Skip to main content

Chemistry of the Secondary Metabolites of Termites

  • Chapter
  • First Online:
Progress in the Chemistry of Organic Natural Products 109

Part of the book series: Progress in the Chemistry of Organic Natural Products ((POGRCHEM,volume 109))

Abstract

Isolation, structure determination, synthesis, and biochemistry of the low-molecular-weight compounds of the secretion of exocrine glands of termites are described, with an emphasis on pheromones and defensive compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

% ee :

Enantiomeric excess

[α]D :

Optical rotation at λ = 589 nm

′:

Minutes

′′:

Seconds

18-crown-6:

1,4,7,10,13,16-Hexaoxacyclooctadecane

2D-NMR:

Two-dimensional nuclear magnetic resonance

8H-BINAP:

2,2′-Bis(diphenylphosphino)-5,5′,6,6′,7,7′,8,8′-octahydro-1,1′-binaphthalene

9-BBN:

9-Borabicyclo[3.3.1]nonane

abs:

Absolute

Ac:

Acetyl

acac:

Acetylacetonate

AIBN:

Azobisisobutyronitrile

aq:

Aqueous

ATP:

Adenosine-5′-triphosphate

ATPB:

Acetonyltriphenylphosphonium bromide

BHT:

2,6-Di-t-butyl-4-methylphenol

Bn:

Benzyl

brsm:

Based on recovered starting material

Bu:

n-Butyl

Bz:

Benzoyl

CAN:

Cerium ammonium nitrate

cat.:

Catalytic

CD:

Circular dichroism

CHC:

Cuticular hydrocarbon

COLOC:

Correlation spectrometry of long-range coupling

COSY:

Correlation spectrometry

Cp:

Cyclopentadienyl

CSA:

Camphorsulfonic acid

Cy:

Cyclohexyl

Cyt:

Cytochrome

d:

Day(s)

DABCO:

1,4-Diazabicyclo[2.2.2]octane

dba:

Dibenzylidene acetone

DBN:

1,5-Diazabicyclo[4.3.0]non-5-ene

DBU:

1,8-Diazabicyclo[5.4.0]undec-7-ene

DCC:

1,3-Dicyclohexylcarbodiimide

DDQ:

2,3-Dichloro-5,6-dicyano-1,4-benzoquinone

DEAD:

Diethyl azodicarboxylate

DET:

Diethyl tartrate

DHF:

4,5-Dihydrofuran

DHP:

3,4-Dihydro-2H-pyran

DIAD:

Diisopropyl azodicarboxylate

DIBAH:

Diisobutylaluminum hydride

diglyme:

Bis(2-methoxyethyl) ether

DMAP:

4-(Dimethylamino)pyridine

DMAPO:

4-(Dimethylamino)pyridine oxide

DME:

1,2-Dimethoxyethane

DMF:

Dimethylformamide

DMP:

2,2-Dimethoxypropane

DMSO:

Dimethyl sulfoxide

dppp:

1,3-Bis(diphenylphosphino)propane

EDTA:

Ethylenediamine tetraacetic acid

EPC:

Enantiomerically pure compound

eq:

Equivalents

ESIMS:

Electronspray ionization mass spectrum

Et:

Ethyl

ether:

Diethyl ether

exc:

Excess

FAB:

Fast-atom bombardment

GLC:

Gas-liquid chromatography

glyme:

1,2-Dimethoxyethane (=dimethylglycol)

h:

hour

HFP:

Hexafluoropropan-2-ol

HMDS:

Hexamethyldisilazane

HMPA:

Hexamethylphosphoramide

HMQC:

Heteronuclear multiple quantum coherence

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrum

HR-TOF-MS:

High-resolution time-of-flight mass spectrum

HSQC:

Heteronuclear single-quantum correlation

hν :

Irradiation with light

IBX:

2-Iodoxybenzoic acid

IMDA:

Intramolecular Diels-Alder reaction

i-Pr:

Isopropyl

IR:

Infrared (spectroscopy)

IR-120:

Acidic ion exchange beads

KHMDS:

Potassium hexamethyldisilazide

LAH:

Lithium aluminum hydride

LDA:

Lithium diisopropylamide

LHMDS:

Lithium hexamethyldisilazide

LIS:

Lanthanide induced shift

MAD:

Methylaluminum bis-(2,6-di-t-butyl-4-methylphenoxide)

MCPBA:

m-Chloroperbenzoic acid

Me:

Methyl

MEM:

Methoxyethoxymethyl

MOM:

Methoxymethyl

MoOPH:

Oxodiperoxymolybdenum-(pyridine)-(hexamethylphosphoric triamide)

Mp:

Melting point

MPTACl:

(+)-α-Methoxy-α-(trifluormethyl)-phenylacetylchlorid (Mosher’s reagent)

MS:

Mass spectrum

Ms:

Methanesulfonyl

MS:

Molecular sieve

NaDPH:

Nicotinamide-adenine dinucleotide phosphate

NBS:

N-Bromosuccinimide

NCS:

N-Chlorosuccinimide

NMO:

Morpholine N-oxide

NMR:

Nuclear magnetic resonance (spectrometry)

NOE:

Nuclear Overhauser effect

NOESY:

Nuclear Overhauser and exchange spectroscopy

ORD:

Optical rotation dispersion (spectroscopy)

PCC:

Pyridinium chlorochromate

PDC:

Pyridinium dichromate

Ph:

Phenyl

PhCH3 :

Toluene

PhH:

Benzene

Piv:

Pivaloyl

PMB:

p-Methoxybenzyl

PMP:

p-Methoxyphenyl

PP:

Diphosphate

PPTS:

Pyridinium p-toluenesulfonate

pyr:

Pyridine

RCMT:

Ring-closing metathesis

Redal®:

Sodium bis(2-methoxyethoxy)aluminum hydride

rfl:

Reflux

rt:

Room temperature

sia:

3-Methylbut-2-yl (=siamyl)

TADA:

Transannular Diels-Alder reaction

TBAF:

Tetrabutylammonium fluoride

TBS:

t-Butyldimethylsilyl

t-Bu:

t-Butyl

TEMPO:

2,2,6,6-Tetramethylpiperidine N-oxide

t :

tertiary

TES:

Triethylsilyl

Tf (OTf):

Triflate

TFA:

Trifluoroacetic acid

TFAA:

Trifluoroacetic anhydride

thexyl:

2,3-Dimethyl-2-butyl

THF:

Tetrahydrofuran, tetrahydrofuranyl

TIPS:

Triisopropylsilyl

TLC:

Thin-layer chromatography

TMS:

Trimethylsilyl

TPAP:

Tetrapropyl perruthenate

TPS:

t-Butyldiphenylsilyl

Tr:

Trityl = triphenylmethyl

Troc:

Trichloroethoxycarbonyl

Ts:

Tosyl = p-toluenesulfonyl

UV:

Ultraviolet (spectroscopy)

y:

Year

Z:

Benzyloxycarbonyl

Δ:

High temperature

References

  1. Engel MS, Grimaldi DA, Krishna K (2009) Termites (Isoptera): their phylogeny, classification and rise to ecological dominance. Am Museum Novitates 3650:1

    Google Scholar 

  2. Legendre F, Nel A, Svenson GJ, Robillard T, Pellens R, Grandcolas P (2015) Phylogeny of Dictyoptera: dating the origin of cockroaches, praying mantises and termites with molecular data and controlled fossil evidence. PLoS One 10:e0130127

    PubMed  PubMed Central  Google Scholar 

  3. Bourguignon T, Lo N, Cameron SL, Sobotnik J, Hayashi Y, Shigenobu S, Watanabe D, Roisin Y, Miura T, Evans TA (2015) The evolutionary history of termites as inferred from 66 mitochondrial genomes. Mol Biol Evol 32:406

    CAS  PubMed  Google Scholar 

  4. Vrsansky P, Aristov D (2014) Termites (Isoptera) from the Jurassic/Cretaceous boundary: evidence for the longevity of their earliest genera. Eur J Entomol 111:137

    Google Scholar 

  5. Harrison MC, Jongepier E, Robertson HM, Arning N, Bitard-Feildel T, Chao H, Childers CP, Dinh H, Doddapaneni H, Dugan S, Gowin C, Han Y, Hu H, Hughes DST, Huylmans AK, Kemena C, Kremer LPM, Lee SL, Lopez-Ezquerra A, Mallet L, Monroy-Kuhn JM, Moser A, Murali SC, Muzny DM, Otani S, Piulachs MD, Poelchau M, Qu J, Schaub F, Wada-Katsumata A, Worley KC, Xie Q, Ylla G, Poulsen M, Gibbs RA, Schal C, Richards S, Belles X, Korb J, Bornberg-Bauer E (2018) Hemimetabolous genomes reveal molecular basis of termite eusociality. Nat Ecol Evol 2:557

    PubMed  PubMed Central  Google Scholar 

  6. Dornhaus A, Powell S, Bengston S (2012) Group size and its effects on collective organization. Ann Rev Entomol 57:123

    CAS  Google Scholar 

  7. Scheffrahn RH, Mullins AJ, Krecek J, Chase JA, Mangold JR, Myles T, Nishimura T, Setter R, Cannings RA, Higgins RJ, Lindgren BS, Constantino R, Issa S, Kuswanto E (2015) Global elevational, latitudinal, and climatic limits for termites and the redescription of Rugitermes laticollis Snyder (Isoptera, Kalotermitidae) from the Andean highlands. Sociobiology 62:426

    Google Scholar 

  8. Watanabe H, Tokuda G (2010) Cellulolytic systems in insects. Ann Rev Entomol 55:609

    CAS  Google Scholar 

  9. Breznak JA, Brune A (1994) Role of microorganisms in the digestion of lignocellulose by termites. Ann Rev Entomol 39:453

    CAS  Google Scholar 

  10. Tholen A, Brune A (2000) Impact of oxygen on the metabolic fluxes and in situ rates of reductive acetogenesis in the hindgut of the wood-feeding termite Reticulitermes flavipes. Environ Microbiol 2:436

    CAS  PubMed  Google Scholar 

  11. Pester M, Brune A (2007) Hydrogen is the central free intermediate during lignocellulose degradation by termite gut symbionts. ISME 1:551

    CAS  Google Scholar 

  12. Breznak JA, Brill WJ, Mertins JW, Coppel HC (1973) Nitrogen fixation in termites. Nature 244:577

    CAS  PubMed  Google Scholar 

  13. Desai MS, Brune A (2012) Bacteroidales ectosymbionts of gut flagellates shape the nitrogen-fixing community in dry-wood termites. ISME 6:1302

    CAS  Google Scholar 

  14. Bujang NS, Harrison NA, Su NY (2014) A phylogenetic study of endo-β-1,4-glucanase in higher termites. Insect Soc 61:29

    Google Scholar 

  15. Garnier-Sillam E, Toutain F, Villemin G, Renoux J (1989) Etudes preliminaires des meules originales du termite xylophage Sphaerotermes sphaerothorax (Sjöstedt). Insect Soc 36:293

    Google Scholar 

  16. Verma M, Sharma S, Prasad R (2009) Biological alternatives for termite control: a review. Int Biodeterior Biodegradation 63:959

    CAS  Google Scholar 

  17. Geerts S, van der Linden J, van der Linden E (2016) The ecology and foraging behaviour of the harvester termite, Baucaliotermes hainesi in semi-arid grasslands in the northwestern interior of South Africa. Insect Soc 63:457

    Google Scholar 

  18. Rasmussen RA, Khalil MAK (1983) Global production of methane by termites. Nature 301:700

    CAS  Google Scholar 

  19. Sugimoto A, Binell DE, MacDonald JA (2001) Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe T, Bignell DE, Higashi M (eds) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht, p 409

    Google Scholar 

  20. Pringle R, Doak DF, Brody AK, Jocque R, Palmer TM (2010) Spatial pattern enhances ecosystem functioning in an African savanna. PLoS Biol 8:e1000377 (and literature cited therein)

    PubMed  PubMed Central  Google Scholar 

  21. Evans TA, Dawes TZ, Ward PR, Lo N (2011) Ants and termites increase crop yield in a dry climate. Nat Commun 2:262

    PubMed  PubMed Central  Google Scholar 

  22. Pennisi E (2015) Africa’s soil engineers: termites. Science 347:596

    CAS  PubMed  Google Scholar 

  23. Brandl R, Hacker M, Bagine RKN, Kaib M (2001) Geographic variation of polygyny in the termite Macrotermes michaelseni (Sjöstedt). Insect Soc 48:134

    Google Scholar 

  24. Gullan PJ, Cranston PS (2014) The insects. An outline of entomology, 5th edn. Wiley-Blackwell, Oxford, UK

    Google Scholar 

  25. Sobotnik J, Bourguignon T, Hanus R, Sillam-Dusses D, Pflegerova J, Weyda F, Kutalova K, Vytiskova B, Roisin Y (2010) Not only soldiers have weapons: evolution of the frontal gland in imagoes of the termite families Rhinotermitidae and Serritermitidae. PLoS One 5:e15761

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Hu J, Neoh KB, Appel AG, Lee CY (2012) Subterranean termite open-air foraging and tolerance to desiccation: comparative water relation of two sympatric Macrotermes spp. (Blattodea: Termitidae). Comp Biochem Physiol, Part A 161:201

    CAS  Google Scholar 

  27. Theraulaz G, Bonabeau E, Deneubourg JL (1998) The origin of nest complexity in social insects. Complexity 3:15

    Google Scholar 

  28. Prestwich GD (1983) Chemical systematics of termite exocrine secretions. Ann Rev Ecol Syst 14:287

    Google Scholar 

  29. Prestwich GD (1984) Defense mechanism of termites. Ann Rev Entomol 29:201

    CAS  Google Scholar 

  30. Prestwich GD (1986) Chemical defense and self-defense in termites. In: Atta-ur-Rahman (ed) Natural product chemistry. Springer, Berlin, p 318

    Google Scholar 

  31. Prestwich GD (1982) From tetracycles to macrocycles. Chemical diversity in the defense secretions of nasute termites. Tetrahedron 38:1911

    CAS  Google Scholar 

  32. Sobotnik J, Jirosova A, Hanus R (2010) Chemical warfare in termites. J Insect Physiol 56:1012

    CAS  PubMed  Google Scholar 

  33. Bosch TCG (2012) Das Immunsystem im Metaorganismus: Bakterien-eher Partner als Feinde. Biol Uns Zeit 42:302

    Google Scholar 

  34. Rosengaus RB, Lefebvre ML, Traniello JFA (2000) Inhibition of fungal spore germination by Nasutitermes: evidence for a possible antiseptic role of soldier defensive secretions. J Chem Ecol 26:21

    CAS  Google Scholar 

  35. Yanagawa A, Fujiwara-Tsujii N, Akino T, Yoshimura T, Yanagawa T, Shimizu S (2011) Behavioral changes in the termite, Coptotermes formosanus (Isoptera), inoculated with six fungal isolates. J Inverteb Pathol 107:100

    Google Scholar 

  36. Ulyshen MD, Shelton TG (2012) Evidence of cue synergism in termite corpse response behavior. Naturwissenschaften 99:89

    CAS  PubMed  Google Scholar 

  37. Neoh KB, Yeap BK, Tsunoda K, Yoshimura T, Lee CY (2012) Do termites avoid carcasses? Behavioral responses dependent on the nature of the carcasses. PLoS One 7:e36375

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Matsuura K, Himuro C, Yokoi T, Yamamoto Y, Vargo EL, Keller L (2010) Identification of a pheromone regulating caste differentiation in termites. Proc Natl Acad Sci USA 107:12963

    CAS  PubMed  Google Scholar 

  39. Wilson EO (2000) Sociobiology, the new synthesis. 25th Anniversary Edition. Belknap Press of Harvard University Press, Cambridge, MA, pp 398, 584

    Google Scholar 

  40. Reeve HK, Hölldobler B (2007) The emergence of a superorganism through intergroup competition. Proc Natl Acad Sci USA 104:9736

    CAS  PubMed  Google Scholar 

  41. Wilson EO, Hölldobler B (2009) The superorganism. The beauty, elegance, and strangeness of insect societies. WW Norton, New York, p 9

    Google Scholar 

  42. Blum MS (1996) Semiochemical parsimony in Arthropoda. Annu Rev Entomol 41:353

    CAS  PubMed  Google Scholar 

  43. Spietelun A, Kloskowski A, Chrzanowski W, Namiesnik J (2013) Understanding solid-phase microextraction: key factors influencing the extraction process and trends in improving the technique. Chem Rev 113:1667

    CAS  PubMed  Google Scholar 

  44. Pawliszyn J (1997) Solid phase microextraction. Theory and practice. Wiley-VCH, New York

    Google Scholar 

  45. Arthur CL, Pawliszyn J (1990) Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal Chem 62:2145

    CAS  Google Scholar 

  46. Le Conte Y, Hefetz A (2008) Primer pheromones in social Hymenoptera. Annu Rev Entomol 53:523

    PubMed  Google Scholar 

  47. Costa-Leonardo AM, Haifig I, Teixeira Laranjo L (2012) Tergal glands in termite soldiers of the subfamily Syntermitinae (Isoptera: Termitidae). Micron 43:422

    PubMed  Google Scholar 

  48. Telles Goncalves TT, de Souza O, Billen J (2010) A novel exocrine structure of the bicellular unit type in the thorax of termites. Acta Zool 91:193

    Google Scholar 

  49. Krizkova B, Bourguinon T, Vytiskova B, Sobotnik J (2014) The clypeal gland: a new exocrine gland in termite imagoes (Isoptera: Serritermitae, Rhinotermitae, Termitidae). Arthropod Struct Dev 43:537

    PubMed  Google Scholar 

  50. Hunt JH, Richard FJ (2013) Intracolony vibroacoustic communication in social insects. Insect Soc 60:403

    Google Scholar 

  51. Evans TA, Lai JC, Toledano E, McDowall L, Rakotonarivo S, Lenz M (2005) Termites assess wood size by using vibration signals. Proc Natl Acad Sci USA:3732

    Google Scholar 

  52. Evans TA, Inta R, Lai JC, Lenz M (2007) Foraging vibration signals attract foragers and identify food size in the drywood termite Cryptotermes secundus. Insect Soc 54:374

    Google Scholar 

  53. Inta R, Evans TA, Lai JC (2009) Effect of vibratory soldier alarm signals on the foraging behavior of subterranean termites (Isoptera: Rhinotermitidae). J Ecol Entomol 102:121

    CAS  Google Scholar 

  54. Hertel H, Hanspach A, Plarre R (2011) Differences in alarm responses in drywood and subterranean termites (Isoptera: Kalotermitidae and Rhinotermitidae) to physical stimuli. J Insect Behav 24:106

    Google Scholar 

  55. Connetable S, Robert A, Bouffault F, Bordereau C (1999) Vibratory alarm signals in two sympatric higher termite species: Pseudacanthotermes spiniger and P. militaris (Termitidae, Macrotermitinae). J Insect Behav 12:329

    Google Scholar 

  56. Schneider D (1957) Elektrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori. Z Vergleich Physiol 40:8

    Google Scholar 

  57. Moorhouse JE, Yeadon R, Beavor PS, Nesbit BF (1969) Method for the use in studies of insect chemical communication. Nature 223:1174

    CAS  Google Scholar 

  58. Arn H, Städler E, Rauscher S (1975) The electroantennographic detector — a selective and sensitive tool in the gas chromatographic analysis of insect pheromones. Z Naturforsch 30C:722

    CAS  Google Scholar 

  59. Myrick AJ, Baker TC (2018) Increasing signal-to-noise ratio in gas chromatography-electroantennography using a Deans switch effluent chopper. J Chem Ecol 44:11 (and literature cited therein)

    Google Scholar 

  60. Hanus R, Vrkoslav V, Hrdy I, Cvacka J, Sobotnik J (2010) Beyond cuticular hydrocarbons: evidence of proteinaceous secretion specific to termite kings and queens. Proc R Soc B 277:995

    CAS  PubMed  Google Scholar 

  61. Sillam-Dusses D, Krasulova J, Vrkoslav V, Pytelkova J, Cvacka J, Kutalova K, Bourguignon T, Miura T, Sobotnik J (2012) Comparative study of the labial secretion in termites (Isoptera). PLoS One 7(10):e46431

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Bordereau C, Pasteels JM (2011) Pheromones and chemical ecology of dispersal and foraging in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis, Chapter 11. Springer, Dordrecht, p 279

    Google Scholar 

  63. Sillam-Dusses D (2010) Trail pheromones and sex pheromones in termites. Novinka, Nova Science Publishers, New York

    Google Scholar 

  64. Sillam-Dusses D (2004) Evolution des pheromones de piste chez les termites et leur relations avec les pheromones sexuelles. Ph.D. thesis, University of Bourgogne, p 173

    Google Scholar 

  65. Czaczkes TJ, GrĂĽter C, Ratnieks FLW (2015) Trail pheromones: an integrative view of their role in colony organization. Annu Rev Entomol 60:581. (This review is heavily biased towards ants)

    CAS  PubMed  Google Scholar 

  66. Saran RK, Millar JG, Rust MK (2007) Role of (3Z,6Z,8E)-dodecatrien-1-ol in trail following, feeding and mating behavior of Reticulitermes hesperus. J Chem Ecol 33:369

    CAS  PubMed  Google Scholar 

  67. Bordereau C, Robert A, Bonnard O, Le Quere JL (1991) (3Z, 6Z, 8E)-Dodecatrien-1-ol: sex pheromone in a higher fungus-growing termite, Pseudacanthotermes spiniger (Isoptera, Macrotermitinae). J Chem Ecol 17:2177

    CAS  PubMed  Google Scholar 

  68. Sillam-Dusses D, Hanus R, Oukasha A, El-Latif A, Jiros P, Krasulova J, Kalinova B, Valterova I, Sobotnik J (2011) Sex pheromone and trail pheromone of the sand termite Psammotermes hybostoma. J Chem Ecol 37:179

    CAS  PubMed  Google Scholar 

  69. Hanus R, Sobotnik J, Krasulova J, Jiros P, Zacek P, Kalinova B, Dolejsova K, Cvacka J, Bourguignon T, Roisin Y, Lacey MJ, Sillam-Dusses D (2012) Nonadecadienone, a new trail-following pheromone identified in Glossotermes oculatus (Serritermitidae). Chem Senses 37:55

    CAS  PubMed  Google Scholar 

  70. Bordereau C, Robert A, Laduguie N, Bonnard O, Le Quere JL, Yamaoka R (1993) Detection du (Z,Z,E)-3,6,8-dodecatrien-1-ol par les ouvriers et les essaimants de deux especes de termites champignonnistes: Pseudacanthotermes spiniger et P. militares (Termitidae, Macrotermitinae). Actes Coll Insect Soc 8:145

    Google Scholar 

  71. Wen P, Ji BZ, Sillam-Dusses D (2014) Trail communication regulated by two trail pheromone components in the fungus-growing termite Odontotermes formosanus (Shiraki). PLoS One 9:e90906

    PubMed  PubMed Central  Google Scholar 

  72. Jaffe K, Issa S, Sainz-Borgo C (2012) Chemical recruitment for foraging in ants (Formicidae) and termites (Isoptera): a revealing comparison. Psyche 2012:694910

    Google Scholar 

  73. Tai A, Matsumura F, Coppel HC (1969) Chemical identification of the trail-following pheromone for a Southern subterranean termite. J Org Chem 34:2180

    CAS  Google Scholar 

  74. Tokoro M, Yamaoka R, Hayashiya K, Takahashi M, Nishimoto K (1990) Evidence for trail-pheromone precursor in termite Reticulitermes speratus (Kolbe) (Rhinotermitidae: Isoptera). J Chem Ecol 16:2549

