler, L.A. Bentolila, A. Mendez-Vilas, J. Diaz, Stimulated emission depletion (STED) microscopy: from theory to practice. Microsc. Sci. Technol. Appl. Educ. 2, 1539 (2010)

    Google Scholar 

  16. T.A. Klar, S. Jakobs, M. Dyba, A. Egner, S.W. Hell, Fluorescence microscopy with diffraction resolution barrier broken by stimulated emission. Proc. Natl. Acad. Sci. 97, 8206–8210 (2000)

    Article  ADS  Google Scholar 

  17. K.T. Takasaki, J.B. Ding, B.L. Sabatini, Live-cell superresolution imaging by pulsed STED two-photon excitation microscopy. Biophys. J. 104, 770–777 (2013)

    Article  ADS  Google Scholar 

  18. M.T. Asaki, C.P. Huang, D. Garvey, J. Zhou, H.C. Kapteyn, M.M. Murnane, Generation of 11-fs pulses from a self-mode-locked Ti:sapphire laser. Opt. Lett. 18, 977–979 (1993)

    Article  ADS  Google Scholar 

  19. A. Prabhakar, S. Mayor, S. Krishnamoorthy, Mode locked laser for generating a wavelength stabilized depletion pulse and method thereof (2014)

    Google Scholar 

  20. Y. Wu, X. Wu, L. Toro, E. Stefani, Resonant-scanning dual-color STED microscopy with ultrafast photon counting: a concise guide. Methods 88, 48–56 (2015)

    Article  Google Scholar 

  21. M.A. Lauterbach, M. Guillon, A. Soltani, V. Emiliani, STED microscope with spiral phase contrast. Sci. Rep. 3, 2050 (2013)

    Google Scholar 

  22. A. Honigmann, S. Sadeghi, J. Keller, S.W. Hell, C. Eggeling, R. Vink, A lipid bound actin meshwork organizes liquid phase separation in model membranes. eLife 3, e01671 (2014)

    Google Scholar 

  23. W. Li, Q. Hao, Y. Li, M. Yan, H. Zhou, H. Zeng, Ultrafast laser pulse synchronization, in Coherence and Ultrashort Pulse Laser Emission ed. by F.J. Duarte (InTech, 2010)

    Google Scholar 

  24. M. Rusu, R. Herda, O.G. Okhotnikov, 1.05-\(\upmu \)m mode-locked ytterbium fiber laser stabilized with the pulse train from a 1.54-\(\upmu \)m laser diode: errata. Opt. Express 12, 5577–5578 (2004)

    Google Scholar 

  25. M. Nakazawa, M. Tokuda, N. Uchida, Continuous-wave laser oscillation with an ultralong optical-fiber resonator. J. Opt. Soc. Am. 72, 1338–1344 (1982)

    Article  ADS  Google Scholar 

  26. G. Geister, R. Ulrich, Neodymium-fibre laser with integrated-optic mode locker. Opt. Commun. 68, 187–189 (1988)

    Article  ADS  Google Scholar 

  27. J.D. Kafka, D.W. Hall, T. Baer, Mode-locked erbium-doped fiber laser with soliton pulse shaping. Opt. Lett. 14, 1269–1271 (1989)

    Article  ADS  Google Scholar 

  28. I.N. Duling, Subpicosecond all-fibre erbium laser. Electron. Lett. 27, 544–545 (1991)

    Article  Google Scholar 

  29. K. Tamura, H. Haus, E. Ippen, Self-starting additive pulse mode-locked erbium fibre ring laser. Electron. Lett. 28, 2226–2228 (1992)

    Article  ADS  Google Scholar 

  30. H. Takara, S. Kawanishi, M. Saruwatari, K. Noguchi, Generation of highly stable 20 GHz transform-limited optical pulses from actively mode-locked Er3+-doped fibre lasers with an all-polarisation maintaining ring cavity. Electron. Lett. 28, 2095–2096 (1992)

    Article  Google Scholar 

  31. K. Tamura, E. Ippen, H. Haus, L. Nelson, 77-fs pulse generation from a stretched-pulse mode-locked all-fiber ring laser. Opt. Lett. 18, 1080–1082 (1993). cited By 654

    Article  ADS  Google Scholar 

  32. T.F. Carruthers, I.N. Duling, 10-GHz, 1.3-ps erbium fiber laser employing soliton pulse shortening. Opt. Lett. 21, 1927–1929 (1996)

    Article  ADS  Google Scholar 

  33. M. Nakazawa, E. Yoshida, A 40-GHz 850-fs regeneratively fm mode-locked polarization-maintaining erbium fiber ring laser. IEEE Photonics Technol. Lett. 12, 1613–1615 (2000)

    Article  ADS  Google Scholar 

  34. U. Keller, Ultrafast solid-state laser oscillators: a success story for the last 20 years with no end in sight. Appl. Phys. B 100, 15–28 (2010)

    Article  ADS  Google Scholar 

  35. R. Herda, O.G. Okhotnikov, Dispersion compensation-free fiber laser mode-locked and stabilized by high-contrast saturable absorber mirror. IEEE J. Quantum Electron. 40, 893–899 (2004)