    CAS  PubMed  Google Scholar 

  75. Wen P, Mo JC, Lu CW, Tan K, Sobotnik J, Sillam-Dusses D (2015) Sex-pairing pheromone of Ancistrotermes dimorphus (Isoptera: Macrotermitinae). J Insect Physiol 83:8

    CAS  PubMed  Google Scholar 

  76. Tokoro M, Takahashi M, Tsunoda K, Yamaoka R, Hayashiya K (1991) Isolation and identification of the trail-pheromone of the subterranean termite Reticulitermes speratus (Kolbe) (Rhinotermitidae: Isoptera). Wood Res 78:1

    CAS  Google Scholar 

  77. LĂĽscher M, MĂĽller B (1960) Ein spurbildendes Sekret bei Termiten. Naturwissenschaften 47:503

    Google Scholar 

  78. Stuart AM (1963) Origin of the trail in the termites Nasutitermes corniger (Motschulsky) and Zootermopsis nevadensis (Hagen), Isoptera. Physiol Zool 36:69

    Google Scholar 

  79. Stuart AM (1964) The structure and function of the sternal gland in Zootermopsis nevadensis (Hagen), Isoptera. Proc Zool Soc London 143:43

    Google Scholar 

  80. Leuthold RH, Bruinsma O, Huis AV (1976) Optical and pheromonal orientation and memory for homing distance in the harvester termite Hodotermes mosambicus (Hagen). Behav Ecol Sociobiol 1:127

    Google Scholar 

  81. Rickli M, Leuthold RH (1988) Homing in harvester termites: evidence of magnetic orientation. Ethology 77:209

    Google Scholar 

  82. Reinhard J, Kaib M (2001) Trail communication during foraging and recruitment in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). J Insect Behav 14:157

    Google Scholar 

  83. Reinhard J, Hertel H, Kaib M (1997) Systematic search for food in the subterranean termite Reticulitermes santonensis De Feytaud (Isoptera, Rhinotermitidae). Insect Soc 44:147

    Google Scholar 

  84. Cristaldo PF, DeSouza O, Krasulova J, Jirosova A, Kutalova K, Lima ER, Sobotnik J, Sillam-Dusses D (2014) Mutual use of trail-following chemical cues by a termite host and its inquiline. PLoS One 9:e85315

    PubMed  PubMed Central  Google Scholar 

  85. Abe T, Bignell DE, Higashi M (2001) Termites: evolution, sociality, symbioses, ecology. Kluwer Academic Publishers, Dordrecht

    Google Scholar 

  86. Matsumura F, Coppel HC, Tai A (1968) Isolation and identification of termite trail-following pheromone. Nature 219:963

    CAS  PubMed  Google Scholar 

  87. Matsumura F, Tai A, Coppel HC (1969) Termite trail-following substance, isolation, and purification from Reticulitermes virginicus and fungus-infected wood. J Econ Entomol 62:599

    CAS  Google Scholar 

  88. Esenther GR, Allen TC, Casida JE, Shenefelt RD (1968) Termite attractant from fungus-infected wood. Science 138:50

    Google Scholar 

  89. Tokoro M, Takahashi M, Tsunoda K, Yamaoka R (1989) Isolation and primary structure of trail pheromone of the termite Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). Wood Res 76:29

    CAS  Google Scholar 

  90. Tokoro M, Takahashi M, Yamaoka R (1994) (3Z,6E,8E)-3,6,8-Dodecatrien-1-ol: a minor component of trail pheromone of the termite Coptotermes formosanus Shiraki. J Chem Ecol 20:199

    CAS  PubMed  Google Scholar 

  91. Moore BP (1966) Isolation of the scent-trail pheromone of an Australian termite. Nature 211:746

    CAS  Google Scholar 

  92. Birch AJ, Brown MV, Corrie JET, Moore BP (1972) Neocembrene-A, a termite trail pheromone. J Chem Soc Perkin Trans I 1972:2653

    Google Scholar 

  93. Sillam-Dusses D, Semon E, Moreau C, Valterova I, Sobotnik J, Robert A, Bordereau C (2005) Neocembrene A, a major component of the trail-following pheromone in the genus Prorhinotermes (Insecta, Isoptera, Rhinotermitidae). Chemoecology 15:1

    CAS  Google Scholar 

  94. Sillam-Dusses D, Kalinova B, Jiros P, Brezinova A, Cvacka J, Hanus R, Sobotnik J, Bordereau C, Valterova I (2009) Identification by GC-EAD of the two-component trail-following pheromone of Prorhinotermes simplex (Isoptera, Rhinotermitidae, Prorhinotermitinae). J Insect Physiol 55:751

    CAS  PubMed  Google Scholar 

  95. Peppuy A, Robert A, Semon E, Ginies C, Lettere M, Bonnard O, Bordereau C (2001) (Z)-Dodec-3-en-1-ol, a novel termite trail pheromone identified after solid-phase microextraction from Macrotermes annandalei. Insect Physiol 47:445

    CAS  Google Scholar 

  96. Robert A, Peppuy A, Semon E, Boyer FD, Lacey MJ, Bordereau C (2004) A new C12 alcohol identified as a sex pheromone and a trail pheromone in termites: the diene (Z,Z)-dodeca-3,6-dien-1-ol. Naturwissenschaften 91:34

    CAS  PubMed  Google Scholar 

  97. Peppuy A, Robert A, Semon E, Bonnard O, Son NT, Bordereau C (2001) Species specificity of trail pheromones of fungus-growing termites from northern Vietnam. Insect Soc 48:245

    Google Scholar 

  98. Sillam-Dusses D, Semon E, Robert A, Bordereau C (2009) (Z)-Dodec-3-en-1-ol, a common major component of the trail-following pheromone in the termites Kalotermitidae. Chemoecology 19:103

    CAS  Google Scholar 

  99. Sillam-Dusses D, Semon E, Lacey MJ, Robert A, Lenz M, Bordereau C (2007) Trail-following pheromones in basal termites, with special reference to Mastotermes darwiniensis. J Chem Ecol 33:1960

    CAS  PubMed  Google Scholar 

  100. Ghostin J, Bordereau C, Braekman JC (2011) Synthesis of syn-4,6-dimethyldodecanal, the male sex pheromone and trail-following pheromone of two species of the termite Zootermopsis. Nat Prod Res 25:560

    CAS  PubMed  Google Scholar 

  101. Bordereau C, Lacey MJ, Semon E, Braekman JC, Ghostin J, Robert A, Sherman JS, Sillam-Dusses D (2010) Sex pheromones and trail-following pheromone in the basal termites Zootermopsis nevadensis (Hagen) and Z. angusticollis (Hagen) (Isoptera: Termopsidae: Termopsinae). Biol J Linn Soc 100:519

    Google Scholar 

  102. Lacey MJ, Semon E, Krasulova J, Sillam-Dusses D, Robert A, Cornette R, Hoskovec M, Zacek P, Valterova I, Bordereau C (2011) Chemical communication in termites: syn-4,6-dimethylundecan-1-ol as trail-following pheromone, syn-4,6-dimethylundecanal and (5E)-2,6,10-trimethylundeca-5,9-dienal as the respective male and female sex pheromones in Hodotermopsis sjöstedti (Isoptera, Archotermopsidae). J Insect Physiol 57:1585

    CAS  PubMed  Google Scholar 

  103. Budesinsky M, Valterova I, Semon E, Cancello E, Bordereau C (2005) NMR structure determination of (11E)-trinervita-1(14),2,11-triene, a new diterpene from sexual glands of termites. Tetrahedron 61:10699

    CAS  Google Scholar 

  104. Sillam-Dusses D, Semon E, Robert A, Cancello E, Lenz M, Valterova I, Bordereau C (2010) Identification of multi-component trail pheromones in the most evolutionary derived termites, the Nasutitermitinae (Termitidae). Biol J Linn Soc 99:20

    Google Scholar 

  105. Butenandt A, Beckmann R, Stamm D, Hecker E (1959) Ăśber den Sexuallockstoff des Seidenspinners Bombyx mori. Reindarstellung und Konstitution. Z Naturforsch 14:283

    Google Scholar 

  106. Karlson P, Butenandt A (1959) Pheromones (ectohormones) in insects. Annu Rev Entomol 4:49

    Google Scholar 

  107. Butenandt A, Hecker E, Zachau G (1955) Ăśber die vier geometrischen Isomeren des 2,4-Hexadienols-(1). Chem Ber 88:1185

    CAS  Google Scholar 

  108. Moore BP (1962) Coumarin like substances from Australian termites. Nature 195:1101

    CAS  Google Scholar 

  109. Moore BP (1964) Volatile terpenes from Nasutitermes soldiers (Isoptera; Termitidae). J Insect Physiol 10:371

    CAS  Google Scholar 

  110. Moore BP, Brown WV (1971) Gas-liquid chromatographic identification of ozonolysis fragments for micro-scale structure determinations. J Chromatogr 60:157

    CAS  Google Scholar 

  111. Wahlberg I, Eklund AM (1992) Cyclized cembranoids of natural occurrence. Prog Chem Org Nat Prod 60:1 (especially pp 9–17)

    CAS  Google Scholar 

  112. Wahlberg I, Eklund AM (1992) Cembranoids, pseudopteranoids and cubitanoids of natural occurrence. Prog Chem Org Nat Prod 59:141 (especially pp 188, 267, 272)

    CAS  Google Scholar 

  113. Weinheimer AJ, Chang CW, Matson JA (1979) Naturally occurring cembranes. Prog Chem Nat Prod 36:285

    CAS  Google Scholar 

  114. Tius MA (1988) Synthesis of cembranes and cembranolides. Chem Rev 88:719

    CAS  Google Scholar 

  115. Manchand PS, White JD (1978) In: van Tamelen EE (ed) Contemporary bio-organic chemistry, vol 2. Academic Press, New York, p 337

    Google Scholar 

  116. Tursch B, Braekman JC, Daloze D, Kaisin M (1978) In: Scheuer PJ (ed) Marine natural products, vol 2. Academic Press, New York, p 247

    Google Scholar 

  117. Dauben WG, Thiessen WE, Resnick PR (1965) Cembrene, a fourteen membered ring diterpene hydrocarbon. J Org Chem 30:1693

    CAS  Google Scholar 

  118. Patil VD, Nayak UR, Dev S (1973) Chemistry of Ayurvedic crude drugs – II: Guggulu (resin from Commiphora mukul)-2: diterpenoid constituents. Tetrahedron 29:341

    CAS  Google Scholar 

  119. Kodama M, Matsuki Y, Ito S (1975) Syntheses of macrocyclic terpenoids by intramolecular cyclization I. (±)-Cembrene A, a termite trail pheromone, and nephthenol. Tetrahedron Lett 39:3065

    Google Scholar 

  120. Kodama M, Yokoo S, Yamada H, Ito S (1978) Synthesis of macrocyclic diterpenoids by intramolecular cyclization IV. Synthesis of (6Z)-hedycaryols. Tetrahedron Lett 42:3121

    Google Scholar 

  121. Takayanagi H, Uyehara T, Kato T (1978) Alternative synthetic route to the cembrene skeleton. J Chem Soc Chem Commun:359

    Google Scholar 

  122. Kodama M, Matsuki Y, Ito S (1976) Synthesis of macrocyclic terpenoids by intramolecular cyclization II. Germacrane-type sesquiterpenes. Tetrahedron Lett 40:1121

    Google Scholar 

  123. Kitahara Y, Kato T, Kobayashi T, Moore BP (1976) Cyclization of polyenes XVII. Synthesis and pheromone activity of dl-neocembrene. Chem Lett 5:219

    Google Scholar 

  124. Kato T, Suzuki M, Kobayashi T, Moore BP (1980) Synthesis and pheromone activities of optically active neocembrenes and their geometrical isomers, (E,Z,E)- and (E,E,Z)-neocembrenes. J Org Chem 45:1126

    CAS  Google Scholar 

  125. Hall P, Traniello JFA (1985) Behavioral bioassays of termite trail pheromones. Recruitment and orientation effects of cembrene-A in Nasutitermes costalis (Isoptera: Termitidae) and discussion of factors affecting termite response in experimental contexts. J Chem Ecol 11:1503

    CAS  PubMed  Google Scholar 

  126. McDowell PG, Oloo GW (1984) Isolation, identification and biological activity of trail-following pheromone of termite, Trinervitermes bettonianus (Sjöstedt) (Termitidae: Nasutiterminae). J Chem Ecol 10:835

    CAS  PubMed  Google Scholar 

  127. Wiemer DF, Meinwald J, Prestwich GD, Miura I (1979) Cembrene A and (3Z)-cembrene A: diterpenes from a termite soldier (Isoptera Termitidae Termitinae). J Org Chem 44:3950

    CAS  Google Scholar 

  128. Prestwich GD (1984) Interspecific variation of diterpene composition of Cubitermes soldier defense secretions. J Chem Ecol 10:1219

    CAS  PubMed  Google Scholar 

  129. Hamm S, Bleton J, Connan J, Tchapla A (2005) A chemical investigation by headspace SPME and GC-MS of volatile and semi-volatile terpenes in various olibanum samples. Phytochemistry 66:1499

    CAS  PubMed  Google Scholar 

  130. Ravi BN, Faulkner DJ (1978) Cembrenoid diterpenes from a South Pacific soft coral. J Org Chem 43:2127

    CAS  Google Scholar 

  131. Edwards JP, Chambers J (1984) Identification and source of a queen-specific chemical in the Pharaoh’s Ant, Monomorium pharaonis (L.). J Chem Ecol 10:1731

    CAS  PubMed  Google Scholar 

  132. Mattern DL, Scott WD, McDaniel CA, Weldon PJ, Graves DE (1997) Cembrene A and a congeneric ketone isolated from the paracloacal glands of the Chinese Alligator (Alligator sinensis). J Nat Prod 60:828

    CAS  PubMed  Google Scholar 

  133. Argenti L, Bellina F, Carpita A, Rossi E, Rossi R (1994) Trail-following in termites: stereoselective syntheses of (Z)-3-dodecen-1-ol, (3Z,6Z)-3,6-dodecadien-1-ol and (Z,Z,E)-3,6,8-dodecatrien-1-ol. Synth Commun 24:2281

    Google Scholar 

  134. Yamaoka R, Tokoro M, Hayashiya K (1987) Determination of geometrical configuration in minute amounts of highly saturated termite trail pheromone by capillary gas chromatography in combination with mass spectrometry and Fourier-transform infrared spectrometry. J Chromatogr 399:259

    CAS  Google Scholar 

  135. Laduguie N, Robert A, Bonnard O, Vieau F, Le Quere JL, Semon E, Bordereau C (1994) Isolation and identification of (Z,Z,E)-3,6,8-dodecatrien-1-ol in Reticulitermes santonensis Feytaud (Isoptera, Rhinotermitidae): roles in worker trail-following and in alate sex-attraction behavior. J Insect Physiol 40:781

    CAS  Google Scholar 

  136. Wobst B, Farine JP, Ginies C, Semon E, Robert A, Bonnard O, Connetable S, Bordereau C (1999) (Z,Z,E)-3,6,8-Dodecatrien-1-ol, a major component of the trail-following pheromone in two sympatric termite species Reticulitermes lucifugus grassei and R. santonensis. J Chem Ecol 25:1305

    CAS  Google Scholar 

  137. Ferreire-Caliman MJ, Turatti ICC, Lopes NP, Zucchi R, Nascimento FS (2012) Analysis of insect cuticular compounds by non-lethal solid phase micro extraction with styrene-divinylbenzene copolymers. J Chem Ecol 38:418

    Google Scholar 

  138. Van den Dool H, Kratz PD (1963) A generalization of the retention index system including linear temperature programmed gas liquid partition chromatography. J Chromatogr 11:463

    Google Scholar 

  139. Kovats E (1965) Gas chromatographic characterization of organic substances in the retention index system. Adv Chromatogr 1:229

    CAS  Google Scholar 

  140. Ando T, Inomata S, Yamamoto M (2004) Lepidopteran sex pheromones. Top Curr Chem 239:51

    CAS  PubMed  Google Scholar 

  141. Millar JG, Haynes KF (1998) Methods in chemical ecology; chemical methods. Springer, New York

    Google Scholar 

  142. Vincenti M, Guglielmetti G, Cassani G, Tonini C (1987) Determination of double bond position in diunsaturated compounds by mass spectrometry of dimethyl disulfide derivatives. Anal Chem 59:694

    Google Scholar 

  143. Francis GW, Veland K (1981) Alkylthiolation for the determination of double-bond positions in linear alkenes. J Chromatogr 219:379

    CAS  Google Scholar 

  144. Ji BZ, Liu SW, Cao DD, Ji JJ, Wang LP (2014) Chemical communication in reproduction of termites. Linye Kexue 50:152

    CAS  Google Scholar 

  145. Dolejsova K, Krivanek J, Kalinova B, Hadravova R, Hanus R (2018) Sex-pairing pheromones in three sympatric neotropical termite species. J Chem Ecol 44:534

    CAS  PubMed  Google Scholar 

  146. Leuthold RH (1975) Orientation mediated by pheromones in social insects. In: Noirot C, House PE, Le Masne G (eds) Pheromones and defensive secretion in social insects. University of Dijon, Dijon, France, p 197

    Google Scholar 

  147. Wall M (1971) Zur Geschlechtsbiologie der Termite Kalotermes flavicollis (Fabr.) (Isoptera). Acta Trop 28:17

    Google Scholar 

  148. Clement JL, Lloyd H, Nagnan P, Blum MS (1987) n-Tetradecyl propionate: identification as a sex pheromone of the eastern subterranean termite (Reticulitermes flavipes). Sociobiology 15:19

    Google Scholar 

  149. Bordereau C, Cancello EM, Semon E, Courrent A, Quennedey B (2002) Sex pheromone identified after solid phase microextraction from tergal glands of female alates in Cornitermes bequaerti (Isoptera, Nasutitermitinae). Insect Soc 49:209

    Google Scholar 

  150. Laduguie N, Robert A, Salini N, Bordereau C (1994) Les termites et le dodecatrienol. Actes Coll Insect Soc 9:27

    Google Scholar 

  151. Peppuy A, Robert A, Bordereau C (2004) Species-specific sex pheromones secreted from new sexual glands in two sympatric fungus-growing termites from northern Vietnam, Macrotermes annandalei and M. barneyi. Insect Soc 51:91

    Google Scholar 

  152. Bland JM, Park YI, Raina AK, Dickens JC, Hollister B (2004) Trilinolein identified as a sex-specific component of tergal glands in alates of Coptotermes formosanus. J Chem Ecol 30:835

    CAS  PubMed  Google Scholar 

  153. Hanus R, Luxova A, Sobotnik J, Kalinova B, Jiros P, Krenek J, Bourguignon T, Bordereau C (2009) Sexual communication in the termite Prorhinotermes simplex (Isoptera, Rhinotermitidae) mediated by a pheromone from female tergal glands. Insect Soc 56:111

    Google Scholar 

  154. Bordereau C, Cancello EM, Sillam-Dusses D, Semon E (2011) Sex-pairing pheromones and reproductive isolation in three sympatric Cornitermes species (Isoptera, Termitidae, Syntermitinae). J Insect Physiol 57:469

    CAS  PubMed  Google Scholar 

  155. Huang FS, Zhu SM, Ping ZM, He XS, Li GX, Gao DR (2000) Fauna Sinica, Insecta, vol 17. Isoptera Science Press, Beijing

    Google Scholar 

  156. Wen P, Ji BZ, Liu SW, Sillam-Dusses D (2012) Sex pairing pheromone in the Asian termite pest species Odontotermes formosanus. J Chem Ecol 38:566

    CAS  PubMed  Google Scholar 

  157. Florencio DF, Marins A, Rosa CS, Cristaldo PF, Araujo AP, Silva IR, DeSouza O (2013) Diet segregation between cohabiting builder and inquiline termite species. PLoS One 8:e66535

    CAS  PubMed  PubMed Central  Google Scholar 

  158. Cristaldo PF, Rosa CS, Florencio DF, Marins A, DeSouza O (2012) Termitarium volume as a determinant of invasion by obligatory termitophiles and inquilines in the nests of Constrictotermes cyphergaster (Termitidae, Nasutiterminae). Insect Soc 59:541

    Google Scholar 

  159. DeSouza O, Albano AP, Florencio DF, Rosa CS, Marins A, Costa DA, Rodrigues VB, Cristaldo PF (2016) Allometric scaling of patrolling rate and nest volume in Constrictotermes cyphergaster termites: hints of the settlements of inquilines. PLoS One 11:e0147594

    PubMed  PubMed Central  Google Scholar 

  160. Le Quere JL, Semon E, Lanher B, Sebedio JL (1989) On-line hydrogenation in GC-MS analyses of cyclic fatty acid monomers from heated linseed oil. Lipids 24:347

    Google Scholar 

  161. Kulesza J, Gora J (1969) Synthese des Dihydroapofarnesals und des Dihydrofarnesols. Riechstoffe, Aromen, Körperpflegmittel 4:156

    Google Scholar 

  162. Ukai J, Ikeda Y, Ikeda N, Yamamoto H (1984) Stereoselective synthesis of 1,4-disubstituted 1,3-diene. Tetrahedron Lett 25:3

    Google Scholar 

  163. Ikeda Y, Ukai J, Ikeda N, Yamamoto H (1987) Selective proton transfer of unsaturated esters. Syntheses of a trail-following pheromone for subterranean termites and megatomoic acid. Tetrahedron 43:743

    CAS  Google Scholar 

  164. Ikeda Y, Ukai J, Ikeda N, Yamamoto H (1984) Facile routes to natural acyclic polyenes. Syntheses of spilanthol and trail pheromone for termite. Tetrahedron Lett 25:5177

    CAS  Google Scholar 

  165. Batista-Pereira LG, Junior MGS, Correa AG, Fernandes JB, Dietrich CRRC, Pereira DA, Bueno OC, Costa-Leonardo AM (2004) Electroantennographic responses of Heterotermes tenuis (Isoptera: Rhinotermitinae) to synthetic (3Z,6Z,8E)-dodecatrien-1-ol. J Braz Chem Soc 15:372

    CAS  Google Scholar 

  166. Eya BK, Otsuka T, Kubo I, Wood DL (1990) Syntheses and NMR analyses of the eight geometric isomers of 3,6,8-dodecatrien-1-ol, subterranean termite trail pheromone. Tetrahedron 46:2695

    CAS  Google Scholar 

  167. Wenkert E, Ferreira TW, Michelotti EL (1979) Nickel-induced conversion of carbon-sulphur into carbon-carbon bonds. One-step transformations of enol sulphides into olefins and benzenethiol derivatives into alkylarenes and biaryls. J Chem Soc Chem Commun:637

    Google Scholar 

  168. Carvalho JF, Prestwich GD (1984) Synthesis of ω-tritiated and ω-fluorinated analogues of the trail pheromone of subterranean termites. J Org Chem 49:1251

    CAS  Google Scholar 

  169. Yamamoto K, Nishigami A, Yasumoto M, Kasai F, Okada Y, Kusumi T, Ooi T (2005) Aliphatic sulfates released from Daphnia induce morphological defense of phytoplankton: isolation and synthesis of kairomones. Tetrahedron Lett 46:4765

    Google Scholar 

  170. Kajiwara T, Sekiya J, Odake Y, Hatanaka A (1977) Synthesis of 3Z,6Z-dienoic acids. Agric Biol Chem 41:1481

    CAS  Google Scholar 

  171. Gunn BP (1985) An efficient and general methodology for the synthesis of the HETEs: synthesis of (±)-5-hydroxy-6-trans-8,11,14-cis-eicosatetraenoic acid (5-HETE). Tetrahedron Lett 26:2869

    CAS  Google Scholar 

  172. Saha G, Basu MK, Kim SJ, Jung YJ, Adiyaman Y, Adiyaman M, Powell WS, FitzGerald GA, Rokach J (1999) A convenient strategy for the synthesis of β,γ-unsaturated aldehydes and acids. A construction of skipped dienes. Tetrahedron Lett 40:7179

    CAS  Google Scholar 

  173. Yadav JS, Nanda S, Rao AB (2001) Enzymatic asymmetric hydroxylation of unnatural substrates with soybean lipoxygenase. Tetrahedron Asymmetry 12:2129

    CAS  Google Scholar 

  174. Zhu YX, Liu LY (1980) Synthesis of Z,Z-3,6-dodecadien-1-ol. Hua Xue Tong Bao 9:530

    Google Scholar 

  175. Kajiwara T, Sekiya J, Hatanaka A (1978) Synthetic analogues of the termite trail-following substance. Agric Biol Chem 42:1293

    CAS  Google Scholar 

  176. Khanapure SP, Shi XX, Powell WS, Rokach J (1998) Total synthesis of a potent proinflammatory 5-oxo-ETE and its 6,7-dihydro biotransformation product. J Org Chem 63:337

    CAS  Google Scholar 

  177. Zamboni R, Rokach J (1983) Stereospecific synthesis of 5S-HETE, 5R-HETE and their transformation to 5(±)HPETE. Tetrahedron Lett 24:999

    CAS  Google Scholar 

  178. Yadav JS, Nanda S, Rao AB (2001) Soybean lipoxygenase and horseradish peroxidase catalysed asymmetric oxidation-reduction sequence for the synthesis of chiral (Z,E) diene-diols. Synlett 6:787

    Google Scholar 

  179. Zhang P, Kyler KS (1989) Enzymatic asymmetric hydroxylation of pentadienols using sojbean lipoxygenase. J Am Chem Soc 111:9241

    CAS  Google Scholar 

  180. Peng S, Okeley NM, Tsai AL, Wu G, Kulmacz RJ, van der Donk WA (2002) Synthesis of isotopically labeled arachidonic acids to probe the reaction mechanism of prostaglandin H synthase. J Am Chem Soc 124:10785

    CAS  PubMed  Google Scholar 

  181. Vasilev AA, Vlasyuk AL, Gamalevich GD, Serebryakov EP (1996) A versatile and convenient protocol for the stereocontrolled synthesis of olefinic insect pheromones. Bioorg Med Chem 4:389

    CAS  Google Scholar 

  182. Hanko R, Hammond MD, Fruchtmann R, Pfitzer J, Place GA (1990) Design, synthesis, and 5-lipoxygenase inhibiting properties of 1-thio-substituted butadienes. J Med Chem 33:1163

    CAS  PubMed  Google Scholar 

  183. Datcheva VK, Kiss K, Solomon L, Kyler KS (1991) Asymmetric hydroxylation with lipoxygenase: the role of group hydrophobicity on regioselectivity. J Am Chem Soc 113:270

    CAS  Google Scholar 

  184. McGinley CM, van der Donk WA (2006) Synthesis of site-specifically deuterated arachidonic acid derivatives containing a remote tritium radiolabel. J Label Compd Radiopharm 49:545

    CAS  Google Scholar 

  185. Hutzinger MW, Oehlschlager C (1995) Stereoselective synthesis of 1,4-dienes. Application to the preparation of insect pheromones (3Z,6Z)-dodeca-3,6-dien-1-ol and (4E,7Z)-trideca-4,7-dienyl acetate. J Org Chem 60:4595 (and literature cited therein on skipped dienes)

    CAS  Google Scholar 

  186. Buchbauer G, Spreitzer H, Kiener G (1990) Biologische Wirkung von Diterpenen. Pharm Unserer Zeit 19:28

    CAS  PubMed  Google Scholar 

  187. Koohang A, Bailey JL, Coates RM, Erickson HK, Owen D, Poulter CD (2010) Enantioselective inhibition of squalene synthase by aziridine analogues of presqualene diphosphate. J Org Chem 75:4769

    CAS  PubMed  PubMed Central  Google Scholar 

  188. Whitlock GA, Carreira EM (2000) Enantioselective synthesis of ent-stellettamide A: asymmetric dipolar cycloadditions with Me3SiCHN2. Helv Chim Acta 83:2007

    CAS  Google Scholar 

  189. Hird NW, Lee TV, Leigh AJ, Maxwell JR, Peakman TM (1989) The total synthesis of 10-(R,S)-C30 botryococcene and botryococcane and a new synthesis of a general intermediate to the botryococcene family. Tetrahedron Lett 30:4867

    CAS  Google Scholar 

  190. Huang Z, Tan Z, Novak T, Zhu G, Negishi E-I (2007) Zirconium-catalyzed asymmetric carboalumination of alkenes: ZACA-lipase-catalyzed acetylation synergy. Adv Synth Catal 349:539

    CAS  Google Scholar 

  191. Pulis AP, Aggarwal VK (2012) Synthesis of enantioenriched tertiary boronic esters from secondary allylic carbamates. Application to the synthesis of C30 botryococcene. J Am Chem Soc 134:7570

    CAS  PubMed  Google Scholar 

  192. Yamazaki N, Suzuki T, Yoshimura Y, Kibayashi C, Aoyagi S (2008) Asymmetric synthesis of stellettamides A and C. Heterocycles 75:285

    CAS  Google Scholar 

  193. Marion F, Williams DE, Patrick BO, Hollander I, Mallon R, Kim SC, Roll DM, Feldberg L, Soest RV, Andersen RJ (2006) Liphagal, a selective inhibitor of PI3 kinase α isolated from the sponge Aka coralliphaga: structure elucidation and biomimetic synthesis. Org Lett 8:321

    Google Scholar 

  194. Myers AG, Yang BH, Chen H, McKinstry L, Kopecky DJ, Gleason JL (1997) Pseudoephedrine as a practical chiral auxiliary for the synthesis of highly enantiomerically enriched carboxylic acids, alcohols, aldehydes, and ketones. J Am Chem Soc 119:6496

    CAS  Google Scholar 

  195. Kato T, Kabuto C, Kim KH, Takayanagi H, Uyehara T, Kitahara Y (1977) Cyclization of polyenes XXV. Conformational study of cembrene type diterpenes by X-ray analysis. Chem Lett 6:827

    Google Scholar 

  196. Villanueva H, Setzer WN (2010) Cembrene diterpenoids: conformational studies and molecular docking to tubulin. Rec Nat Prod 4:115

    CAS  Google Scholar 

  197. Still WC, Galynker I (1981) Chemical consequences of conformation in macrocyclic compounds: effective approach to remote asymmetric introduction. Tetrahedron 37:3981

    CAS  Google Scholar 

  198. Galli C, Mandolini L (2000) The role of ring strain on the ease of ring closure of bifunctional chain molecules. Eur J Org Chem 2000:3117 (and literature cited therein)

    Google Scholar 

  199. Neeland E, Ounsworth JP, Sims RJ, Weiler L (1987) Stereoselective reduction and alkylations of 14-member ring macrolides. Tetrahedron Lett 28:35

    CAS  Google Scholar 

  200. Dauben WG, Beasley GH, Broadhurst MD, Muller B, Peppard DJ, Pesnelle P, Suter C (1975) A synthesis of (±)-cembrene, a fourteen-membered ring diterpene. J Am Chem Soc 97:4973

    CAS  Google Scholar 

  201. Dudley MW, Denber MT, West CA (1986) Biosynthesis of the macrocyclic diterpene casbene in castor bean (Ricinus communis L.) seedlings. Changes in enzyme levels induced by fungal infection and intracellular localization of the pathway. Plant Physiol 81:335

    CAS  PubMed  PubMed Central  Google Scholar 

  202. Dudley MW, Green TR, West CA (1986) Biosynthesis of the macrocyclic diterpene casbene in Castor bean (Ricinus communis L.) seedlings. The purification and properties of farnesyl transferase from elicited seedlings. Plant Physiol 81:343

    CAS  PubMed  PubMed Central  Google Scholar 

  203. Guildford WJ, Coates RM (1982) Stereochemistry of casbene biosynthesis. J Am Chem Soc 104:3506 (and literature cited therein)

    Google Scholar 

  204. Jin YH, Coates RM (2006) Enantioselective synthesis of α-terpineol and nephthenol by intramolecular acyloxazolidinone enolate alkylation. J Chem Soc Chem Commun:2902

    Google Scholar 

  205. Schwabe R, Farkas I, Pfander H (1988) Synthese von (–)-(R)-Nephthenol und (–)-(R)-Cembren A. Helv Chim Acta 71:292

    CAS  Google Scholar 

  206. Crombie L, Kneen G, Pattenden G, Whybrow D (1980) Total synthesis of the macrocyclic diterpene (–)-casbene, the putative biogenetic precursor of lathyrane, tigliane, ingenane, and related terpenoid structures. J Chem Soc Perkin Trans I:1711

    Google Scholar 

  207. Crombie L, Kneen G, Pattenden G (1976) Synthesis of casbene. J Chem Soc Chem Commun:66

    Google Scholar 

  208. McMurry JE, Bosch GK (1987) Synthesis of macrocyclic terpenoid hydrocarbons by intramolecular carbonyl coupling: bicyclogermacrene, lepidozene, and casbene. J Org Chem 52:4885

    CAS  Google Scholar 

  209. Toma K, Miyazaki E, Murae T, Takahashi T (1982) Biomimetic short-step synthesis of (±)-casbene from geranylgeraniol. Chem Lett:863

    Google Scholar 

  210. Smith AB, Dorsey BD (1989) Evolution of a synthetic strategy. Part II Total synthesis of (–)-casbene and (–)-bertyadionol. In: Lindberg T (ed) From strategies to tactics of organic synthesis. Academic Press, New York, Chapter 2, p 369

    Google Scholar 

  211. Motherwell WM, Roberts L (1995) Intramolecular cyclopropanation reactions of organozinc carbenoids derived from terpenoid enals. Tetrahedron Lett 36:1121

    CAS  Google Scholar 

  212. Okamura H, Miura M, Takei H (1979) Nickel-phosphine complex catalyzed coupling reaction of Grignard reagents with alkenyl or aryl sulfides. Tetrahedron Lett 20:43

    Google Scholar 

  213. Corey EJ, Kim CU, Misco PF (1987) Oxidation of alcohols by methylsulfide-N-chlorosuccinimidetriethylamine: 4-tert-butylcyclohexanone. [Cyclohexanone, 4-(1,1-dimethylethyl]. Org Synth 58:122

    Google Scholar 

  214. Marvell EN, Li T (1973) Catalytic semihydrogenation of the triple bond. Synthesis:457

    Google Scholar 

  215. Crombie L (1955) Amides of vegetable origin, V. Stereochemistry of conjugated dienes. J Chem Soc:1007

    Google Scholar 

  216. Gedye RN, Westaway KC, Arora P, Bisson R, Khalil AH (1977) The stereochemistry of the Wittig reactions of allylic phosphoranes and phosphonate esters with aldehydes. Can J Chem 55:1218

    CAS  Google Scholar 

  217. Sodeoka M, Shibasaki M (1993) Arene chromium tricarbonyl catalyzed reactions in organic synthesis (review). Synthesis:643

    Google Scholar 

  218. Sodeoka M, Shibasaki M (1985) New functions of (arene)tricarbonylchromium(0) complexes as hydrogenation catalysts: stereospecific semihydrogenation of alkynes and highly chemoselective hydrogenation of α,β-unsaturated carbonyl compounds. J Org Chem 50:1147

    CAS  Google Scholar 

  219. Vasilev AA, Engman L, Serebryakov EP (1998) Access to 2,4-dien-6-ynoic acid esters using selenium chemistry. Formal synthesis of Z,Z-dodeca-3,6-dien-1-ol (trail pheromone mimic of the subterranean termite Reticulitermes virginicus) and Z,Z-dodeca-3,6-dien-11-olide (aggregation pheromone of the grain beetles Orytaephilus mercator and O. surinamensis). J Chem Res (S):706

    Google Scholar 

  220. Corey EJ, Kim CU, Takeda M (1972) A method for selective conversion of allylic and benzylic alcohols to halides under neutral conditions. Tetrahedron Lett 13:4339

    Google Scholar 

  221. MacLeod JK, Schäffeler L (1995) A short enantioselective synthesis of a biologically active compound from Persea americana. J Nat Prod 58:1270

    CAS  Google Scholar 

  222. Kocienski P, Wadman S, Cooper K (1989) A highly stereoselective and iterative approach to isoprenoid chains: synthesis of homogeraniol, homofarnesol, and homogeranylgeraniol. J Org Chem 54:1215

    CAS  Google Scholar 

  223. Myers AG, Yang BH, Kopecky DJ, Gleason JL (1996) Lithium amidotrihydroborate, a powerful new reductant. Transformation of tertiary amides to primary alcohols. Tetrahedron Lett 37:3623

    CAS  Google Scholar 

  224. van Tamelen EE, Curphey TJ (1962) The selective in vitro oxidation of the terminal double bonds in squalene. Tetrahedron Lett:121

    Google Scholar 

  225. van Tamelen EE, Sharpless KB (1967) Positional selectivity during controlled oxidation of polyolefins. Tetrahedron Lett:2655

    Google Scholar 

  226. Schmitz FJ, Vanderah DJ, Ciereszko LS (1974) Marine natural products: nephthenol and epoxynephthenol acetate, cembrene derivatives from soft corals. J Chem Soc Chem Commun:407

    Google Scholar 

  227. Kobayashi T, Kumazawa S, Kato T, Kitahara Y (1975) Cyclization of polyenes XIII. Intramolecular acylation of geranic and farnesic acid chlorides. Chem Lett:301

    Google Scholar 

  228. Kato T, Kobayashi T, Kitahara Y (1975) Cyclization of polyenes XVI. Biogenetic type synthesis of cembrene type compounds. Tetrahedron Lett 16:3299

    Google Scholar 

  229. Aoki M, Uyehara T, Kato T, Kabuto K, Yamaguchi S (1983) Preparation of enantiomerically pure 1-hydroxyneocembrenes to determine the unsolved configuration of cembrenoids. Chem Lett:1121

    Google Scholar 

  230. Yamaguchi S, Mosher HS (1973) Asymmetric reductions with chiral reagents from lithium aluminum hydride and (+)-(2S,3R)-4-dimethylamino-3-methyl-1,2-diphenyl-2-butanol. J Org Chem 38:1870

    CAS  Google Scholar 

  231. Kabuto K, Ziffer H (1975) Asymmetric synthesis and absolute stereochemistry of some cis and trans diols. J Org Chem 40:3467

    CAS  Google Scholar 

  232. Umbreit MA, Sharpless KB (1977) Allylic oxidation of olefins by catalytic and stoichiometric selenium dioxide with tert-butylperoxide. J Am Chem Soc 99:5526

    CAS  Google Scholar 

  233. Corey EJ, Gilman NW, Ganem BE (1968) New methods for the oxidation of aldehydes to carboxylic acids and esters. J Am Chem Soc 90:5616

    CAS  Google Scholar 

  234. Dumont R, Pfander H (1983) Optisch aktive C5-Bausteine zur Synthese von natĂĽrlich vorkommenden Terpenen. Helv Chim Acta 66:814

    CAS  Google Scholar 

  235. Hirth G, Barner R private comm. Ref. 6 in Dumont R, Pfander H (1983) Optisch aktive C5-Bausteine zur Synthese von natĂĽrlich vorkommenden Terpenen. Helv Chim Acta 66:814

    Google Scholar 

  236. Arm C, Schwabe R, Pfander H (1986) Synthese von (all-E,14S)-14,15-Epoxy-14,15-dihydrogeranylgeranial and 1,2-Epoxy-1,2-dihydrophytoen. Chimia 40:58

    CAS  Google Scholar 

  237. Shimada K, Kodama M, Ito S (1981) Synthesis of macrocyclic terpenoids by intramolecular cyclization VI. Synthesis of 3Z-cembrene A and cembrenene. Tetrahedron Lett 22:4275

    CAS  Google Scholar 

  238. Farkas I, Pfander H (1990) Neue Synthese von (–)-(R)-Cembren A, Synthese von (+)-(R)-Cembrenen und (+)-(S)-Cembren. Helv Chim Acta 73:1980

    CAS  Google Scholar 

  239. Katsuki T, Sharpless KB (1980) The first practical method for asymmetric epoxidation. J Am Chem Soc 102:5974

    CAS  Google Scholar 

  240. Pfenninger A (1986) Asymmetric epoxidation of allylic alcohols: the Sharpless epoxidation. Synthesis:89

    Google Scholar 

  241. Webb ID, Borcherdt GT (1951) Coupling of allylic halides by nickel carbonyl. J Am Chem Soc 73:2654

    CAS  Google Scholar 

  242. Corey EJ, Hamanaka E (1964) A new synthetic approach to medium-size carbocyclic systems. J Am Chem Soc 86:1641

    CAS  Google Scholar 

  243. Corey EJ, Hamanaka E (1967) Total synthesis of humulene. J Am Chem Soc 89:2758 (and literature cited therein)

    CAS  Google Scholar 

  244. Vig OP, Nanda R, Gauba R, Puri SK (1985) Synthesis of (±)-cembrene A. Indian J Chem 24B:918

    CAS  Google Scholar 

  245. Pattenden G, Smithies AJ (1992) Stereocontrolled radical mediated ring opening reactions of vinylcyclopropanes: concise syntheses of cembrene, cembrenene, neocembrene and isocembrene from casbene. Synlett:577

    Google Scholar 

  246. Pattenden G, Smithies AJ (1996) Concise syntheses of cembrenes based on radical mediated vinylcyclopropane ring opening reactions in casbene. J Chem Soc Perkin Trans I:57

    Google Scholar 

  247. Jondiko IJO, Pattenden G (1989) Terpenoids and apocarotenoids from seeds of Bixa oreliana. Phytochemistry 28:3159

    CAS  Google Scholar 

  248. Ishihara K, Nakamura H, Yamamoto H (2001) Asymmetric synthesis of (R)-limonene and (S)-cembrene A by an intramolecular cyclization reaction using a chiral leaving group. Synlett:1113

    Google Scholar 

  249. Sakane S, Fujiwara J, Maruoka K, Yamamoto H (1983) Chiral leaving group. Biogenetic-type asymmetric synthesis of limonene and bisabolene. J Am Chem Soc 105:6154

    CAS  Google Scholar 

  250. Sakane S, Fujiwara J, Maruoka K, Yamamoto H (1986) Chiral leaving group: asymmetric synthesis of limonene and bisabolene. Tetrahedron 42:2193

    CAS  Google Scholar 

  251. Takahashi M, Ogasawara K (1997) An expedient route to some monoalkyl ethers of enantiomerically pure bi-β-naphthol. Tetrahedron Asymmetry 8:3125

    CAS  Google Scholar 

  252. Hanzlik RP (1988) Selective epoxidation of terminal double bonds: 10,11-epoxyfarnesyl acetate. Org Synth Coll VI:560

    Google Scholar 

  253. Handa S, Nair PS, Pattenden G (2000) Novel regio-and stereoselective cascade. 6-endo-trig-Cyclisations from polyene acyl radical intermediates leading to steroid-like pentacycles and heptacycles. Helv Chim Acta 83:2629

    CAS  Google Scholar 

  254. Corey EJ, Kania RS (1996) First enantioselective total synthesis of a naturally occurring dolabellane. Revision of the absolute configuration. J Am Chem Soc 118:1229

    CAS  Google Scholar 

  255. Evans DA, Polniaszek RP, DeVries KM, Guinn DE, Mathre DJ (1991) Synthetic studies in the lysocellin family of polyether antibiotics. The total synthesis of ferensimycin. J Am Chem Soc 113:7613

    CAS  Google Scholar 

  256. Guerlavais V, Carroll PJ, Joullie MM (2002) Progress towards the total synthesis of callipeltin A. Asymmetric synthesis of (2R,3R,4S)-3-hydroxy-2,4,6-trimethylheptanoic acid. Tetrahedron Asymmetry 13:675

    CAS  Google Scholar 

  257. Mao JM, Li Y, Hou ZJ, Li YL, Liang XT (1992) Studies on macrocyclic diterpenoids (III). Total synthesis of cembrene C. Sci China B 35:257

    CAS  Google Scholar 

  258. Li WD, Li Y, Li YL (1993) Studies on macrocyclic diterpenoids (VI) – a novel synthetic route to (±)-cembrene A. Sci China B 36:1161

    CAS  Google Scholar 

  259. Yue XJ, Li YL (1995) Studies on macrocyclic diterpenoids (XV)-total synthesis of (R)-(–)-cembrene A. Bull Soc Chim Belge 104:69

    CAS  Google Scholar 

  260. Li YL, Yue XJ (1996) Studies on macrocyclic diterpenoids (XVII): total synthesis of (–)-cembrene A and (+)-3,4-epoxycembrene A by titanium induced carbonyl coupling reactions. Synthesis:737

    Google Scholar 

  261. Inoue S, Kaneko T, Takahashi Y, Miyamoto O, Sato K (1987) Stereoselective total synthesis of (S)-(–)-dolichol-20. J Chem Soc Chem Commun:1037

    Google Scholar 

  262. McMurry JE, Kees KL (1977) Synthesis of cycloalkenes by intramolecular titanium induced dicarbonyl coupling. J Org Chem 42:2655

    CAS  Google Scholar 

  263. Heath RR, Doolittle RE, Sonnet PE, Tumlinson JH (1980) Sex pheromone of the white peach scale: highly stereoselective synthesis of the stereoisomers of the pentagonol propionate. J Org Chem 45:2910

    CAS  Google Scholar 

  264. Jirosova A, Sillam-Dusses D, Kyjakova P, Kalinova B, Dolejsova K, Jancarik A, Majer P, Cristaldo PF, Hanus R (2016) Smells like home: chemically mediated co-habitation of two termite species in a single nest. J Chem Ecol 42:1070

    CAS  PubMed  Google Scholar 

  265. Svatos A, Valterova I, Fabryova A, Vrkoc J (1989) Determination of the absolute configuration of secondary alcohols by modified Horeau’s method using HPLC. Collect Czech Chem Commun 54:151

    CAS  Google Scholar 

  266. Kyjakova P, Roy V, Jirosova A, Krasulova J, Dolejsova K, Krivanek J, Hadravova R, Rybacek J, Pohl R, Roisin Y, Sillam-Dusses D, Hanus R (2017) Chemical systematics of neotropical termite genera with symmetrically snapping soldiers (Termitidae: Termitinae). Zool J Linn Soc 180:66

    Google Scholar 

  267. Kyjakova P, Dolejsova K, Krasulova J, Bednarova L, Hadravova R, Pohl R, Hanus R (2015) The evolution of symmetrical snapping in termite soldiers need not lead to reduced chemical defence. Biol J Linn Soc 115:818

    Google Scholar 

  268. Urbanova K, Vrkoslav V, Valterova I, Hakova M, Cvacka J (2012) Structural characterization of wax esters by electron ionization mass spectrometry. J Lipid Res 53:204

    CAS  PubMed  PubMed Central  Google Scholar 

  269. Reinhard J, Lacey MJ, Ibarra F, Schroeder FC, Kaib M, Lenz M (2002) Hydroquinone: a general phagostimulating pheromone in termites. J Chem Ecol 28:1