    Article  ADS  Google Scholar 

  36. M. Rusu, R. Herda, O.G. Okhotnikov, 1.05-\(\upmu \)m mode-locked ytterbium fiber laser stabilized with the pulse train from a 1.54-\(\upmu \)m laser diode. Opt. Express 12, 5258–5262 (2004)

    Google Scholar 

  37. S. Krishnamoorthy, M. Mathew, S. Mayor, A. Prabhakar, Actively mode locked fiber laser for synchronized pulsed depletion in STED, (ThP-T1-P-17) in 6th EPS-QEOD Europhoton Conference, Neuchatel, Switzerland (2014)

    Google Scholar 

  38. S. Krishnamoorthy, D. Jayavel, M. Mathew, S. Mayor, A. Prabhakar, Depletion laser for pulsed sted using wavelength stabilized actively mode locked lasers, in ICOL, Dehradun, India (2014)

    Google Scholar 

  39. S. Krishnamoorthy, S. Mayor, A. Prabhakar, Synchronization between two fixed cavity mode locked lasers, in Proceedings of the 5th International Conference on Photonics, Optics and Laser Technology - Volume 1: PHOTOPTICS, INSTICC (SciTePress, 2017), pp. 273–282

    Google Scholar 

  40. H.A. Haus, A theory of forced mode locking. IEEE J. Quantum Electron. 11, 323–330 (1975)

    Article  ADS  Google Scholar 

  41. C.J. Buczek, R.J. Freiberg, M. Skolnick, Laser injection locking. Proc. IEEE 61, 1411–1431 (1973)

    Article  Google Scholar 

  42. D.J. Kuizenga, A. Siegman, FM and AM mode locking of the homogeneous laser-Part I: theory. IEEE J. Quantum Electron. 6, 694–708 (1970)

    Article  ADS  Google Scholar 

  43. F.X. Kärtner, D. Kopf, U. Keller, Solitary-pulse stabilization and shortening in actively mode-locked lasers. J. Opt. Soc. Am. B 12, 486–496 (1995)

    Article  ADS  Google Scholar 

  44. L. Nelson, D. Jones, K. Tamura, H. Haus, E. Ippen, Ultrashort-pulse fiber ring lasers. Appl. Phys. B 65, 277–294 (1997)

    Article  ADS  Google Scholar 

  45. J. Kim, Y. Song, Ultralow-noise mode-locked fiber lasers and frequency combs: principles, status, and applications. Adv. Opt. Photonics 8, 465–540 (2016)

    Article  ADS  Google Scholar 

  46. A. Takada, H. Miyazawa, 30 GHz picosecond pulse generation from actively mode-locked erbium-doped fibre laser. Electron. Lett. 26, 216–217 (1990)

    Article  Google Scholar 

  47. S. Thiruthakkathevan, Scheme for coherent state quantum key distribution. Master’s thesis, Indian Institute of Technology Madras, India (2011)

    Google Scholar 

  48. B. Razavi, A study of injection pulling and locking in oscillators, in Proceedings of IEEE Custom Integrated Circuits Conference (2004), pp. 305–312

    Google Scholar 

  49. R. Adler, A study of locking phenomena in oscillators. Proc. IRE 34, 351–357 (1946)

    Article  Google Scholar 

  50. K. Kurokawa, Injection locking of microwave solid-state oscillators. Proc. IEEE 61, 1386–1410 (1973)

    Article  Google Scholar 

  51. S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering. (Westview, Boulder, 2014)

    Google Scholar 

  52. A. Siegman, Lasers (University Science Books, Sausalito, 1986)

    Google Scholar 

  53. S. Krishnamoorthy, A. Prabhakar, Mode unlocking characteristics of an RF detuned actively mode-locked fiber ring laser. Opt. Comm. 431,39–44 (2019)

    Article  ADS  Google Scholar 

  54. C. Xu, F. Wise, Recent advances in fibre lasers for nonlinear microscopy. Nat. Photonics 7, 875–882 (2013)

    Article  ADS  Google Scholar 

  55. F. El-Diasty, Coherent anti-Stokes Raman scattering: spectroscopy and microscopy. Vib. Spectrosc. 55, 1–37 (2011)

    Article  Google Scholar 

  56. A. Jonáš, D. McGloin, A. Kiraz, Droplet lasers. Opt. Photonics News 26, 36–43 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

S. Krishnamoorthy thanks Prof. Satyajit Mayor from NCBS-TIFR for guidance and support, the BioEngineering Research Initiative at NCBS for supporting her research and providing the opportunity to be associated with the project. The authors thank Jayavel D., Yusuf Panbiharwala and Sathish for help with construction of the lasers. The authors thank Central Imaging and Flow Cytometry Facility (CIFF) at NCBS-TIFR, Bangalore and the photonics@IITM group and Jitu-lab for facilities. Jayant lab and Rama Reddy for support with fluorescence experiments. The authors wish to thank the anonymous reviewers for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shree Krishnamoorthy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Krishnamoorthy, S., Thiruthakkathevan, S., Prabhakar, A. (2019). Active Fibre Mode-locked Lasers in Synchronization for STED Microscopy. In: Ribeiro, P., Andrews, D., Raposo, M. (eds) Optics, Photonics and Laser Technology 2017. Springer Series in Optical Sciences, vol 222. Springer, Cham. https://doi.org/10.1007/978-3-030-12692-6_11

Download citation

Publish with us

Policies and ethics