    CAS  PubMed  Google Scholar 

  270. Casarin FE, Arab A, Costa-Leonardo AM (2003) Influence of the labial gland’s semiochemicals on the feeding behavior of Coptotermes havilandi (Isoptera, Rhinotermitidae). Sociobiology 42:485

    Google Scholar 

  271. Huang QY, Mao WG, Xia WS, Lei CI (2007) Phagostimulating activity of the labial glands in Odontotermes formosanus (Isoptera: Termitidae). Sociobiology 50:973

    Google Scholar 

  272. Reinhard J, Kaib M (2001) Food exploidation in termites: indication for a general feeding-stimulating signal in labial gland secretion of Isoptera. J Chem Ecol 27:189

    CAS  PubMed  Google Scholar 

  273. Reinhard J, Kaib M (2001) Thin-layer chromatography assessing feeding stimulation by labial gland secretion compared to synthetic chemicals in the subterranean termite Reticulitermes santonensis. J Chem Ecol 27:175

    CAS  PubMed  Google Scholar 

  274. Reinhard J, Hertel H, Kaib M (1997) Feeding stimulating signal in labial gland secretion of the subterranean termite Reticulitermes santonensis. J Chem Ecol 23:2371

    CAS  Google Scholar 

  275. Kaib M (2000) Chemical signals and communication in termites: a review. Mitt Dtsch Ges Allg Angew Ent 12:211

    Google Scholar 

  276. Raina AK, Bland JM, Osbrink W (2005) Hydroquinone is not a phagostimulant in the Formosan subterranean termite. J Chem Ecol 31:509

    CAS  PubMed  Google Scholar 

  277. Nguyen TT, Kanaori K, Hojo MK, Kawada T, Yamaoka R, Akino T (2011) Chemical identification and ethological function of soldier-specific secretion in Japanese subterranean termite Reticulitermes speratus (Rhinotermitidae). Biosci Biotechnol Biochem 75:1818

    CAS  PubMed  Google Scholar 

  278. Lindström M, Norin T, Valterova I, Vrkoc J (1990) Chirality of the monoterpene alarm pheromones of termites. Naturwissenschaften 77:134

    Google Scholar 

  279. Cristaldo PF, Jandak V, Kutalova K, Rodrigues VB, Brothanek M, Jiricek O, DeSouza O, Sobotnik J (2015) The nature of alarm communication in Constrictotermes cyphergaster (Blattodea: Termitoides: Termitidae): the integration of chemical and vibroacoustic signals. Biol Open 4:1649

    CAS  PubMed  PubMed Central  Google Scholar 

  280. Pasteels JM, Bordereau C (1998) Releaser pheromones in termites. In: Van der Meer RK, Breed MD, Espelie KE, Winston ML (eds) Pheromone communication in social insects: ants, wasps, bees, and termites. Westview Press, Boulder, CO, pp 193–215

    Google Scholar 

  281. Costa-Leonardo AM, Casarin FE, Lima JT (2009) Chemical communication in Isoptera. Neotrop Entomol 38:1

    Google Scholar 

  282. Ernst E (1959) Beobachtungen beim Spritzakt der Nasutitermes-Soldaten. Rev Suisse Zool 66:289

    Google Scholar 

  283. Eisner T, Kriston I, Aneshansley DJ (1976) Defensive behaviour of a termite (Nasutitermes exitiosus). Behav Ecol Sociol 1:83

    Google Scholar 

  284. Kriston I, Watson JAL, Eisner T (1977) Non-combative behaviour of large soldiers of Nasutitermes exitiosus (Hill): an analytic study. Insect Soc 24:103

    Google Scholar 

  285. Kaib M (1990) Intra-and interspecific chemical signals in the termite Schedorhinotermes — production sites, chemistry, and behaviour. In: Gribakin FG, Wiese K, Popov AV (eds) Sensory systems and communication in Arthropods. Birkhäuser, Basel, p 26

    Google Scholar 

  286. Reinhard J, Clement JL (2002) Alarm reaction of European Reticulitermes termites to soldier head capsule volatiles (Isoptera, Rhinotermitidae). J Insect Behav 15:95

    Google Scholar 

  287. Reinhard J, Quintana A, Sreng L, Clement JLA (2003) Chemical signals inducing attraction and alarm in European Reticulitermes termites (Isoptera, Rhinotermitidae). Sociobiology 42:675

    Google Scholar 

  288. Moore BP (1968) Studies on the chemical composition and function of the cephalic gland secretion in Australian termites. J Insect Physiol 14:33

    CAS  Google Scholar 

  289. Dolejsova K, Krasulova J, Kutalova K, Hanus R (2014) Chemical alarm in the termite Termitogeton planus (Rhinotermitidae). J Chem Ecol 40:1269

    CAS  PubMed  Google Scholar 

  290. Nelson LJ, Cool LG, Forschler BT, Haverty MI (2001) Correspondence of soldier defense secretion mixtures with cuticular hydrocarbon phenotypes for chemotaxonomy of the termite genus Reticulitermes in North America. J Chem Ecol 27:1449

    CAS  PubMed  Google Scholar 

  291. Nelson LJ, Cool LG, Solek CW, Haverty MI (2008) Cuticular hydrocarbons and soldier defense secretions of Reticulitermes in Southern California: a critical analysis of the taxonomy of the genus in North America. J Chem Ecol 34:1452

    CAS  PubMed  Google Scholar 

  292. Scheffrahn RH, Su NY, Sims JJ, El-Sayed MK (1987) Composition and ant-repellent activity of the soldier defensive secretion of the Palearctic desert termite Amitermes desertorum (Isoptera, Termitidae). Sociobiology 13:75

    Google Scholar 

  293. Baker R, Evans DA, McDowell PG (1978) Mono- and sesquiterpenoid constituents of the defense secretion of the termite Amitermes evuncifer. Tetrahedron Lett 18:4073

    Google Scholar 

  294. Baker R, Coles HR, Edwards M, Evans DA, Howse PE, Walmsley S (1981) Chemical composition of the frontal gland secretion of Syntermes soldiers (Isoptera, Termitidae). J Chem Ecol 7:135

    PubMed  Google Scholar 

  295. Baker R, Walmsley S (1982) Soldier defense secretions of the South American termites Cortaritermes silvestri, Nasutitermes sp N.D and Nasutitermes kemneri. Tetrahedron 38:1899

    CAS  Google Scholar 

  296. Valterova I, Krecek J, Vrkoc J (1984) Frontal gland secretion and ecology of the Greater Antillean termite Nasutitermes hubbardii (Isoptera, Termitidae). Acta Entomol Bohemoslov 81:416

    CAS  Google Scholar 

  297. Valterova I, Vrkoc J, Norin T (1993) The enantiomeric composition of monoterpene hydrocarbons in the defensive secretion of Nasutitermes termites (Isoptera): inter-and intraspecific variations. Chemoecology 4:120

    CAS  Google Scholar 

  298. Quintana A, Reinhard J, Faure R, Uva P, Bagneres AG, Massiot G, Clement JL (2003) Interspecific variation in terpenoid composition of defense secretions of European Reticulitermes termites. J Chem Ecol 29:639

    CAS  PubMed  Google Scholar 

  299. Meinwald J, Prestwich GD, Nakanishi K, Kubo I (1978) Chemical ecology. Studies from East Africa. Science 199:1167

    CAS  PubMed  Google Scholar 

  300. Prestwich GD (1979) Interspecific variation in the defense secretions of Nasutitermes soldiers. Biochem System Ecol 7:211

    CAS  Google Scholar 

  301. Everaerts C, Pasteels JM, Roisin Y, Bonnard O (1988) The monoterpenoid fraction of the defensive secretion of Nasutitermitinae from Papua New Guinea. Biochem System Ecol 16:437

    CAS  Google Scholar 

  302. Gush TJ, Bentley BL, Prestwich GD, Thorne BL (1985) Chemical variation in the defense secretions of four species of Nasutitermes. Biochem System Ecol 13:329

    Google Scholar 

  303. Braekman JC, Remacle A, Roisin Y (1993) Soldier defensive secretion of three Amitermes species. Biochem Syst Ecol 21:661

    CAS  Google Scholar 

  304. Goh SH, Chuah CH, Tho YP, Prestwich GD (1984) Extreme intraspecific chemical variability in soldier defense secretions of allopatric and sympatric colonies. J Chem Ecol 10:929

    CAS  PubMed  Google Scholar 

  305. Chuah CH (2007) Interspecific variation in soldier defense secretions of Longitermes longipes (Isoptera, Nasutitermitinae). Biochem System Ecol 35:600

    CAS  Google Scholar 

  306. Cruz MNS, Junior HMS, Rezende CM, Alves RJV, Cancello EM, da Rocha MM (2014) Terpenos em cupins do genero Nasutitermes (Isoptera, Termitidae, Nasutitermitinae). Quim Nova 37:95

    Google Scholar 

  307. Rabemanantsoa A, Ranarivelo Y, Andriantsiferana M, Tillequin F, Silverton JV, Garraffo HM, Spande TF, Yeh HJC, Daly JW (1996) A new secotrinervitane diterpene isolated from soldiers of the Madagascan termite species, Nasutitermes canaliculatus. J Nat Prod 59:883

    CAS  PubMed  Google Scholar 

  308. Prestwich GD, Chen D (1981) Soldier defense secretion of Trinervitermes bettonianus: chemical variations in allopatric populations. J Chem Ecol 7:147

    CAS  PubMed  Google Scholar 

  309. Valterova I, Budesinsky M, Vrkoc J (1991) Defensive substances from the frontal gland secretion of Nasutitermes nigriceps termite soldiers. Collect Czech Chem Commun 56:2969

    CAS  Google Scholar 

  310. Chuah CH (2005) Interspecific variation in defense secretions of Malaysian termites from the genus Bulbitermes. J Chem Ecol 31:819

    CAS  PubMed  Google Scholar 

  311. Valterova I, Vasickova S, Budesinsky M, Vrkoc J (1986) Constituents of the frontal gland secretion of Peruvian termites Nasutitermes ephratae. Collect Czech Chem Commun 51:2884

    CAS  Google Scholar 

  312. Valterova I, Krecek J, Vrkoc J (1989) Intraspecific variation in the defence secretions of Nasutitermes ephratae soldiers and the biological activity of some of their components. Biochem Syst Ecol 17:327

    CAS  Google Scholar 

  313. Goh SH, Tong SL, Tho YP (1982) Gas chromatography-mass spectrometry analysis of termite defense secretion in the subfamily Nasutitermitinae. Mikrochim Acta 77:219

    Google Scholar 

  314. Prestwich GD (1979) Defence secretion of the black termite Grallatotermes africanus (Termitidae, Nasutitermes). Insect Biochem 9:563

    CAS  Google Scholar 

  315. Chuah CH, Goh SH, Blunt JW (1991) Intraspecific and interspecific variations in the defense secretion of the Malaysian termite Hospitalitermes (Isoptera: Nasutitermitinae). Biochem Syst Ecol 19:35

    CAS  Google Scholar 

  316. Prestwich GD (1977) Chemical composition of the soldier secretion of the termite Trinervitermes gratiosus. Insect Biochem 7:91

    CAS  Google Scholar 

  317. Chuah CH, Goh SH, Tho YP (1986) Soldier defense secretions of the genus Hospitalitermes in Peninsular Malaysia. J Chem Ecol 12:701

    CAS  PubMed  Google Scholar 

  318. Vrkoc J, Ubik K, Dolejs I, Hrdy I (1973) On the chemical composition of frontal gland secretion in termites of the genus Nasutitermes (N. costalis and N. ripperti; Isoptera). Acta Entomol Bohemoslov 70:74

    CAS  Google Scholar 

  319. Nutting WL, Blum MS, Fales HM (1974) Behavior of the North American termite tenuirostritermes tenuirostris, with special reference to the soldier frontal gland secretion, its chemical composition, and use in defense. Psyche 81:167

    Google Scholar 

  320. Vrkoc J, Krecek J, Hrdy L (1978) Monoterpenic alarm pheromones in two Nasutitermes species. Acta Entom Bohemoslov 75:1

    CAS  Google Scholar 

  321. Everaerts C, Bonnard O, Pasteels JM, Roisin Y, König WA (1990) (+)-α-Pinene in the defensive secretion of Nasutitermes princeps (Isoptera, Termitidae). Experientia 46:227

    CAS  Google Scholar 

  322. Braekman JC, Daloze D, Dupont A, Pasteels JM, Lefeuve P, Bordereau C, Declerq JP, Meerssche van M (1983) Chemical composition of the frontal gland secretion from soldiers of Nasutitermes lujae (Termitidae, Nasutitermitinae). Tetrahedron 39:4237

    CAS  Google Scholar 

  323. Chuah CH, Goh SH, Tho YP (1989) Interspecific variation in the defense secretions of Malaysian termites from the genus Nasutitermes (Isoptera, Nasutitermitinae). J Chem Ecol 15:549

    CAS  PubMed  Google Scholar 

  324. Valterova I, Krecek J, Vrkoc J (1988) Chemical composition of frontal gland secretion in soldiers of Velocitermes velox (Isoptera, Termitidae) and its biological activity. Acta Entom Bohemoslov 85:241

    CAS  Google Scholar 

  325. Himuro C, Yokoi T, Matsuura K (2011) Queen-specific volatile in a higher termite Nasutitermes takasagoensis (Isoptera: Termitidae). J Insect Physiol 57:962

    CAS  PubMed  Google Scholar 

  326. Laurent P, Daloze D, Pasteels JM, Braekman JC (2005) Trinervitene diterpenes from soldiers of two Nasutitermes species from French Guyana. J Nat Prod 68:532

    CAS  PubMed  Google Scholar 

  327. Bagneres AG, Hanus R (2015) Communication and social regulation in termites. In: Aquiloni L, Tricarico E (eds) Social recognition in invertebrates. Springer, Cham, Switzerland, Chapter 11, p 193

    Google Scholar 

  328. Baker R, Edwards M, Evans DA, Walmsley S (1981) Soldier-specific chemicals of the termite Curvitermes strictinasus Mathews (Isoptera, Nasutitermitinae). J Chem Ecol 7:127

    CAS  PubMed  Google Scholar 

  329. Roisin Y, Everaerts C, Pasteels JM, Bonnard O (1990) Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone. J Chem Ecol 16:2865

    CAS  PubMed  Google Scholar 

  330. Azevedo NR, Ferri PH, Seraphin JC, Brandao D (2006) Chemical composition and intraspecific variability of the volatile constituents from the defensive secretion of Constrictotermes cyphergaster (Isoptera, Termitidae, Nasutitermitinae). Sociobiology 47:891

    Google Scholar 

  331. Perdereau E, Dedeine F, Christides JP, Bagneres AG (2010) Variations in worker cuticular hydrocarbons and soldier isoprenoid defensive secretions within and among introduced and native populations of the subterranean termite, Reticulitermes flavipes. J Chem Ecol 36:1189

    CAS  PubMed  Google Scholar 

  332. Bagneres AG, Clement JL, Blum MS, Severson RF, Joulie C, Lange C (1990) Cuticular hydrocarbons and defensive compounds of Reticulitermes flavipes (Kollar) and R. santonensis (Feytaud): polymorphism and chemotaxonomy. J Chem Ecol 16:3213

    CAS  PubMed  Google Scholar 

  333. Batista-Pereira LG, dos Santos MG, Correa AG, Fenandes JB, Arab A, Costa-Leonardo AM, Dietrich CRRC, Pereira DA, Bueno OC (2004) Cuticular hydrocarbons of Heterotermes tenuis (Isoptera: Rhinotermitidae): analyses and electrophysiological studies. Z Naturforsch C 59:135

    CAS  PubMed  Google Scholar 

  334. Scheffrahn RH, Rust MK, Toth JP, Su NY (1988) Soldier defensive secretion of two rare Nearctic desert termite species. Biochem Syst Ecol 16:213

    CAS  Google Scholar 

  335. Chuah CH, Goh S, Prestwich G, Tho Y (1983) Soldier defense secretion of Malaysian termite Hospitalitermes umbrinus (Isoptera, Termitinae). J Chem Ecol 9:347

    CAS  PubMed  Google Scholar 

  336. Cruz MNS, Junior HMS, Oliveira DF, Costa-Lotufo LV, Ferreira AG, Alviano DS, Rezende CM (2013) Chemical composition and biological activities of soldiers of the Brazilian termite species, Nasutitermes macrocephalus (Isoptera: Nasutitermitinae). Nat Prod Commun 8:69

    PubMed  Google Scholar 

  337. Prestwich GD (1978) Isotrinervi-2β-ol. Structural isomers in the defense secretions of allopatric populations of the termite Trinervitermes gratiosus. Experientia 34:682. (Structure revision in Ref. [711])

    CAS  Google Scholar 

  338. Clement JLA, Lange C, Blum MS, Howard RW, Lloyd H (1985) Chimosystematique du genre Reticulitermes (Isoptera) aux U.S.A. et en Europe. Actes Colloqu Insect Soc 2:123

    Google Scholar 

  339. Roisin Y, Everaerts C, Pasteels JM, Bonnard O (1990) Caste-dependent reactions to soldier defensive secretion and chiral alarm/recruitment pheromone in Nasutitermes princeps. J Chem Ecol 16:2865

    CAS  PubMed  Google Scholar 

  340. Baker R, Organ AJ, Prout K, Jones R (1984) Isolation of a novel triacetoxysecotrinervitane from termite Constrictotermes cyphergaster, subfamily Nasutitermitinae. Tetrahedron Lett 25:579

    CAS  Google Scholar 

  341. Prestwich GD, Goh SH, Tho YP (1981) Termite soldier chemotaxonomy. A new diterpene from the Malaysian nasute termite Bulbitermes singaporensis. Experientia 37:11

    CAS  Google Scholar 

  342. Valterova I, Vrkoc J, Lindström M, Norin T (1992) On the natural occurrence of (–)-3-carene, a component of termite defense. Naturwissenschaften 79:416

    CAS  Google Scholar 

  343. Baker R, Briner PH, Evans DA (1978) Chemical defense in termite Ancistrotermes cavithorax: ancistrodial and ancistrofuran. J Chem Soc Chem Commun:410

    Google Scholar 

  344. Baker R, Briner PH, Evans DA (1978) Total synthesis of ancistrofuran, a defensive compound from the termite Ancistrotermes cavithorax. J Chem Soc Chem Commun:981

    Google Scholar 

  345. Baker R, Ravenscroft PD, Swain CJ (1984) Stereoselective synthesis of (±)-ancistrofuran: stereoselective reduction of a γ-hydroxyketone. J Chem Soc Chem Commun:74

    Google Scholar 

  346. Baker R, Cottrell IF, Ravenscroft PD, Swain CJ (1985) Stereoselective synthesis of (±)-ancistrofuran and its stereomers. J Chem Soc Perkin Trans 1:2463

    Google Scholar 

  347. Hoye TR, Caruso AJ (1981) Total synthesis of dl-ancistrofuran: a study of cyclic ether formation. J Org Chem 46:1198

    CAS  Google Scholar 

  348. Saito A, Matsushita H, Kaneko H (1986) Synthesis of (±)-ancistrofuran from 9-hydroxydendrolasin. Agric Biol Chem 50:1309

    CAS  Google Scholar 

  349. Hoye TR, Caruso AJ, Kurth MJ (1981) Internal nucleophilic termination in mercuric ion initiated diene cyclizations. J Org Chem 46:3550

    CAS  Google Scholar 

  350. Mori K, Suzuki N (1990) Synthesis of the enantiomers of ancistrofuran, a defensive compound from Ancistrotermes cavithorax. Liebigs Ann Chem:287

    Google Scholar 

  351. Recsei C, Chan B, McErlean CSP (2014) Synthesis of (+)-luzofuran and (–)-ancistrofuran. J Org Chem 79:880

    CAS  PubMed  PubMed Central  Google Scholar 

  352. Palombo E, Audran G, Monti H (2005) Straightforward enantioselective synthesis of (+)-ancistrofuran. Tetrahedron 61:9545

    CAS  Google Scholar 

  353. Prestwich GD (1979) Chemical defense by termite soldiers. J Chem Ecol 5:459

    CAS  Google Scholar 

  354. Vidari G, Lanfranchi G, Macaga F, Moriggi J-D (1996) Enantioselective synthesis of Îł-cyclohomocitral, pallescensone, and ancistrodial. Tetrahedron Asymmetry 7:3009

    CAS  Google Scholar 

  355. Horiuchi S, Takikawa H, Mori K (1998) Synthesis of (6S,7S)-7-hydroxy-6,11-cyclofarnes-3(15)-en-2-one, the opposite enantiomer of the antibacterial sesquiterpene from Premna oligotricha, and the (R)-enantiomer of ancistrodial, the defensive sesquiterpene from Ancistrotermes cavithorax. Eur J Org Chem:2851

    Google Scholar 

  356. Kesselmans RPW, Wijnberg JBPA, Minnaard AJ, Walinga RE, de Groot A (1991) Synthesis of all stereoisomers of eudesm-11-en-4-ol. 2. Total synthesis of selin-11-en-4α-ol, intermedeol, neointermedeol, and paradisiol. First total synthesis of amiteol. J Org Chem 56:7237

    CAS  Google Scholar 

  357. Kodama M, Shimada K, Ito S (1981) Biomimetic cyclization of hedycaryol derivatives. Unexpected cyclization of phenylsulfides with methyl iodide. Tetrahedron Lett 22:1523

    CAS  Google Scholar 

  358. Baker R, Evans DA, McDowell PG (1977) Stereospecific synthesis of 4,11-epoxy-cis-eudesmane, a tricyclic sesquiterpene defence secretion from the termite Amitermes evuncifer. J Chem Soc Chem Commun:111

    Google Scholar 

  359. Wadhams LJ, Baker R, Howse PE (1974) 4,11-Epoxy-cis-eudesmane: a novel oxygenated sesquiterpene in the frontal gland secretion of the termite Amitermes evuncifer Silvestri. Tetrahedron Lett 15:1697

    Google Scholar 

  360. Naya Y, Prestwich GD, Spanton SG (1982) Sesquiterpenes from termite soldiers: structure of amiteol, a new 5β,7β,10β-eudesmane from Amitermes excellens. Tetrahedron Lett 23:3047

    CAS  Google Scholar 

  361. Scheffrahn RH, Sims JJ, Gaston LK, Rust MK (1984) 4,11-Epoxy-cis-eudesmane soldier cephalic secretion of the Nearctic desert termite Amitermes minimus Light (Termitidae, Termitinae). Experientia 40:1136

    CAS  Google Scholar 

  362. Sewanu SO, Adebda O, Basson AK, Opoku AR (2013) The essential oil of Eucalyptus grandis W. Hill inhibits microbial growth by inducing membrane damage. Chin Med 4:7

    Google Scholar 

  363. Sewanu SO, Bongekile MC, Folushu OO, Adejumobi LO, Opoku AR (2013) Antimicrobial and efflux pumps inhibitory activities of Eucalyptus grandis essential oil against respiratory tract infection. J Med Plant Res 9:343

    Google Scholar 

  364. Ando M, Arai K, Kikuchi K, Isogai K (1994) Synthetic studies of sesquiterpenes with a cis-fused decalin system. 4. Synthesis of (+)-5βH-eudesma-3,11-diene, (–)-5βH-eudesmane-4β,11-diol, and (+)-5ßH-eudesmane-4α,11-diol, and structure revision of a natural eudesmane-4,11-diol isolated from Pluchea arguta. J Nat Prod 57:1189

    CAS  Google Scholar 

  365. Sobotnik J, Hanus R, Kalinova B, Piskorski R, Cvacka J, Bourguignon T, Roisin Y (2008) (E,E)-α-Farnesene, the alarm pheromone of Prorhinotermes canalifrons. J Chem Ecol. 34:478

    CAS  PubMed  Google Scholar 

  366. Piskorski R, Hanus R, Vasickova S, Cvacka J, Sobotnik J, Svatos A, Valterova I (2007) Nitroalkenes and sesquiterpene hydrocarbons from the frontal gland secretion of three Prorhinotermes termite species. J Chem Ecol 33:1787

    CAS  PubMed  Google Scholar 

  367. Piskorski R, Hanus R, Kalinova B, Valterova I, Krencek J, Bourguignon T, Roisin Y, Sobotnik J (2009) Temporal and geographic variations in the morphology and chemical composition of the frontal gland in imagoes of Prorhinotermes species (Isoptera: Rhinotermitidae). Biol J Linn Soc 98:384

    Google Scholar 

  368. Hanus R, Sobotnik J, Valterova I, Lukas J (2006) The ontogeny of soldiers in Prorhinotermes simplex (Isoptera, Rhinotermitidae). Insect Soc 53:249

    Google Scholar 

  369. Tarver MR, Schmelz EA, Rocca JR, Scharf ME (2009) Effects of soldier-derived terpenes on soldier caste differentiation in the termite Reticulitermes flavipes. J Chem Ecol 35:256

    CAS  PubMed  Google Scholar 

  370. Chan WK, Tan LTH, Chan KG, Lee LH, Goh BH (2016) Nerolidol: a sesquiterpene alcohol with multi-faceted pharmacological and biological activities. Molecules 21:529

    PubMed Central  Google Scholar 

  371. Krasulova J, Hanus R, Kutalova K, Sobotnik J, Sillam-Dusses D, Tichy M, Valterova I (2012) Chemistry and anatomy of the frontal gland in soldiers of the sand termite Psammotermes hybostoma. J Chem Ecol 38:557

    CAS  PubMed  Google Scholar 

  372. Everaerts C, Roisin Y, LeQuere JL, Bonnard O, Pasteels JM (1993) Sesquiterpenes in the frontal gland secretions of nasute soldier termites from New Guinea. J Chem Ecol 19:286

    Google Scholar 

  373. Scheffrahn RH, Sims JJ, Lee RK, Rust MK (1986) Helminthogermacrene, a major component in the defensive secretion of the Nearctic termite, Amitermes wheeleri. J Nat Prod 49:699

    CAS  Google Scholar 

  374. Mitaka Y, Mori N, Matsuura K (2017) Multi-functional roles of a soldier-specific volatile as a worker arrestant, primer pheromone and an antimicrobial agent in a termite. Proc R Soc B Biol Sci 284:1134

    Google Scholar 

  375. Scheffrahn RH, Gaston LK, Sims JJ, Rust MK (1983) Identification of the defensive secretion from soldiers of the North American termite Amitermes wheeleri (Desneux) (Isoptera: Termitidae). J Chem Ecol 9:1293

    CAS  PubMed  Google Scholar 

  376. Prestwich GD, Collins MS (1981) Chemotaxonomy of Subulitermes and Nasutitermes termite soldier defense secretion. Evidence against the hypothesis of diphyletic evolution of the Nasutitermitinae. Biochem System Ecol 9:83

    CAS  Google Scholar 

  377. Clement JL, Bagneres AG, Uva P, Wilfert L, Quintana A, Reinhard J, Dronnet S (2001) Biosystematics of Reticulitermes termites in Europe: morphological, chemical and molecular data. Insect Soc 48:202

    Google Scholar 

  378. Korb J, Weil T, Hoffmann K, Foster KR, Rehli M (2009) A gene necessary for reproductive suppression in termites. Science 324:758

    CAS  PubMed  Google Scholar 

  379. Zalkow LH, Howard RW, Gelbaum LT, Gordon MM, Deutsch HM, Blum MS (1981) Chemical ecology of Reticulitermes flavipes (Kollar) and R. virginicus (Banks) (Rhinotermitidae). Chemistry of the soldier cephalic secretions. J Chem Ecol 7:717

    CAS  PubMed  Google Scholar 

  380. Mori K (1989) Synthesis of optically active pheromones. Tetrahedron 45:3233

    CAS  Google Scholar 

  381. Mori K (1998) Chirality and insect pheromones. Chirality 10:578

    CAS  Google Scholar 

  382. Mori K (2007) Significance of chirality in pheromone science. Bioorg Med Chem 15:7505

    CAS  PubMed  Google Scholar 

  383. Mori K (2010) Determination of structure including absolute configuration of bioactive natural products. In: Liu HW, Mander L (eds) Comprehensive natural products II, vol 9. Elsevier, Oxford, p 147

    Google Scholar 

  384. Stuart AM (1963) Studies on the communication of alarm in the termite Zootermopsis nevadensis (Hagen), Isoptera. Physiol Zool 36:85

    Google Scholar 

  385. Kettler R, Leuthold RH (1995) Interspecific and intraspecific alarm response in the termite Macrotermes subhyalinus (Rambur). Insect Soc 42:145

    Google Scholar 

  386. Delattre O, Sillam-Dusses D, Jandak V, Brothanek M, RĂĽcker K, Bourguignon T, Vytiskova B, Cvacka J, Jiricek O, Sobotnik J (2015) Complex alarm strategy in the most basal termite species. Behav Ecol Sociobiol 69:1945

    Google Scholar 

  387. Bestmann HJ, Jansen E, Kern F, Liepold B, Hölldobler B (1995) All-trans-geranylgeranyl acetate and geranylgeraniol, the recruitment pheromone components in the Dufour gland of the ponerine ant Ectatomma ruidum. Naturwissenschaften 82:334

    CAS  Google Scholar 

  388. Ruzicka L, Firmenich G (1939) Zur Kenntnis der Diterpene. (37. Mitteilung). Synthese des aliphatischen Diterpenalkohols Geranyl-geraniol. Helv Chim Acta 22:394

    Google Scholar 

  389. Nazarov IN, Gussev BP, Gunar VI (1958) Acetylene derivatives. CXCIII. Total synthesis of isoprenoid alcohols (linalool, geraniol, nerol, nerolidol, farnesol, geranyllinalool, geranylgeraniol, and phytol). Zh Obshch Khim 28:1444

    CAS  Google Scholar 

  390. Nazarov IN, Makin SM, Mochalin VB, Shavrygina OA, Nazarova DV (1959) Synthesis of analogs of nerolidol, farnesylacetone, and geranylinalool. Zh Obshch Khim 29:1176

    CAS  Google Scholar 

  391. Julia M, Julia S, Guegan R (1960) Terpenes and related compounds from methyl cyclopropyl ketone. Bull Soc Chim Fr:1072

    Google Scholar 

  392. Kozlov EI, Yanotovskii MT, Samokhvalov GI (1964) Synthetic studies of polyene compounds. XXII. Synthesis of trans,trans-geranyllinalool. Zh Obshch Khim 34:2748

    CAS  Google Scholar 

  393. Vig OP, Kapur JC, Singh J, Vig B (1969) Terpenoids. XLII. Syntheses of trans,trans,trans-2,6,10-geranylgeraniol and trans,trans,trans-2,6,10-geranyllinalool. Indian J Chem 7:574

    CAS  Google Scholar 

  394. Svatos A, Urbanova K, Valterova I (2002) The first synthesis of geranyllinalool enantiomers. Collect Czech Chem Commun 67:83

    CAS  Google Scholar 

  395. Hooz J, Caldaza JG, McMaster D (1985) An efficient coupling reaction of anionic propargyl and organic halides. Tetrahedron Lett 26:271

    CAS  Google Scholar 

  396. Wipf P, Lim ST (1993) Rapid carboalumination of alkynes in the presence of water. Angew Chem Int 32:1068

    Google Scholar 

  397. Negishi E-I, Van Horn DE, Yoshida T (1985) Carbometalation reaction of alkynes with organoalanes-zircocene derivatives as a route to stereo- and regiodefined trisubstituted alkenes. J Am Chem Soc 107:6639

    CAS  Google Scholar 

  398. Lipshutz BH, Kozlowski JA, Parker DA, Nguyen SL, McCarthy KE (1985) More highly mixed, higher order cyanocuprates “RT(2-thienyl)Cu(CN)Li2”. Efficient reagents which promote selective ligand transfer. J Organomet Chem 285:437

    CAS  Google Scholar 

  399. Matsuura K, Tamura T, Kobayashi N (2007) The antibacterial protein lysozyme identified as egg-recognition pheromone. PLoS One 2:e813

    PubMed  PubMed Central  Google Scholar 

  400. Shimada K, Maekawa K (2014) Gene expression and molecular phylogenetic analyses of β-glucosidase in the termite Reticulitermes speratus (Isoptera: Rhinotermitidae). J Insect Physiol 65:63

    CAS  PubMed  Google Scholar 

  401. Petersen K, Bardunias P, Napp N, Werfel J, Nagpal R, Turner S (2015) Arrestant properties of recently manipulated soil on Macrotermes michaelseni as determined through visual tracking and automatic labeling of individual termite behaviors. Behav Process 116:8

    Google Scholar 

  402. Green B, Bardunias P, Turner JS, Napal R, Werfel J (2017) Excavation and aggregation as organizing factors in the de novo construction by mound-building termites. Proc R Soc B Biol Sci 284:20162730

    Google Scholar 

  403. Yao M, Rosenfeld J, Attridge S, Sidhu S, Aksenov V, Rollo CD (2009) The ancient chemistry of avoiding risks of predation and disease. Evol Biol 36:267

    Google Scholar 

  404. Howard RW, Blomquist GJ (2005) Ecological, behavioral, and biochemical aspects of insect hydrocarbons. Annu Rev Entomol 50:371

    CAS  PubMed  Google Scholar 

  405. Richard FJ, Hunt JH (2013) Intracolony chemical communication in social insects. Insect Soc 60:275

    Google Scholar 

  406. Blomquist GJ, Bagneres AG (2010) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, UK, p 492

    Google Scholar 

  407. Howard RW, Blomquist GJ (1982) Chemical ecology and biochemistry of insect hydrocarbons. Annu Rev Entomol 27:149

    CAS  Google Scholar 

  408. Wang Q, Goodger JQD, Woodrow IE, Efgar MA (2016) Location-specific cuticular hydrocarbon signals in social insect. Proc R Soc B Biol Sci 283:20160310

    Google Scholar 

  409. Kaib M, Brandl R, Bagine RKN (1991) Cuticular hydrocarbon profiles: a valuable tool in termite taxonomy. Naturwissenschaften 78:176

    CAS  Google Scholar 

  410. van Wilgenburg E, Sule R, Shea KJ, Tsutsui ND (2010) Deciphering the chemical basis of nestmate recognition. J Chem Ecol 36:751

    PubMed  PubMed Central  Google Scholar 

  411. Haverty M, Woodrow RJ, Nelson LJ, Grace K (2000) Cuticular hydrocarbons of termites of the Hawaiian islands. J Chem Ecol 26:1167

    CAS  Google Scholar 

  412. Liebig J, Eliyahu D, Brent CS (2009) Cuticular hydrocarbon profiles indicate reproductive status in the termite Zootermopsis nevadensis. Behav Ecol Sociobiol 63:1799

    Google Scholar 

  413. Sevala VL, Bagneres AG, Kuenzli M, Blomquist GJ, Schal C (2000) Cuticular hydrocarbons of the dampwood termite, Zootermopsis nevadensis: caste differences and role of lipophorin in transport of hydrocarbons and hydrocarbon metabolites. J Chem Ecol 26:765

    CAS  Google Scholar 

  414. Haverty M, Woodrow RJ, Nelson LJ, Grace JK (2005) Identification of termite species by the hydrocarbons in their feces. J Chem Ecol 31:2119

    CAS  PubMed  Google Scholar 

  415. Klochkov SG, Kozlovskii VI, Belyaeva NV (2005) Caste and population specificity of termite cuticule hydrocarbons. Chem Nat Comp 41:1

    CAS  Google Scholar 

  416. Haverty MI, Collins MS, Nelson LJ, Thorne BL (1997) Cuticular hydrocarbons of termites of the British Virgin islands. J Chem Ecol 23:927

    CAS  Google Scholar 

  417. Aguilera-Olivares D, Burgos-Lefimil C, Melendez W, Flores-Prado L, Niemeyer HM (2016) Chemical basis of nestmate recognition in a defense context in a one-piece nesting termite. Chemoecology 26:163

    Google Scholar 

  418. Lewis VR, Nelson LJ, Haverty MI, Baldwin JA (2010) Quantitative changes in hydrocarbons over time in fecal pellets of Incisitermes minor may predict whether colonies are alive or dead. J Chem Ecol 36:1199

    CAS  PubMed  PubMed Central  Google Scholar 

  419. Weil T, Hoffmann K, Kroiss J, Strohm E, Korb J (2009) Scent of a queen — cuticular hydrocarbons specific for female reproductives in lower termites. Naturwissenschaften 96:315

    CAS  PubMed  Google Scholar 

  420. Howard RW, McDaniel CA, Nelson DR, Blomquist GJ, Gelbaum LT, Zalkow LH (1982) Cuticular hydrocarbons of Reticulitermes virginicus (Banks) and their role as potential species- and caste-recognition cues. J Chem Ecol 8:1227

    CAS  PubMed  Google Scholar 

  421. Takematsu Y, Yamaoka R (1999) Cuticular hydrocarbons of Reticulitermes (Isoptera: Rhinotermitidae) in Japan and neighboring countries as chemotaxonomic characters. Appl Entomol Zool 34:179

    CAS  Google Scholar 

  422. Darrouzet E, Labedan M, Landre X, Perdereau E, Christides JP, Bagneres AG (2014) Endocrine control of cuticular hydrocarbon profiles during worker-to-soldier differentiation in the termite Reticulitermes flavipes. J Insect Physiol 61:25

    CAS  PubMed  Google Scholar 

  423. Vauchot B, Provost E, Bagneres AG, Clement JL (1996) Regulation of the chemical signatures of two termite species, Reticulitermes santonensis and Reticulitermes lucifugus grassei, living in mixed experimental colonies. J Insect Physiol 42:309

    Google Scholar 

  424. Brown WV, Lacey MJ, Lenz M (2004) Further examination of cuticular hydrocarbons of worker termites of Australian Coptotermes (Isoptera: Rhinotermitidae) reveals greater taxonomic complexity within species. Sociobiology 44:623

    Google Scholar 

  425. Brown WV, Watson JAL, Lacey MJ (1994) The cuticular hydrocarbons of workers of three Australian Coptotermes species, C. michaelseni, C. brunneus, C. dreghorni (Isoptera: Rhinotermitidae). Sociobiology 23:277

    Google Scholar 

  426. Kaib M, Jmhasly P, Wilfert L, Durka W, Franke S, Franke W, Leuthold RH, Brandl R (2004) Cuticular hydrocarbons and aggression in the termite Macrotermes subhyalinus. J Chem Ecol 30:365

    CAS  PubMed  Google Scholar 

  427. Kaib M, Franke S, Franke W, Brandl R (2002) Cuticular hydrocarbons in a termite: phenotypes and neighbour-stranger effect. Physiol Entomol 27:189

    CAS  Google Scholar 

  428. Howard RW, Thorne BL, Levings SC, McDaniel CA (1988) Cuticular hydrocarbons as chemotaxonomic characters of Nasutitermes corniger (Motschulsky) and N. ephratae (Holmgren) (Isoptera: Termitidae). Ann Entomol Soc Am 81:395

    CAS  Google Scholar 

  429. Blomquist GJ, Nelson DR, De Renobales M (1987) Chemistry, biochemistry, and physiology of insect cuticular lipids. Arch Insect Biochem Physiol 6:227

    CAS  Google Scholar 

  430. Page M, Nelson LJ, Haverty MI, Blomquist GJ (1990) Cuticular hydrocarbons as chemotaxonomic characters for bark beetles: Dendroctonus ponderosae, D. jeffreyi, D. brevicomis, D. frontalis (Coleoptera: Scolytidae). Ann Entomol Soc Am 83:892

    CAS  Google Scholar 

  431. Pomonis JG, Nelson DR, Fatland CL (1980) Insect hydrocarbons. 2. Mass spectra of dimethylalkanes and the effect of the number of methylene units between groups on fragmentation. J Chem Ecol 6:956

    Google Scholar 

  432. Bagneres AG, Killian A, Clement JL, Lange C (1991) Interspecific recognition among termites of the genus Reticulitermes: evidence for the role for the cuticular hydrocarbons. J Chem Ecol 17:2397

    CAS  PubMed  Google Scholar 

  433. Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism: cuticular hydrocarbons of a termitophile and its host. Science 210:431

    CAS  PubMed  Google Scholar 

  434. Dettner K, Liepert C (1994) Chemical mimicry and camouflage. Annu Rev Entomol 39:129

    CAS  Google Scholar 

  435. Howard RW, McDaniel CA, Blomquist GJ (1980) Chemical mimicry as an integrating mechanism for three termitophiles associated with Reticulitermes virginicus. Psyche 89:157

    Google Scholar 

  436. Su NY, Haverty MI (1991) Agonistic behavior among colonies of the Formosan subterranean termite, Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae), from Florida and Hawaii: lack of correlation with cuticular hydrocarbon composition. J Insect Behav 4:115

    Google Scholar 

  437. Neoh KB, Indiran Y, Lenz M, Lee CY (2012) Does lack of intraspecific aggression or absence of nymphs determine acceptance of foreign reproductives in Macrotermes? Insect Soc 59:223

    Google Scholar 

  438. Kaib M, Eisermann B, Schoeters E, Billen J, Franke S, Franke W (2000) Task related variation of postpharyngeal and cuticular hydrocarbon compositions in the ant Myrmicaria cumenoides. J Comp Physiol A 186:939

    CAS  PubMed  Google Scholar 

  439. Bagneres AG, Riviere G, Clement JL (1998) Artificial neural network modeling of caste odor discrimination based on cuticular hydrocarbons in termites. Chemoecology 8:201

    CAS  Google Scholar 

  440. Haverty ML, Grace JK, Nelson LJ (1996) Intercaste, intercolony, and temporal variation in cuticular hydrocarbons of Coptotermes formosanus Shiraki (Isoptera: Rhinotermitidae). J Chem Ecol 22:1813

    CAS  PubMed  Google Scholar 

  441. Brent CS, Penick CA, Trobaugh B, Moore D, Liebig J (2016) Induction of a reproductive-specific cuticular hydrocarbon profile by a juvenile hormone analog in the termite Zootermopsis nevadensis. Chemoecology 26:195

    CAS  Google Scholar 

  442. Korb J (2018) Chemical fertility signaling in termites: idiosyncrasies and commonalities in comparison with ants. J Chem Ecol 44:818

    CAS  PubMed  Google Scholar 

  443. Funaro CF, Böröczky K, Vargo EL, Schal C (2018) Identification of a queen and king recognition pheromone in the subterranean termite Reticulitermes flavipes. Proc Natl Acad Sci USA 115:3888

    CAS  PubMed  Google Scholar 

  444. Kuhlisch C, Pohnert G (2015) Metabolomics in chemical ecology. Nat Prod Rep 32:937

    CAS  PubMed  Google Scholar 

  445. Forner D, Berrue F, Correa H, Duncan K, Kerr RG (2013) Chemical replication of marine actinomycetes by liquid chromatography — high resolution mass spectrometry profiling and statistical analysis. Anal Chim Acta 805:70

    CAS  PubMed  Google Scholar 

  446. Saccenti E, Hoefsloot HCJ, Smilde AK, Westerhuis JA, Hendriks MMWB (2014) Reflections on univariate and multivariate analysis of metabolics data. Metabolomics 10:361

    CAS  Google Scholar 

  447. Liland KH (2011) Multivariate methods in metabolomics – from preprocessing to dimension reduction and statistical analysis. Trends Anal Chem 30:827

    CAS  Google Scholar 

  448. Gehlenborg N, O’Donoghue SI, Baliga NS, Goesmann A, Hibbs MA, Kitano H, Kohlbacher O, Neuweger H, Schneider R, Tenenbaum D, Gavin AC (2010) Visualization of omics data for systems biology. Nat Methods 7(Suppl 3):S57

    Google Scholar 

  449. Covington BC, McLean JA, Bachmann BO (2017) Comparative mass spectrometry-based metabolomics strategies for the investigation of microbial secondary metabolites. Nat Prod Rep 34:6

    CAS  PubMed  PubMed Central  Google Scholar 

  450. Sardans J, Penuelas J, Rivas-Ubach A (2011) Ecological metabolomics: overview of current developments and future challenges. Chemoecology 21:191

    CAS  Google Scholar 

  451. Dorrestein PC (ed) (2014) Themed collection on modern mass spectrometry of small molecules and natural products. Nat Prod Rep 31:704

    Google Scholar 

  452. Adams RP (1995) Identification of essential oil components by gas chromatography mass spectroscopy. Allured Publishing, Carol Stream, IL, p 9

    Google Scholar 

  453. Adams RP (2001) Identification of essential oil components by gas chromatography/quadrupole mass spectroscopy. Allured Publishing, Carol Stream, IL, p 468

    Google Scholar 

  454. Adams RP (2007) Identification of essential oil components by gas chromatography/mass spectroscopy. Allured Publishing, Carol Stream, IL

    Google Scholar 

  455. Ando T, Yamakawa R (2015) Chiral methyl branched pheromones. Nat Prod Rep 32:1007

    CAS  PubMed  Google Scholar 

  456. Carlson DA, Bernier UR, Sutton BC (1998) Elution patterns from capillary GC for methyl-branched alkanes. J Chem Ecol 24:1845

    Google Scholar 

  457. Marten A, Kaib M, Brandl R (2009) Cuticular hydrocarbon phenotypes do not indicate cryptic species in fungus-growing termites (Isoptera: Macrotermitinae). J Chem Ecol 35:572

    CAS  PubMed  Google Scholar 

  458. Blomquist GJ, Howard RW, McDaniel CA, Remaley S, Dwyer LA, Nelson DR (1980) Application of methoxymercuration, demercuration followed by mass spectrometry as a convenient microanalytical technique for double-bond location in insect derived alkenes. J Chem Ecol 6:257

    CAS  Google Scholar 

  459. Chow S, König WA, Kitching W (2004) Synthesis and enantioselective gas chromatography of stereomers of 7,11-dimethylheptadecane — a pheromone component of Lambdina species. Eur J Org Chem:1198

    Google Scholar 

  460. Svatos A, Saman D (1997) Efficient stereoselective synthesis of all geometrical isomers of heptadeca-11,13-dienes. Collect Czech Chem Commun 62:1457

    CAS  Google Scholar 

  461. Choe D-H, Ramirez SR, Tsutsui ND (2012) A silica gel based method for extracting insect surface hydrocarbons. J Chem Ecol 38:176

    CAS  PubMed  Google Scholar 

  462. Bland JM, Osbrink WLA, Cornelius ML, Lax AR, Vigo CB (2001) Solid-phase microextraction for the detection of termite cuticular hydrocarbons. J Chromatogr A 932:119

    CAS  PubMed  Google Scholar 

  463. Bjostad IB (1998) Electrophysiological methods. In: Haynes KF, Millar JG (eds) Chemical ecology: chemical methods, vol 1. Chapman and Hall, London, p 339

    Google Scholar 

  464. Bagneres AG, Morgan ED (1990) A simple method for analysis of insect cuticular hydrocarbons. J Chem Ecol 16:3263

    CAS  PubMed  Google Scholar 

  465. Rejsek J, Vrkoslav V, Hanus R, Vaikkinen A, Haapala M, Kauppila TJ, Kostiainen R, Cvacka J (2015) The detection and mapping of the spatial distribution of insect defense compounds by desorption atmospheric pressure photoionization orbitrap mass spectrometry. Anal Chim Acta 886:91

    CAS  PubMed  Google Scholar 

  466. Sashidhara KV, Rosaiah JN (2007) Various dereplication strategies using LC-MS for rapid natural product lead identification and drug discovery. Nat Prod Commun 2:193

    CAS  Google Scholar 

  467. Hou Y, Braun DR, Michel CR, Klaasen JL, Adnani N, Wyche TP, Bugni TS (2012) Microbial strain prioritization using metabolomics tools for the discovery of natural products. Anal Chem 84:4277

    CAS  PubMed  PubMed Central  Google Scholar 

  468. Gaudencio SP, Pereira F (2015) Dereplication: racing to speed up the natural products discovery process. Nat Prod Rep 32:779

    CAS  PubMed  Google Scholar 

  469. Brandt M, van Wilgenburg E, Sulc R, Shea KJ, Tsutsui ND (2009) The scent of supercolonies: the discovery, synthesis and behavioral verification of ant colony recognition cues. BMC Biol 7:71

    PubMed  PubMed Central  Google Scholar 

  470. Masuda Y, Mori K (2002) Synthesis of the four stereoisomers of 3,12-dimethylheptacosane, (Z)-9-pentacosene and (Z)-9-heptacosene, the cuticular hydrocarbons of the ant, Diacamma sp. Biosci Biotechnol Biochem 66:1032 (and literature cited therein)

    CAS  PubMed  Google Scholar 

  471. Alexakis A, Jachiet D (1989) A new approach to conjugated dienes. Synthesis of the pheromones of Lobesia botrana and Bombyx mori. Tetrahedron 45:381

    CAS  Google Scholar 

  472. Scharf ME (2015) Termites as targets and models for biotechnology. Annu Rev Entomol 60:77 (especially pp 87, 88)

    CAS  PubMed  Google Scholar 

  473. Watanabe D, Gotoh H, Miura T, Maekawa K (2014) Social interaction affecting caste development through physiological actions in termites. Front Physiol 5:127

    PubMed  PubMed Central  Google Scholar 

  474. Terrapon N, Li C, Robertson HM, Ji L, Meng X, Booth W, Chen Z, Childers CP, Glastad KM, Gokhale K, Gowin J, Gronenberg W, Hermansen RA, Hu H, Hunt BG, Huylmans AK, Khalil SMS, Mitchell RD, Munoz-Torres MC, Mustard JA, Pan H, Reese JT, Scharf ME, Sun F, Vogel H, Xiao J, Yang W, Yang Z, Yang Z, Zhou J, Zhu J, Brent CS, Elsik CG, Goodisman MAD, Liberles DA, Roe RM, Vargo EL, Vilcinskas A, Wang J, Bornberg-Bauer E, Korb J, Zhang G, Liebig J (2014) Molecular traces of alternative social organization in a termite genome. Nat Commun 5:3636

    CAS  PubMed  Google Scholar 

  475. Lefeuve P, Bordereau C (1984) Soldier formation regulated by a primer pheromone from the soldier frontal gland in higher termite, Nasutitermes lujae. Proc Natl Acad Sci USA 81:7665

    CAS  PubMed  Google Scholar 

  476. Korb J, Roux EA, Lenz M (2003) Proximate factors influencing soldier development in the basal termite Cryptotermes secundus (Hill). Insect Soc 50:299

    Google Scholar 

  477. Watanabe D, Gotoh H, Miura T, Maekawa K (2011) Soldier presence suppresses presoldier differentiation through a rapid decrease of JH in the termite Reticulitermes speratus. J Insect Physiol 57:791 (and literature cited therein)

    CAS  PubMed  Google Scholar 

  478. Cornette R, Gotoh H, Koshikawa S, Miura T (2008) Juvenile hormone titers and caste differentiation in the damp-wood termite Hodotermopsis sjostedti (Isoptera, Termopsidae). J Insect Physiol 54:922

    CAS  PubMed  Google Scholar 

  479. Okot-Kotber BM, Ujvary I, Mollaaghababa R, Szurdoki F, Matolcsy G, Prestwich GD (1991) Physiological influence of fenoxycarb pro-insecticides and soldier head extracts of various termite species on soldier differentiation in Reticulitermes flavipes (Isoptera). Sociobiology 19:77

    Google Scholar 

  480. Lelis AT, Everaerts C (1993) Effects of juvenile hormone analogues upon soldier differentiation in the termite Reticulitermes santonensis (Rhinotermitidae, Heterotermitinae). J Morphol 217:239

    CAS  PubMed  Google Scholar 

  481. Tarver MR, Florane CB, Zhang DH, Grimm C, Lax AR (2012) Methoprene and temperature effects on caste differentiation and protein composition in the Formosan subterranean termite, Coptotermes formosanus. J Insect Sci 12:18

    CAS  PubMed  PubMed Central  Google Scholar 

  482. Mao LX, Henderson G (2010) Group size effect on worker juvenile hormone titers and soldier differentiation in Formosan subterranean termite. J Insect Physiol 56:725 (and literature cited therein)

    CAS  PubMed  Google Scholar 

  483. Tarver MR, Schmelz EA, Scharf ME (2011) Soldier caste influences on candidate primer pheromone levels and juvenile hormone-dependent caste differentiation in workers of the termite Reticulitermes flavipes. J Insect Physiol 57:771

    CAS  PubMed  Google Scholar 

  484. Tarver MR, Coy MR, Scharf ME (2012) Cyp 15F1: a novel cytochrome P450 gene linked to juvenile hormone-dependent caste differentiation in the termite Reticulitermes flavipes. Arch Insect Biochem Physiol 80:92

    CAS  PubMed  Google Scholar 

  485. Shimoji H, Oguchi K, Hayashi Y, Hojo MK, Miura T (2017) Regulation of neotenic differentiation through direct physical contact in the damp-wood termite Hodotermopsis sjöstedti. Insect Soc 64:393

    Google Scholar 

  486. Yamamoto Y, Kobayashi T, Matsuura K (2012) The lack of chiral specificity in a queen pheromone. Physiol Entomol 37:192

    CAS  Google Scholar 

  487. Matsuura K, Yamamoto Y (2011) Workers do not mediate the inhibitory power of queens in a termite, Reticulitermes speratus (Isoptera, Rhinotermitidae). Insect Soc 58:513

    Google Scholar 

  488. Yamamoto Y, Matsuura K (2011) Queen pheromone regulates egg production in a termite. Biol Lett 7:727

    PubMed  PubMed Central  Google Scholar 

  489. Matsuura K (2012) Multifunctional queen pheromone and maintenance of reproductive harmony in termite colonies. J Chem Ecol 38:746

    CAS  PubMed  Google Scholar 

  490. Matsuura K, Matsunaga T (2015) Antifungal activity of a termite queen pheromone against egg-mimicking termite ball fungi. Ecol Res 30:93

    CAS  Google Scholar 

  491. Suehiro W, Matsuura K (2015) Queen pheromone promotes production of salivary lysozyme by workers in a termite. Insect Soc 62:193

    Google Scholar 

  492. Machara A, Krivanek J, Dolejsova K, Havlickova J, Bednarova L, Hanus R, Majer P, Kyjakova P (2018) Identification and enantiodivergent synthesis of (5Z,9S)-tetradec-5-en-9-olide, a queen specific volatile of the termite Silvestritermes minutes. J Nat Prod 81:2266

    CAS  PubMed  Google Scholar 

  493. Fougeyrollas R, Dolejsova K, Krivanek J, Sillam-Dusses D, Roisin Y, Hanus R, Roy V (2018) Dispersal and mating strategies in two neotropical soil-feeding termites, Embiratermes neotenicus and Silvestritermes minutus (Termitidae, Syntermitinae). Insect Soc 65:251

    Google Scholar 

  494. Kalsi PS, Talwar KK (1987) Stereostructure of vetidiol, a new antipodal sesquiterpene diol from vetiver oil: a novel role of biological activity to predict the position and stereochemistry of one of the hydroxy groups. Tetrahedron 43:2985

    CAS  Google Scholar 

  495. Zhang X, Uemura T, Matsumura K, Sayo N, Kumobayashi H, Takaya H (1994) Highly enantioselective hydrogenation of α,β-unsaturated carboxylic acids catalyzed by H8-BINAP-Ru(II) complexes. Synlett 7:501

    Google Scholar 

  496. Kingsbury JS, Harrity JPA, Bonitatebus PJ, Hoveyda AH (1999) A recyclable Ru-based metathesis catalyst. J Am Chem Soc 121:791

    CAS  Google Scholar 

  497. Schulz S, Hötling S (2015) The use of the lactone motif in chemical communication. Nat Prod Rep 32:1042

    CAS  PubMed  Google Scholar 

  498. Quennedey A, Deligne J (1975) L’arme frontale des soldats de termites. I. Rhinotermitidae. Insect Soc 22:243

    Google Scholar 

  499. Shorter JR, Rueppell O (2012) A review on self-destructive defense behaviors in social insects. Insect Soc 59:1

    Google Scholar 

  500. Sobotnik J, Bourguignon T, Hanus R, Demianova Z, Pytelkova J, Mares M, Foltynova P, Preisler J, Cvacka J, Krasulova J, Roisin Y (2012) Explosive backpacks in old termite workers. Science 337:436

    CAS  PubMed  Google Scholar 

  501. Sobotnik J, Bourguignon T, Hanus R, Weyda F, Roisin Y (2010) Structure and function of defensive glands in soldiers of Glossotermes oculatus (Isoptera: Serritermitidae). Biol J Linnean Soc 99:839

    Google Scholar 

  502. Bordereau C, Robert A, Tuyen V, Peppuy A (1997) Suicidal defensive behaviour by frontal gland dehiscence in Globitermes sulphureus Haviland soldiers (Isoptera). Insect Soc 44:289

    Google Scholar 

  503. Costa-Leonardo AM, Kitayama K (1991) Frontal gland dehiscence in the Brazilian termite Serritermes serrifer (Isoptera: Serritermitidae). Sociobiology 19:333

    Google Scholar 

  504. Costa-Leonardo AM (2004) A new interpretation of the defense glands of neotropical Ruptitermes (Isoptera, Termitidae, Apicotermitinae). Sociobiology 44:391

    Google Scholar 

  505. Deligne J, DeConinck E (2006) Suicidal defense through a dehiscent frontal weapon in Apilitermes longiceps soldiers (Isoptera: Termitidae). Belg J Entomol 8:3

    Google Scholar 

  506. Thorne BL (1982) Termite termite interactions: workers as an agonistic caste. Psyche 89:133

    Google Scholar 

  507. Sobotnik J, Sillam-Dusses D, Weyda F, Dejean A, Roisin Y, Hanus R, Bourguignon T (2010) The frontal gland in workers of neotropical soldierless termites. Naturwissenschaften 97:495

    CAS  PubMed  Google Scholar 

  508. Bourguignon T, Sobotnik J, Dahlsjö CAL, Roisin Y (2016) The soldierless Apicotermitinae: insights into a poorly known and ecologically dominant tropical taxon. Insect Soc 63:39

    Google Scholar 

  509. Bourguignon T, Sobotnik J, Brabcova J, Silam-Dusses D, Bucek A, Krasulova J, Vytiskova B, Demianova Z, Mares M, Roisin Y, Vogel H (2016) Molecular mechanism of the two-component suicidal weapon of Neocapritermes taracua old workers. Mol Biol Evol 33:809

    CAS  PubMed  Google Scholar 

  510. Blum MS, Jones TH, Howard DE, Overal WL (1982) Biochemistry of termite defenses: Coptotermes, Rhinotermes and Cornitermes species. Comp Biochem Physiol B 71:731

    Google Scholar 

  511. Chen J, Henderson G, Laine RA (1999) Lignoceric acid and hexacosanoic acid: major components of soldier frontal gland secretions of the Formosan subterranean termite (Coptotermes formosanus). J Chem Ecol 25:817

    CAS  Google Scholar 

  512. Zhang S, Mo J, Teng L, Cheng M, Cheng J (2006) Intercolonial variations in the composition of the frontal gland secretion of Coptotermes formosanus (Isoptera: Rhinotermitidae). Sociobiology 47:553. (These authors insist that no isoprenoids were detected, but list the isoprenoids, squalene, and even cholesterol as a “hydroxybenzene” in Table 1. Thus, the compounds of Table 1 of this publication are not included in the present contribution)

    Google Scholar 

  513. Ohta M, Matsuura F, Henderson G, Laine RA (2007) Novel free ceramides as components of the soldier defense gland of the Formosan subterranean termite (Coptotermes formosanus). J Lipid Res 48:656

    CAS  PubMed  Google Scholar 

  514. Jirosova A, Majer P, Jancarik A, Dolejsova K, Tykva R, Sobotnik J, Jiros P, Hanus R (2014) Sphinganine-like biogenesis of (E)-1-nitropentadec-1-ene in termite soldiers of the genus Prorhinotermes. ChemBioChem 15:533

    CAS  PubMed  Google Scholar 

  515. Vrkoc J, Ubik K (1974) 1-Nitro-trans-1-pentadecene as the defensive compound of termites. Tetrahedron Lett 15:1463

    Google Scholar 

  516. Jirosova A, Jancarik A, Menezes RC, Bazalova O, Dolejsova K, Vogel H, Jedlicka P, Bucek A, Brabcova J, Majer P, Hanus R, Svatos A (2017) Co-option of the sphingolipid metabolism for the production of nitroalkene defensive chemicals in termite soldiers. Insect Biochem Mol Biol 82:52

    CAS  PubMed  Google Scholar 

  517. Plasman V, Daloze D, Braekman JC, Connetable S, Robert A, Bordereau C (1999) New macrolactones from the defensive salivary secretion of soldiers of the African termite Pseudacanthotermes spiniger. Tetrahedron Lett 40:9229

    CAS  Google Scholar 

  518. Teoh YP, Mashita MD (2012) Screening of antifungal activities from genera Trametes against growth of selected wood-degrading fungi from Malaysia. Aust J Basic Appl Sci 6:79

    Google Scholar 

  519. Stow A, Beattie A (2008) Chemical and genetic defenses against disease in insect societies. Brain Behav Immun 22:1009

    CAS  PubMed  Google Scholar 

  520. Craemer S, Pull CD, FĂĽrst MA (2018) Social immunity: emergence and evolution of colony-level disease protection. Annu Rev Etomol 63:105

    Google Scholar 

  521. Login FH, Balmand S, Vallier A, Vicent-Monegat C, Vigneron A, Weiss-Gayet M, Rochat D, Heddi A (2011) Antimicrobial peptides keep insect endosymbionts under control. Science 334:362

    CAS  PubMed  Google Scholar 

  522. Lamberty M, Zachary D, Lanot R, Bordereau C, Robert A, Hoffmann JA, Bulet P (2001) Insect immunity: constitutive expression of a cysteine-rich antifungal and a linear antibacterial peptide in termite insect. J Biol Chem 276:4085

    CAS  PubMed  Google Scholar 

  523. Bulmer MS, Bachelet I, Raman R, Rosengaus RB, Sasisekharan R (2009) Targeting antimicrobial effector function in insect immunity as pest control strategy. Proc Natl Acad Sci USA 106:12652

    CAS  PubMed  Google Scholar 

  524. Mitaka Y, Kobayashi K, Matsuura K (2017) Caste-, sex-, and age-dependent expression of immune-related genes in a Japanese subterranean termite, Reticulitermes speratus. PLoS One 12:e0175417

    PubMed  PubMed Central  Google Scholar 

  525. Hamilton C, Lay F, Bulmer MS (2011) Subterranean termite prophylactic secretions and external defenses. J Insect Physiol 57:1259

    CAS  PubMed  Google Scholar 

  526. Berenbaum MR, Eisner T (2009) Bug’s bug. Science 322:52

    Google Scholar 

  527. Nirma C, Eparvier V, Stien D (2013) Antifungal agents from Pseudollescheria boydii SNB-CN37 isolated from a Nasutitermes sp. termite. J Nat Prod 76:988

    CAS  PubMed  Google Scholar 

  528. Um S, Fraimout A, Sapountzis P, Oh DC, Poulsen M (2013) The fungus-growing termite Macrotermes natalensis harbors bacillaene-producing Bacillus sp. that inhibit potentially antagonistic fungi. Sci Rep 3:3250

    PubMed  PubMed Central  Google Scholar 

  529. Florez LV, Biedermann HW, Engl T, Kaltenpoth M (2015) Defensive symbioses of animals with prokaryotic and eukaryotic microorganisms. Nat Prod Rep 32:904 (and literature cited therein, especially Refs. [325, 488, 517])

    CAS  PubMed  Google Scholar 

  530. Chen J, Henderson G, Grimm CC, Loyd SW, Laine RA (1998) Termites fumigate their nests with naphthalene. Nature 392:558

    CAS  Google Scholar 

  531. Sun Q, Zhou X (2013) Corpse management in social insects. Int J Biol Sci 9:313

    PubMed  PubMed Central  Google Scholar 

  532. Sun Q, Haynes KF, Zhou X (2013) Differential undertaking response of a lower termite to congeneric and conspecific corpses. Sci Rep 3:1650

    CAS  PubMed  PubMed Central  Google Scholar 

  533. Chuah CH, Goh SH, Tho YP (1990) Chemical defense secretion of some species of Malaysian Rhinotermitidae (Isoptera: Rhinotermitidae). J Chem Ecol 16:685

    CAS  PubMed  Google Scholar 

  534. Prestwich GD, Bierl BA, Devilbiss ED, Chaudhury MFB (1977) Soldier frontal glands of the termite Macrotermes subhyalinus: morphology, chemical composition, and use in defense. J Chem Ecol 3:579

    CAS  Google Scholar 

  535. Prestwich GD, Collins MS (1982) Chemical defense secretions of the termite soldiers of Acorhinotermes and Rhinotermes (Isoptera, Rhinotermitinae) ketones, vinyl ketones, and Ăź-keto aldehydes derived from fatty acids. J Chem Ecol 8:147

    CAS  PubMed  Google Scholar 

  536. Prestwich GD, Kaib M, Wood WF, Meinwald J (1975) 1,13-Tetradecadien-3-one and homologs: new natural products isolated from Schedorhinotermes soldiers. Tetrahedron Lett 52:4701

    Google Scholar 

  537. Quennedey A, Brule G, Rigaud J, Dubois P, Brossut R (1973) Le glande frontale des soldats de Schedorhinotermes putorius Sjöstedt (Isoptera, Rhinotermitidae): analyse chimique et fonctionnement. Insect Biochem 3:67

    CAS  Google Scholar 

  538. Spanton SG, Prestwich GD (1982) Chemical defense and self-defense. Biochemical transformation of contact insecticides produced by soldier termites. Tetrahedron 38:1921

    CAS  Google Scholar 

  539. Tuchinda P, Prapansiri V, Naengchomnong W, Reutrakul V (1984) Convenient synthesis of vinyl ketones via a new three carbon homologating agent. Chem Lett:1427

    Google Scholar 

  540. Tautz L, Retey J (2010) Highly convergent synthesis of myristoyl-carbo(dethia)-coenzyme A. Eur J Org Chem 2010:1728

    Google Scholar 

  541. Tiwari PK, Aidhen IS (2013) Weinreb amide based building block for convenient access to vinyl ketones. Synlett 24:1777

    CAS  Google Scholar 

  542. Lorber K, Schieberle P, Buettner A (2014) Influence on the chemical structure on odor qualities and odor thresholds in homologous series of alka-1,5-dien-3-ones, alk-1-en-3-ones, alka-1,5-dien-3-ols, and alk-1-en-3-ols. J Agric Food Chem 62:1025

    CAS  PubMed  Google Scholar 

  543. Prestwich GD, Collins MS (1980) A novel enolic Ăź-ketoaldehyde in the defense secretion of the termite Rhinotermes hispidus. Tetrahedron Lett 21:5001

    CAS  Google Scholar 

  544. Prelog V, Metzler O, Jeger O (1947) Ăśber eine Synthese von substituierten Phenolen. Helv Chim Acta 30:675

    CAS  PubMed  Google Scholar 

  545. Prestwich GD, Collins MS (1981) Macrocyclic lactones as the defense substances of the termite genus Armitermes. Tetrahedron Lett 22:4387

    Google Scholar 

  546. Traniello JFA, Thorne B, Prestwich GD (1984) Chemical composition and efficacy of cephalic gland secretion of Armitermes chagresi (Isoptera: Termitidae). J Chem Ecol 10:531

    CAS  PubMed  Google Scholar 

  547. Kerschbaum M (1927) Lactones with large rings – the carriers of vegetable musk odor. Chem Ber 60:907

    Google Scholar 

  548. Williams AS (1999) The synthesis of macrocyclic musks. Synthesis:1707

    Google Scholar 

  549. Fortunati T, D’Acunto M, Caruso T, Spinella A (2015) Chemoenzymatic preparation of musky macrolactones. Tetrahedron 71:2357

    CAS  Google Scholar 

  550. Sun CL, Li BJ, Shi ZJ (2010) Macrolactones and macrolactams. In: Ma S (ed) The handbook of cyclization reactions, vol 2. Wiley-VCH, Weinheim, Chapter 22, p 1055

    Google Scholar 

  551. Parenty A, Moreau X, Niel G, Campagne JM (2013) Update 1 of: Macrolactonization in the total synthesis of natural products. Chem Rev 113:PR1

    CAS  PubMed  Google Scholar 

  552. Tsakos M, Schaffert ES, Clement L, Villadsen NL, Poulsen TB (2015) Ester coupling reactions – an enduring challenge in the chemical synthesis of bioactive natural products. Nat Prod Rep 32:605

    CAS  PubMed  Google Scholar 

  553. Sims RJ, Tischler SA, Weiler L (1983) Lactone synthesis via the intramolecular alkylation of Ăź-keto ester dianions. Tetrahedron Lett 24:253

    CAS  Google Scholar 

  554. Lermer L, Neeland EG, Ounsworth JP, Sims RJ, Tischler SA, Weiler L (1992) The synthesis of ß-ketolactones via cyclization of ß-ketoester dianions or the cyclization of Meldrum’s acid derivatives. Can J Chem 70:1427

    CAS  Google Scholar 

  555. Stoll M, Rouve A (1935) Vielgliedrige Heterocyclische Verbindungen VIII. Zur Kenntnis der hochgliedrigen Mono- und Poly-lactonringe. Helv Chim Acta 18:1087

    CAS  Google Scholar 

  556. Boeckman RK, Pruit JR (1989) Synthetic studies directed towards naturally occurring cyclooctanoids. 2. A stereocontrolled assembly of (+)-pleuromutilin via a remarkable sterically demanding oxy-Cope rearrangement. J Am Chem Soc 111:8286

    CAS  Google Scholar 

  557. Hon YS, Wong YC, Chang CP, Hsieh CH (2007) Tishchenko reactions of aldehydes promoted by diisobutylaluminum hydride and its application to the macrocyclic lactone formation. Tetrahedron 63:11325

    CAS  Google Scholar 

  558. Hon YS, Lee CF, Chen RJ, Szu PH (2001) Acetonyltriphenylphosphonium bromide and its polymer-supported analogues as catalysts in protection and deprotection of alcohols as alkyl vinyl ethers. Tetrahedron 57:5991

    CAS  Google Scholar 

  559. Shiina I, Kikuchi T, Sasaki A (2006) The first total synthesis of (–)- and (+)-2-hydroxy-24-oxooctacosanolide using an effective lactonization. Org Lett 8:4955

    CAS  PubMed  Google Scholar 

  560. Shiina I, Sasaki A, Kikuchi T, Fukui H (2008) Total synthesis of 2-hydroxytetracosanolide and 2-hydroxy-24-oxooctacosanolide by using an effective lactonization. Chem Asian J 3:462

    CAS  PubMed  Google Scholar 

  561. Toshima H, Maru K, Saito M, Ichihara A (1999) Total syntheses of cepaciamides A and B, novel fungitoxic 3-amino-2-piperidinone-containing lipids produced by Pseudomonas cepacia D-202. Tetrahedron 55:5793

    CAS  Google Scholar 

  562. Parry R, Nishino S, Spain J (2011) Naturally-occurring nitro compounds. Nat Prod Rep 28:152

    CAS  PubMed  Google Scholar 

  563. Baker PRS, Schopfer FJ, Sweeney S, Freeman BA (2004) Red cell membrane and plasma linoleic acid nitration products: synthesis, clinical identification, and quantification. Proc Natl Acad Sci USA 101:11577

    CAS  PubMed  Google Scholar 

  564. Sobotnik J, Weyda F, Hanus R, Kyjakova P, Doubsky J (2004) Ultrastructure of the frontal gland in Prorhinotermes simplex (Isoptera: Rhinotermitidae) and quantity of the defensive substances. Eur J Entomol 101:153

    Google Scholar 

  565. Kuldova J, Hrdy I, Svatos A (1999) Defense secretion of Prorhinotermes simplex: toxicity to insecticide susceptible and resistant housefly. J Chem Ecol 25:657

    CAS  Google Scholar 

  566. Svatos A, Attygalle A (1997) Characterization of vinyl-substituted carbon-carbon double bond by GC/FT-IR analysis. Anal Chem 69:1827

    CAS  PubMed  Google Scholar 

  567. Joulain D, König W (1998) The atlas of spectral data of sesquiterpene hydrocarbons. E.B.-Verlag, Hamburg

    Google Scholar 

  568. Bartlett RJ, Cosse AA, Zilkowski BW, Weisleder D, Momany FA (2001) Male specific sesquiterpenes from Phyllotreta and Aphthona flea beetles. J Chem Ecol 27:2397

    Google Scholar 

  569. Hanson JR (2001) The development for terpenoid structure determination. Nat Prod Rep 18:607

    CAS  PubMed  Google Scholar 

  570. De Kraker JW, Franssen MC, DeGroot A, Shibata T, Brouwmeester HJ (2001) Germacrenes from fresh Costus roots. Phytochemistry 58:481

    PubMed  Google Scholar 

  571. Jenkins TM, Basten CJ, Kresovich S, Forschler BT (1999) Mitochondrial gene sequence questions Reticulitermes sp. social structure (Isoptera: Rhinotermitidae). Sociobiology 34:161

    Google Scholar 

  572. Jenkins TM, Basten CJ, Haverty MI, Nelson LJ, Page M, Forschler BT (2000) Correlation of mitrochondrial genotypes and cuticular hydrocarbon phenotypes for three sympatric Reticulitermes species (Isoptera: Rhinotermitidae) from the southeastern United States. J Chem Ecol 26:1525

    CAS  Google Scholar 

  573. Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  574. Queller DC (1993) Genetic relatedness and its components in polygynous colonies of social insects. In: Keller L (ed) Queen number and sociality in insects. Oxford University Press, Oxford, UK, p 132

    Google Scholar 

  575. Dronnet S, Lohou C, Christides JP, Bagneres AG (2006) Cuticular hydrocarbon composition reflects genetic relationship among colonies of the introduced termite Reticulitermes santonensis Feytaud. J Chem Ecol 32:1027

    CAS  PubMed  Google Scholar 

  576. Paknikar SK, Naik CG (1975) Stereochemistry of dihydroagarofurans. Structure of 4,11-epoxy-cis-eudesmane. Tetrahedron Lett 16:1293

    Google Scholar 

  577. Baker R, Bradshaw JWS, Evans DA, Higgs MD, Wadsham LJ (1976) An efficient all-glass splitter and trapping system for gas chromatography. J Chromatogr Sci 14:425

    CAS  Google Scholar 

  578. Marshall JA, Pike MT (1968) A stereoselective synthesis of α- and β-agarofuran. J Org Chem 33:435

    CAS  Google Scholar 

  579. Evans DA, Baker R, Howse PE (1979) The chemical ecology of termite defence behaviour. In: Ritter FJ (ed) Chemical ecology: odour communication in animals: scientific aspects, practical uses and economic prospects. Proceedings of the Advanced Research Institute on Chemical Ecology: Odour Communication in Animals. Elsevier/North Holland Biomedical Press, Amsterdam, p 213

    Google Scholar 

  580. Faulkner DJ (1976) 3-Bromo-8-epicaparrapi oxide, the major metabolite of Laurencia obtusa. Phytochemistry 15:1992

    CAS  Google Scholar 

  581. Scheffrahn RH, Gaston LK, Nutting WL, Rust MK (1986) Chemical heterogeneity of soldier defensive secretion in the desert subterranean termite Amitermes wheeleri. Biochem System Ecol 14:661

    CAS  Google Scholar 

  582. Kubeczka KH, Formacek V (2002) Essential oil analysis- capillary gas chromatography and carbon-13 NMR spectroscopy, 2nd edn. Wiley, New York, p 461

    Google Scholar 

  583. Marco JL (1989) Chiral precursors for syntheses of furanoterpenes. Tetrahedron 45:1475

    CAS  Google Scholar 

  584. Ciceri P, Demnitz FWJ, de Souza MCF, Lehmann M (1998) A common approach to the synthesis of monocyclofarnesyl sesquiterpenes. J Braz Chem Soc 9:409

    CAS  Google Scholar 

  585. Vig OP, Sharma ML, Trehan N, Verma NK (1980) Synthesis of trans-Îł-monocyclofarnesol. Indian J Chem Sect B 19B:450

    CAS  Google Scholar 

  586. Still WC (1978) Stannylation/destannylation. Preparation of α-alkoxy organolithium reagents and synthesis of dendrolasin via a carbinyl carbanion equivalent. J Am Chem Soc 100:1481

    CAS  Google Scholar 

  587. Hoppmann A, Weyerstahl P (1978) Terpene und Terpenderivate VII. Terpene aus C5 und C10-Bausteinen durch Alkylierung von 1,3-Dithianen. Tetrahedron 34:1723

    CAS  Google Scholar 

  588. Nishizawa M, Takenaka H, Nishide H, Hayashi Y (1983) A new olefin cyclization agent, mercury (II) trifluoromethanesulfonate-amine complex. Tetrahedron Lett 24:2581

    CAS  Google Scholar 

  589. Mori K (1995) Biochemical methods in enantioselective synthesis of bioactive natural products. Synlett 1995:1097 (especially Chapter 3, p 1104)

    Google Scholar 

  590. Mori K, Mori H (1990) Yeast reduction of 2,2-dimethylcyclohexane-1,3-dione: (+)-(S)-3-hydroxy-2,2-dimethylcyclohexane. Org Synth 68:56

    CAS  Google Scholar 

  591. Galano J-M, Audran G, Monti H (2000) Straightforward enantioselective synthesis of both enantiomers of karahana lactone using a domino ring-closure sequence. Tetrahedron 56:7477

    CAS  Google Scholar 

  592. Yanagisawa A, Habaue S, Yamamoto H (1991) Allylbarium in organic synthesis: unprecedented alpha selective and stereospecific allylation of carbonyl compounds. J Am Chem Soc 113:8955

    CAS  Google Scholar 

  593. Yanagisawa A, Yasue K, Yamamoto H (1997) Regio-and stereoselective carboxylation of allylic barium reagents. (E)-4,8-Dimethyl-3,7-nonadienoic acid. Org Synth 74:178

    CAS  Google Scholar 

  594. Sparling BA, Moebius DC, Shair MD (2013) Enantioselective total synthesis of hyperforin. J Am Chem Soc 135:644 (especially Ref. [17])

    Google Scholar 

  595. Fujii A, Hashiguchi S, Uematsu N, Ikariya T, Noyori R (1996) Ruthenium (II)-catalyzed asymmetric transfer hydrogenation of ketones using a formic acid-triethylamine mixture. J Am Chem Soc 118:2521

    CAS  Google Scholar 

  596. Sakakura A, Ukai A, Ishihara K (2007) Enantioselective halocyclization of polyprenoids induced by nucleophilic phosphoramidites. Nature 445:900

    CAS  PubMed  Google Scholar 

  597. Recsei C, McErlean CSP (2012) Synthesis of modified binol-phosphoramidites. Tetrahedron 68:464

    CAS  Google Scholar 

  598. Recsei C, McErlean CSP (2010) Towards the synthesis of N-heterocycle containing binol-phosphoramidites. Tetrahedron Asymmetry 21:149

    CAS  Google Scholar 

  599. Kuniyoshi M, Wahome PG, Miono T, Hashimoto T, Yokoyama M, Shrestha KL, Higa T (2005) Terpenoids from Laurencia luzonensis. J Nat Prod 68:1314

    CAS  PubMed  Google Scholar 

  600. Julia S, Julia M, Linares H, Blondel JC (1962) Synthesis of substituted α- and γ-cyclohomocitral and the corresponding ketones and alcohols. Bull Soc Chim Fr:1952

    Google Scholar 

  601. Boeckman RK, Bruza KJ (1981) Cyclic vinyl ether carbanions-II. Preparation and applications to the synthesis of carbonyl compounds. Tetrahedron 37:3997

    CAS  Google Scholar 

  602. Wenkert E, Michelotti EL, Swindell CS, Tingoli M (1984) Transformation of carbon-oxygen into carbon-carbon bonds mediated by low-valent nickel species. J Org Chem 49:4894

    CAS  Google Scholar 

  603. Wadman S, Whitby R, Yeates C, Kocienski P, Cooper K (1987) An efficient and stereoselective synthesis of homoallylic alcohols via nickel-catalysed coupling of 5-alkyl-2,3-dihydrofuran with Grignard reagents. J Chem Soc Chem Commun:241

    Google Scholar 

  604. Xu D, Crispino GA, Sharpless KB (1992) Selective asymmetric dihydroxylation (AD) of dienes. J Am Chem Soc 114:7570

    CAS  Google Scholar 

  605. Kolb HC, Van Nieuwenhze MS, Sharpless KB (1994) Catalytic asymmetric dihydroxylation. Chem Rev 94:2483

    CAS  Google Scholar 

  606. Howie GA, Manni PE, Cassady JM (1974) Synthesis of α-substituted α,β-unsaturated γ-lactones as potential antitumor agents. J Med Chem 17:840

    CAS  PubMed  Google Scholar 

  607. Kawanobe T, Kogami K, Hayashi K, Matsui M (1984) New synthesis of Îł-homocyclogeranial, Îł-dihydroionone and their derivatives. Agric Biol Chem 48:461

    CAS  Google Scholar 

  608. YĂĽksekisik N (1980) Naturally occurring attractant and repellent: stereospecific synthesis of 4,11-epoxy-cis-eudesmane. Doga Bilimler 4:49

    Google Scholar 

  609. Wijnberg JBPA, Vader J, de Groot A (1983) Stereospecific synthesis of selectively C-7-acetalized substituted 4aβ-methyl-3,4,4a,5,6,8a.α-hexahydronaphthalene-1(2H),7(8H)-diones. A short total synthesis of (±)-β-eudesmol, (±)-β-selinene, and (±)-β-dictyopterol. J Org Chem 48:4380

    CAS  Google Scholar 

  610. Wijnberg JBPA, Jongedijk G, de Groot A (1985) A simple acid-catalyzed isomerization of Îł-hydroxyenones into Îł-diones. J Org Chem 50:2650

    CAS  Google Scholar 

  611. Wijnberg JBPA, Kesselmans RPW, de Groot A (1986) A new route to selectively protected cis-4α-methylhexahydronaphthalene-1(2H),7(8H)-diones. Tetrahedron Lett:2415

    Google Scholar 

  612. Kesselmans RPW, Wijnberg JBPA, de Groot A (1991) Synthesis of all stereoisomers of eudesm-11-en-4-ol. 1. Stereospecific synthesis of the trans- and cis-fused octahydro-8-hydroxy-4a,8-dimethyl-2(1H)-naphthalenones. Conformational analysis of the cis-fused compounds. J Org Chem 56:7232

    CAS  Google Scholar 

  613. Chowdhury PK, Sharma RP, Barua JN (1983) A new method for enol acetylation. Tetrahedron Lett:3383

    Google Scholar 

  614. Corey EJ, Snider BB (1974) Preparation of an optically active intermediate for the synthesis of prostaglandins. J Org Chem 39:256

    CAS  PubMed  Google Scholar 

  615. Kodama M, Yokoo S, Matsuki Y, Ito S (1979) Synthesis of macrocyclic terpenoids by intramolecular cyclization V. Transannular reactions of hedycaryol isomers. Tetrahedron Lett:1687

    Google Scholar 

  616. Natatsuka T, Hirose Y (1956) Part I. The structure of occidentaol, a new sesquiterpene alcohol from Thuja occidentalis L. Bull Agric Chem Soc Jpn 20:215

    Google Scholar 

  617. Nozoe T, Cheng YS, Toda T (1966) The structure of chamaecynone a novel norsesquiterpenoid from Chamaecyparisformosensis matsum. Tetrahedron Lett:3663

    Google Scholar 

  618. Asao T, Ibe S, Takase K, Cheng YS, Nozoe T (1968) The structure of two new acetylenic norsesquiterpenoids, dehydrochamaecynenol and dehydrochamaecynenal, isolated from Chamaecyparis formoensis Matsum. Tetrahedron Lett:3639

    Google Scholar 

  619. Takase K, Ibe S, Asao T, Nozoe T, Shimanouchi H, Sasada Y (1968) Norsesquiterpene: chamaecynenol. Chem Ind:1638

    Google Scholar 

  620. Takai K, Hotta Y, Oshima K, Nozaki H (1978) Effective methods of carbonyl methylenation using CH2I2-Zn-Me3Al and CH2Br2Zn-TiCl4 system. Tetrahedron Lett 19:2417

    Google Scholar 

  621. Lombardo L (1982) Methylenation of carbonyl compounds with Zn-CH2Br2-TiCl4. Application to gibberellins. Tetrahedron Lett 23:4293

    CAS  Google Scholar 

  622. Kulkarni KS, Rao AS (1965) Terpenoids LXVII. Synthesis of a ketodicarboxylic acid related to elemol and epidihydroeudesmol. Tetrahedron 21:1167

    CAS  Google Scholar 

  623. Ando M, Asao T, Hiratsuka N, Takase K, Nozoe T (1980) The total syntheses of chamaecynone, isochamaecynone, and dihydroisochamaecynone. Bull Chem Soc Jpn 53:1425

    CAS  Google Scholar 

  624. Harapanhalli RS (1988) Approach to the synthesis of side-chain eudesmanediols. Synthesis of kudtriol from 1-(α)-santonin. J Chem Soc Perkin Trans I:3149

    Google Scholar 

  625. Harapanhalli RS (1988) Synthesis of some new eudesmanoate intermediates of the cis-series from (–)-(α)-santonin. Indian J Chem 27B:884

    CAS  Google Scholar 

  626. Lombardi P, Cookson RC (1975) Synthesis of (±)-caparrapi oxide and (±)-8-epicaparrapi oxide. Gazz Chim Ital 105:621

    Google Scholar 

  627. Lombardi P, Cookson RC, Weber HP, Renold W, Hauser A, Schulte-Elte KH, Willhalm B, Thommen W, Ohloff G (1976) Synthesen der diastereomeren Caparrapioxide. Helv Chim Acta 59:1158

    CAS  Google Scholar 

  628. Dunitz JD, Seiler P (1973) Least-squares refinement and weighted difference synthesis. Acta Crystallogr 29B:589

    Google Scholar 

  629. Karle J, Karle IL (1966) The symbolic addition procedure for phase determination for centrosymmetric and non-centrosymmetric crystals. Acta Crystallogr 21:849

    CAS  Google Scholar 

  630. Barrero AF, Alvarez-Manzaneda EJ, Chahboun R, Paiz MC (1998) A new enantiospecific route toward monocarbocyclic terpenoids: synthesis of (–)-caparrapi oxide. Tetrahedron Lett 39:9543

    CAS  Google Scholar 

  631. Barrero AF, Alvarez-Manzaneda EJ, Altarejos SS, Ramos JM, Simmonds MSJ, Blaney WM (1995) Synthesis of biologically active drimanes and homodrimanes from (–)-sclareol. Tetrahedron 51:7435

    CAS  Google Scholar 

  632. Alvarez-Manzaneda EJ, Chaboun R, Alvarez E, Cabrera E, Alvarez-Manzaneda R, Haidour A, Ramos JM (2006) Cerium(IV) ammonium nitrate (CAN): a very efficient reagent for the synthesis of tertiary ethers. Synlett 12:1829

    Google Scholar 

  633. Gutsche CD, Maycock JR, Chang CT (1968) Acid-catalyzed cyclization of farnesol and nerolidol. Tetrahedron 24:859

    Google Scholar 

  634. Andersen NH, Syrdal DD (1972) Chemical simulation of the biogenesis of cedrene. Tetrahedron Lett:2455

    Google Scholar 

  635. Ohta Y, Hirose J (1972) Electrophile induced cyclization of farnesol. Chem Lett:263

    Google Scholar 

  636. Hoye TR, Kurth MJ (1979) Mercuric trifluoroacetate mediated brominative cyclizations of dienes. Total synthesis of dl-3β-bromo-8-epicaparrapi oxide. J Org Chem 44:3461

    CAS  Google Scholar 

  637. Hoye TR, Kurth MJ (1978) Brominative cyclization of geranyl derivatives. J Org Chem 43:3693

    CAS  Google Scholar 

  638. Kato T, Ishii K, Ichinose I, Nakai Y, Kumagai T (1980) Brominative cyclisation of nerolidol and geranyl-linalool. J Chem Soc Chem Commun:1106

    Google Scholar 

  639. Kametani T, Fukumoto K, Kurobe H, Nemoto H (1981) Stereoselective olefinic cyclization assisted by the selenyl group — biogenetic-type synthesis of caparrapi oxide. Tetrahedron Lett 22:3653

    CAS  Google Scholar 

  640. Polovinka MP, Korchagina DV, Gatilov YV, Bagrianskaya IY, Barkhash VA, Shcherbukhin VV, Zefirov NS, Perutskii VB, Ungur ND, Vlad PF (1994) Cyclization and rearrangements of farnesol and nerolidol stereoisomers in superacids. J Org Chem 59:1509

    CAS  Google Scholar 

  641. Uyanik M, Ishihara K, Yamamoto H (2005) Biomimetic synthesis of acid-sensitive (–)- and (+)-caparrapi oxides, (–)- and (+)-8-epicaparrapi oxides, and (+)-β-dysifragin induced by artificial cyclases. Bioorg Med Chem 13:5055

    CAS  PubMed  Google Scholar 

  642. Marsault E, Toro A, Nowak P, Deslongchamps P (2001) The transannular DA strategy: application to total synthesis. Tetrahedron 57:4243

    CAS  Google Scholar 

  643. Uyanik M, Ishibashi H, Ishihara K, Yamamoto H (2005) Biomimetic synthesis of acid-sensitive (–)-caparrapi oxide and (+)-8-epicaparrapi oxide induced by artificial cyclases. Org Lett 7:1601

    CAS  PubMed  Google Scholar 

  644. Grieco PA, Gilman S, Nishizawa M (1976) Organoselenium chemistry. A facile one-step synthesis of alkylaryl selenides from alcohols. J Org Chem 41:1485

    CAS  Google Scholar 

  645. Seitz M, Syrén PO, Steiner L, Klebensberger J, Nestl BM, Hauer B (2013) Synthesis of heterocyclic terpenoids by promiscuous squalene-hopene cyclases. ChemBioChem 14:436

    CAS  PubMed  Google Scholar 

  646. Kodama M, Takahashi T, Kojima T, Ito S (1982) Synthesis of macrocyclic terpenoids by intramolecular cyclization VII. Total synthesis of (±)-cubitene. Tetrahedron Lett 23:3397

    CAS  Google Scholar 

  647. Kodama M, Takahashi T, Kojima T, Ito S (1988) Synthesis of macrocyclic terpenoids by intramolecular cyclization XIII. Stereoselective synthesis of (±)-cubitene, a component of defense secretion of termites. Tetrahedron 44:7055

    CAS  Google Scholar 

  648. Kodama M, Maeda H, Hioki H (1996) Enantioselective synthesis and absolute configuration of (+)-cubitene. Chem Lett:809

    Google Scholar 

  649. Schöttner E, Wiechoczek M, Jones PG, Lindel T (2010) Enantiospecific synthesis of the cubitane skeleton. Org Lett 12:784

    PubMed  Google Scholar 

  650. Simon K, Wefer J, Schöttner E, Lindel T (2012) Enantioselective total synthesis of the diterpene (+)-cubitene. Angew Chem Int Ed 51:10889

    CAS  Google Scholar 

  651. Prestwich GD, Wiemer DF, Meinwald J, Clardy J (1978) Cubitene: an irregular twelve-membered-ring diterpene from a termite soldier. J Am Chem Soc 100:2560

    CAS  Google Scholar 

  652. Wefer J, Simon K, Lindel T (2013) Cubitane: a rare diterpenoid skeleton. Phytochem Rev 12:95

    CAS  Google Scholar 

  653. Tempesta MS, Pawlak JK, Iwashita T, Naya Y, Nakanishi K, Prestwich GD (1984) Cubugene, a diterpenoid with a novel carbon skeleton from a termite soldier (Isoptera Termitidae Termitinae). J Org Chem 49:2077

    CAS  Google Scholar 

  654. Liu ZS, Li WDZ, Li YL (2001) Enantioselective total synthesis of (+)-3,4-epoxycembrene A. Tetrahedron Asymmetry 12:95

    CAS  Google Scholar 

  655. Mori K, Waku M (1984) Absolute configuration of (±)-biflora-4,10(19),15-triene, a diterpene from a termite soldier, as determined by the synthesis of its (1R,6S,7S,11R)-(+)-isomer. Tetrahedron 40:305

    CAS  Google Scholar 

  656. Wiemer DF, Meinwald J, Prestwich GD, Solheim BA, Clardy J (1980) Biflora-4,10(19),15-triene: a new diterpene from a termite soldier (Isoptera Termitidae Termitinae). J Org Chem 45:191

    CAS  Google Scholar 

  657. Shin JH, Fenical W (1991) New diterpenoids from the Caribbean gorgonian Eunicea calyculata. Photochemical interconversion of the cembrene and cubitene skeletons. J Org Chem 56:1227

    CAS  Google Scholar 

  658. Look SA, Fenical W, Zheng QT, Clardy J (1982) Calyculones, new cubitane diterpenoids from the Caribbean gorgonian octocoral Eunicia calyculata. J Org Chem 49:1471

    Google Scholar 

  659. Vig OP, Bari SS, Trehan IR, Vig R (1980) Synthesis of (±)-cubitene, a twelve-membered monocyclic diterpene isolated from the termite Cubitermes umbratus Williams. Indian J Chem 19B:446

    CAS  Google Scholar 

  660. Werthemann L, Johnson WS (1970) Application of the chloro ketal Claisen reaction to the total synthesis of squalene. Proc Natl Acad Sci USA 67:1465

    CAS  PubMed  Google Scholar 

  661. Takano S, Kurotani A, Takahashi M, Ogasawara K (1987) Chiral route to cis-caronaldehyde from d-mannitol. J Chem Soc Perkin Trans 1:91

    Google Scholar 

  662. Dale JA, Mosher HS (1973) Nuclear magnetic resonance enantiomer reagents. Configurational correlations via nuclear magnetic resonance chemical shifts of diastereomeric mandelate, O-methylmandelate, and α-methoxy-α-trifluoromethylphenylacetate (MTPA) esters. J Am Chem Soc 95:512

    CAS  Google Scholar 

  663. Manna S, Falck JR, Mioskowski C (1985) A convenient preparation of alkylhalides and cyanides from alcohols by modification of the Mitsunobu procedure. Synth Commun 15:663

    CAS  Google Scholar 

  664. Schöttner E, Jones PG, Lindel T (2009) Enantiospecific synthesis of a novel rearranged eunicellane diterpenoid by SmI2-mediated cyclization. Synthesis:3941

    Google Scholar 

  665. Araki S, Hatano M, Ito H, Butsugan Y (1987) Samarium (II)-mediated reaction of allylic phosphate esters with carbonyl compounds: a new method for “Umpolung” of allylic phosphonates. J Organomet Chem 333:329

    CAS  Google Scholar 

  666. Kagan HB (2003) Twenty-five years of organic chemistry with diiodosamarium: an overview. Tetrahedron 59:10351

    CAS  Google Scholar 

  667. Aoki M, Tooyama Y, Uyehara T, Kato T (1983) A synthesis of (±)- asperdiol. A marine anticancer cembrenoid. Tetrahedron Lett 24:2267

    CAS  Google Scholar 

  668. Kato T, Aoki M, Uyehara T (1987) Cyclization of polyenes. 46. Synthesis of (±)-asperdiol, an anticancer cembrenoid. J Org Chem 52:1803

    CAS  Google Scholar 

  669. Sharpless KB, Michaelson RC (1973) High stereo- and regioselectivities in the transition metal catalyzed epoxidations of olefinic alcohols by tert-butyl hydroperoxide. J Am Chem Soc 95:6136

    CAS  Google Scholar 

  670. Chong AO, Sharpless KB (1977) Mechanism of the molybdenum and vanadium catalyzed epoxidation of olefins by alkyl hydroperoxides. J Org Chem 42:1587

    CAS  Google Scholar 

  671. Morgans DJ, Sharpless KB, Traynor SG (1981) Epoxy alcohol rearrangements: hydroxyl-mediated delivery of Lewis acid promoters. J Am Chem Soc 103:462

    CAS  Google Scholar 

  672. Wender PA, Holt DA (1985) Macroexpansion methodology. 3. Eight step synthesis of (–)-(3Z)-cembrene A. J Am Chem Soc 107:7771

    CAS  Google Scholar 

  673. Holt DA (1981) A facile preparation of differentiated 1,2-divinylcycloalkanols. Tetrahedron Lett 22:2243

    CAS  Google Scholar 

  674. Negishi E-I, van Horn DE, King AO, Okukado N (1979) A selective synthesis of (E)-2-methyl-1-alkenyl iodides via zirconium-catalyzed carbalumination. Synthesis:501

    Google Scholar 

  675. Duh CY, Wang SK, Weng YL, Chiang MY, Dai CF (1999) Cytotoxic terpenoids from the Formosan soft coral Nephthea brassica. J Nat Prod 62:1518

    CAS  PubMed  Google Scholar 

  676. Bowden BF, Coll JC, Mitchell SJ, Kazlauskas R (1981) Studies in Australian soft corals. XXIV. Two cembranoid diterpenes from the soft coral Sinularia facile. Aust J Chem 34:1551

    CAS  Google Scholar 

  677. Pattenden G, Roberts L, Blake AJ (1998) Cascade radical cyclisations leading to polycyclic diterpenes. Total synthesis of (±)-sponganin-16-one. J Chem Soc Perkin Trans I:863

    Google Scholar 

  678. Balme G, Fournet G, Gore J (1986) Reaction de trimethyl chlorosilane avec les alcools α-cyclopropaniques en presence on en l’absence d’halogenures de lithium. Tetrahedron Lett 27:1907

    CAS  Google Scholar 

  679. Groweiss A, Kashman Y (1983) Eight new Xenia diterpenoids from three soft corals of the Red Sea. Tetrahedron 39:3385

    CAS  Google Scholar 

  680. Kashman Y, Groweiss A (1980) New diterpenoids from the soft corals Xenia macrospiculata and Xenia obscuronata. J Org Chem 45:3814

    Google Scholar 

  681. Vig OP, Sharma ML, Kiran S, Singh J (1983) Synthesis of (±)-biflora-4,10(19),15-triene. Ind J Chem 22B:746

    CAS  Google Scholar 

  682. Vig OP, Vig R, Kaur UJ, Jindal RT (1983) A new synthesis of (±)-biflora-4,10(19),15-triene. J Ind Chem Soc 60:757

    CAS  Google Scholar 

  683. Parker KA, Farmar JG (1986) A stereocontrolled synthesis of dl-biflora-4,10(19),15-triene. J Org Chem 51:4023

    CAS  Google Scholar 

  684. Parker KA, Iqbal T (1982) New approaches to the synthesis of vitamin D metabolites. 1. Stereocontrol in the intramolecular Diels-Alder reaction. J Org Chem 47:337

    CAS  Google Scholar 

  685. Parker KA, Farmar JG (1985) Regioselectivity in the Claisen rearrangement of bis-allylic alcohols: electronic and steric effects of C-4 substituents. Tetrahedron Lett 26:3655

    CAS  Google Scholar 

  686. Grieco PA, Nargund RP (1986) Synthetic studies on diterpenes from a termite soldier: total synthesis of (±)-biflora-4,10(19),15-triene. Tetrahedron Lett 27:4813

    CAS  Google Scholar 

  687. Kodama M, Okumura K, Kobayashi Y, Tsunoda T, Ito S (1984) Synthesis of macrocyclic terpenoids by intramolecular cyclization IX. Total synthesis of (±)-obscuronatin and (±)-biflora-4,10(19),15-triene. Tetrahedron Lett 25:5781

    CAS  Google Scholar 

  688. Paknikar SK, Greene AE (1988) Synthesis of (–)-biflora-4,10(19),15-triene, a novel diterpene from the defensive secretion of Cubitermes (termite) soldiers. J Nat Prod 51:326

    Google Scholar 

  689. Kalsi PS, Chakravarti KK, Bhattacharyya SC (1963) Terpenoids-XL: the structure and absolute configuration of khusol. Tetrahedron 19:1073

    CAS  Google Scholar 

  690. Stork G, Brizzolara A, Landesman H, Szmuszkovicz J, Terrell R (1963) The enamine alkylation and acylation of carbonyl compounds. J Am Chem Soc 85:207

    CAS  Google Scholar 

  691. Sharma SD, Singh S, Bari SS (1976) Synthesis of (+)-bisabolol. Indian J Chem 14B:379

    Google Scholar 

  692. Mori K, Kuwahara S (1982) Synthesis of optically active forms of (E)-6-isopropyl-3,9-dimethyl-5,8-decadienyl acetate, the pheromone of the yellow scale. Tetrahedron 38:521

    CAS  Google Scholar 

  693. Warren CK, Weedon BCL (1958) Carotenoids and related compounds. Part VI. Some conjugated polyene diketones, and their comparison with capsorubin. J Chem Soc:3972

    Google Scholar 

  694. Mori K, Matsui M (1969) Synthesis of mono-and sesquiterpenoids-I. Racemic norcaran-2-one, trans-caran-2-one, and trans-dihydrosesquicaran-2-one. Tetrahedron 25:5013

    CAS  PubMed  Google Scholar 

  695. Hodgson GL, MacSweeney DF, Money T (1973) Synthesis of (±)-campherenone, (±)-epicampherenone, (±)-β-santalene, (±)-epi-β-santalene, (±)-ylangocamphor, (±)-copacamphor, and (±)-sativene. J Chem Soc Perkin Trans I:2113

    Google Scholar 

  696. Behan JM, Johnstone RAW, Wright MJ (1975) Stereospecific conversion of epoxides into olefins. J Chem Soc Perkin Trans I:1216

    Google Scholar 

  697. Gemal AL, Luche JL (1981) Lanthanoides in organic synthesis, 6. Reduction of α-enones by sodium borohydride in the presence of lanthanoid chlorides: synthetic and mechanistic aspects. J Am Chem Soc 103:5454

    CAS  Google Scholar 

  698. Corey EJ, Achiwa K (1969) A method for deoxygenation of allylic and benzylic alcohols. J Org Chem 34:3667

    CAS  Google Scholar 

  699. Alder RW, East SP (1996) In/out isomerism. Chem Rev 96:2097 (especially p 2108)

    CAS  PubMed  Google Scholar 

  700. Roisin Y, Pasteels JM, Braekman JC (1987) Soldier diterpene patterns in relation with aggressive behaviour, spatial distribution and reproduction of colonies in Nasutitermes princeps. Biochem Syst Ecol 15:253

    CAS  Google Scholar 

  701. Kato T, Hirukawa T, Yamamoto Y (1987) A biogenetic synthesis of (±)-secotrinerviten-2β,3α-diol. J Chem Soc Chem Commun:977

    Google Scholar 

  702. Hirukawa T, Shudo T, Kato T (1993) Synthesis of secotrinervitanes, unique bicyclic diterpene from termites. J Chem Soc Perkin Trans I:217

    Google Scholar 

  703. Hirukawa T, Koarai A, Kato T (1991) Cyclization of epoxyneocembrene derivatives to secotrinervitanes. J Org Chem 56:4520

    CAS  Google Scholar 

  704. Prestwich GD, Tempesta MS, Turner C (1984) Longipenol, a novel tetracyclic diterpene from the termite soldier Longipeditermes longipes. Tetrahedron Lett 25:1531

    CAS  Google Scholar 

  705. Valterova I, Budesinsky M, Turecek F, Vrkoc J (1984) Minor diterpene components from the frontal gland secretion of soldiers of the species Nasutitermes costalis (Holmgren). Collect Czech Chem Commun 49:2024

    CAS  Google Scholar 

  706. Kato T, Hirukawa T, Uyehara T, Yamamoto Y (1987) The first synthesis of (±)-3α-acetoxy-15β-hydroxy-7,16-secotrinervita-7,11-diene, defence substance from a termite soldier. Tetrahedron Lett 28:1439

    CAS  Google Scholar 

  707. Braekman JC, Daloze D, Dupont A, Pasteels J, Tursch B, Declerq JP, Germain G, van Meersche M (1980) Secotrinervitane, a novel bicyclic diterpene skeleton from a termite soldier. Tetrahedron Lett 21:2761

    CAS  Google Scholar 

  708. Dupont A, Braekman JC, Daloze D, Pasteels JM, Tursch B (1981) Chemical composition of the frontal gland secretion from Neo-Guinean nasute termite soldiers. Bull Soc Chim Belg 90:485

    CAS  Google Scholar 

  709. Braekman JC, Daloze D, Pasteels JM, Roisin Y (1986) Two new C-20 substituted diterpenes from a Neo-Guinean Nasutitermes sp. Bull Soc Chim Belg 95:915

    CAS  Google Scholar 

  710. Aoki M, Ueyehara T, Kato T (1984) Synthesis of cembra-3E,7E,11E,15(17)-tetraen-cis-16,2-olide. Chem Lett:695

    Google Scholar 

  711. Nagata W, Yoshioka M, Hirai S (1972) Hydrocyanation. IV. New hydrocyanation methods using hydrogen cyanide and an alkylaluminum, and alkylaluminum cyanide. J Am Chem Soc 94:4635

    CAS  Google Scholar 

  712. Maruoka K, Itoh T, Yamamoto H (1985) Methylaluminum bis(2,6-di-tert-butyl-4-alkylphenoxide). A new reagent for obtaining unusual equatorial and anti-Cram selectivity in carbonyl alkylation. J Am Chem Soc 107:4573

    CAS  Google Scholar 

  713. Valterova I, Budesinsky M, Vrkoc J, Prestwich GD (1990) (8Z)-1(15),8(9)-Trinervitadien-3α-ol from Nasutitermes nigriceps termites, the revised structure for a defense compound of Trinervitermes gratiosus termites. Collect Czech Chem Commun 55:1580

    CAS  Google Scholar 

  714. Goh SH, Chuah CH, Vadiveloo J, Tho YP (1990) Soldier defense secretions of Malaysian free-ranging termite of the genus Lacessititermes (Isoptera, Nasutitermitinae). J Chem Ecol 16:619

    CAS  PubMed  Google Scholar 

  715. Prestwich GD, Tanis SP, Pilkiewicz FG, Miura I, Nakanishi K (1976) Nasute termite soldier frontal gland secretions. 2. Structure of trinervitene congeners from Trinervitermes soldiers. J Am Chem Soc 98:6062

    CAS  Google Scholar 

  716. Vrkoc J, Budesinsky M, Sedmera P (1978) Structure of trinervitene diterpenoids from Nasutitermes rippertii (Rambur). Collect Czech Chem Commun 43:1125

    CAS  Google Scholar 

  717. Braekman JC, Daloze D, Dupont A, Pasteels JM, Josens G (1984) Diterpene composition of defense secretion of four West African Trinervitermes soldiers. J Chem Ecol 10:1363

    CAS  PubMed  Google Scholar 

  718. Hoshikawa M, Hayashi K, Yagi M, Kato T (2001) A first synthesis of (±)-2,3-dihydroxytrinervitanes. J Chem Soc Chem Commun:623

    Google Scholar 

  719. Vrkoc J, Budesinsky M, Sedmera P (1978) Structure of 2α,3α-dihydroxy-11(15),8(19)-trinervitadienes and 2α,3β-dihydroxy-11(15),8(19)-trinervitadienes from Nasutitermes costalis (Holmgren). Collect Czech Chem Commun 43:2478

    CAS  Google Scholar 

  720. Braekman JC, Daloze D, Dupont A, Pasteels JM, Ottinger R (1984) New trinervitane diterpenes from Neo-Guinean Nasutitermes sp. Bull Soc Chim Belg 93:291

    CAS  Google Scholar 

  721. Prestwich GD, Spanton SG, Goh SH, Tho YP (1981) New tricyclic diterpene propionate esters from a termite soldier defense secretion. Tetrahedron Lett 22:1563

    CAS  Google Scholar 

  722. Prestwich GD, Tanis SP, Springer JP, Clardy J (1976) Nasute termite soldier frontal gland secretions. 1. Structure of trinervi-2β,3α,9α-triol 9-O-acetate, a novel diterpene from Trinervitermes soldiers. J Am Chem Soc 98:6061

    CAS  PubMed  Google Scholar 

  723. Vrkoc J, Budesinsky M, Krecek J, Hrdy I (1977) Diterpenes from secretion of Nasutitermes soldiers. Proceedings of the 8th International Congress of the International Union for the Study of Social Insects, Wageningen, The Netherlands, p 320

    Google Scholar 

  724. Zhao CJ, Rickards RW, Trowell SC (2004) Antibiotics from Australian terrestrial invertebrates. Part 1: Antibacterial trinervitadienes from the termite Nasutitermes triodiae. Tetrahedron 60:10753

    CAS  Google Scholar 

  725. Chuah CH, Goh SH (1990) 17-O-Acetoxy-(8,19)-β-epoxy-2β,3α,7α,9α,14α,17-hexahydroxy trinervitene-2,3,9,14-O-tetrapropionate, a new diterpene from the Malaysian termite Hospitalitermes umbrinus. Malaysian J Sci 12:63

    Google Scholar 

  726. Chuah CH, Goh SH, Beloeil LC, Morellet N (1987) (8,19)-β-Epoxy-2β,3α,7α,9α,14α,17-hexahydroxytrinervitene-2,3,9,14,17-O-pentapropionate, a highly oxygenated diterpene from the defense secretion of the termite Hospitalitermes umbrinus. Malaysian J Sci 9:83

    CAS  Google Scholar 

  727. Goh SH, Chuah CH, Beloeil LC, Morellet N (1988) High molecular weight diterpenes and new C-17 methylated trinervitene skeleton from the Malaysian termite Hospitalitermes umbrinus. Tetrahedron Lett 29:113

    CAS  Google Scholar 

  728. Braekman JC, Daloze D, Dupont A, Arietta JM, Piccinni-Leopardi C, Germain C, van Meerssche M (1983) 3α-Hydroxy-8β-trinervita-1,11-diene: a novel diterpene from two Trinervitermes species. Bull Soc Chim Belg 92:111

    CAS  Google Scholar 

  729. de la Cruz MNS, Junior HMS, Oliveira DF, Rezende CM (2018) Antimicrobial diterpene from the Brazilian termite Nasutitermes macrocephalus (Isoptera: Termitidae, Nasutitermitinae). J Braz Chem Soc 20:509

    Google Scholar 

  730. Dillon J, Nakanishi K (1976) Absolute configurational studies of vicinal glycols and amino alcohols. II. With tris(dipivalomethanato)praseodymium. J Am Chem Soc 97:5417

    Google Scholar 

  731. Hirukawa T, Suzuki T, Tanaka M, Kato T (1994) First synthesis of the trinervitane system from secotrinervitane by transannular ring construction. J Chem Soc Chem Commun:311

    Google Scholar 

  732. Kato T, Hirukawa T, Suzuki T, Tanaka M, Hoshikawa M, Yagi M, Tanaka M, Takagi S-S, Saito N (2001) Construction of trinervitane and kempane skeletons based on biogenetical routes. Helv Chim Acta 84:47

    CAS  Google Scholar 

  733. Kato T, Hoshikawa M (2004) Synthesis of (±)-trinervitadiene-2,3-diol. Helv Chim Acta 87:925

    CAS  Google Scholar 

  734. Kato T, Tanaka M, Hoshikawa M, Yagi M (1998) An efficient construction of trinervitane and kempane skeletons from the common intermediate. Tetrahedron Lett 39:7553

    CAS  Google Scholar 

  735. Kato T, Ebihara S-I, Furukawa T, Tanahashi H, Hoshikawa M (1999) Synthesis of (1S,2R,12S)-2-hydroxy-11-dihydroneocembrene. Tetrahedron Asymmetry 10:3691

    CAS  Google Scholar 

  736. Bäckvall J-E, Sellen M, Grant B (1990) Regiocontrol in copper-catalyzed Grignard reactions with allylic substrates. J Am Chem Soc 112:6615

    Google Scholar 

  737. Dauben WG, Farkas I, Bridon DP, Chuang CP, Henegar KE (1991) Total synthesis of (±)-kempene-2. J Am Chem Soc 113:5883

    CAS  Google Scholar 

  738. Dauben WG, Lorenz KL, Dean DW, Shapiro G, Farkas I (1998) Synthesis of the trinervitane ring system. Tetrahedron Lett 39:7079

    CAS  Google Scholar 

  739. Scott WJ, Crisp GT, Stille JK (1984) Palladium-catalyzed coupling of vinyl triflates with organostannanes. A short synthesis of plerapsyllin-1. J Am Chem Soc 106:4630

    CAS  Google Scholar 

  740. Takai K, Hotta Y, Oshima K, Nozaki H (1980) Wittig-type reaction of dimetallated carbodianion species as produced by zinc reduction of gem-polyhalogen compounds in the presence of Lewis acids. Bull Chem Soc Jpn 53:1698

    CAS  Google Scholar 

  741. Yadav JS, Biswas SK, Sengupta S (2010) Progress towards the total synthesis of 2,3-dihydroxytrinervitanes. Tetrahedron Lett 51:4014

    CAS  Google Scholar 

  742. Marshall JA, Mikowski AM (2006) Synthesis of a bistetrahydrofuran C17-C32 fragment of the polyether antibiotic ionomycin. Org Lett 8:4375

    CAS  PubMed  Google Scholar 

  743. Yadav JS, Deshpande PK, Sharma GVM (1990) An effective, practical method for the synthesis of chiral propargyl alcohols. Tetrahedron 46:7033

    CAS  Google Scholar 

  744. Baudin JB, Hareau G, Julia SA, Ruel O (1993) Stereochimie de la formation des olefines a partir de Ăź-hydroxy-sulfones heterocyclique anti et syn. Bull Soc Chim Fr 130:336

    CAS  Google Scholar 

  745. Baudin JB, Hareau G, Julia SA, Lorne R, Ruel O (1993) Stereochemistry of direct formation from carbonyl compounds and lithiated heterocyclic sulfones. Bull Soc Chim Fr 130:856

    CAS  Google Scholar 

  746. Blakemore PR, Cole WJ, Kocienski PJ, Morley A (1998) A stereoselective synthesis of trans-1,2-disubstituted alkenes based on the condensation of aldehydes with metallated 1-phenyl-1H-tetrazol-5-yl sulfones. Synlett:26

    Google Scholar 

  747. Pospisil J, Marko IE (2006) Efficient and stereoselective synthesis of allylic ethers and alcohols. Org Lett 8:5983

    CAS  PubMed  Google Scholar 

  748. Bhagwat SS, Gude C, Cohen DS, Dotson R, Mathis J, Lee W, Furness P (1993) Thromboxane receptor antagonism combined with thromboxane synthase inhibition. 5. Synthesis and evaluation of enantiomers of 8-[[(4-chlorophenyl)sulfonyl]amino]-4-(3-pyridinylalkyl)octanoic acid. J Med Chem 36:205

    CAS  PubMed  Google Scholar 

  749. Sasaki S, Hamada Y, Shioiri T (1997) Synthetic studies of microsclerodermins. A stereoselective synthesis of a core building block for (2S,3R,4S,5S,6S,11E)-3-amino-6-methyl-12-(4-methoxyphenyl)-2,4,5-trihydroxydodec-11-enoic acid (AMMTD). Tetrahedron Lett 38:3016

    Google Scholar 

  750. Chakraborty TK, Dutta S (1998) Radical-induced opening of trisubstituted epoxides: application in the synthesis of C1-C12 segment of epothilones. Tetrahedron Lett 39:101

    CAS  Google Scholar 

  751. Satoh T, Nanba K, Suzuki S (1971) Reduction of organic compounds with NaBH4-transition metal salt systems. IV. Selective hydrogenation of olefines in unsaturated esters. Chem Pharm Bull 19:817

    CAS  Google Scholar 

  752. Prestwich GD, Solheim BA, Clardy J, Pilkiewicz FG, Miura I, Tanis SP, Nakanishi K (1977) Kempene-1 and -2, unusual tetracyclic diterpenes from Nasutitermes termite soldiers. J Am Chem Soc 99:8082

    CAS  Google Scholar 

  753. Metz P, Schubert M (2011) Enantioselective total synthesis of the diterpenes kempene-2, kempene-1, and 3-epi-kempene-1 from the defense secretion of higher termites. Angew Chem Int 50:2954

    Google Scholar 

  754. Prestwich GD, Lauher JW, Collins MS (1979) Two new tetracyclic diterpenes from the defense secretion of the neotropical termite Nasutitermes octopilis. Tetrahedron Lett:3827

    Google Scholar 

  755. Prestwich GD, Jones RW, Collins MS (1981) Terpene biosynthesis by Nasute termite soldiers (Isoptera: Nasutitermitinae). Insect Biochem 11:331

    CAS  Google Scholar 

  756. Cerrini S, Lamba D, Valterova I, Budesinsky M, Vrkoc J, Turecek F (1987) Methyl 3α,6α-diacetoxy-10-oxo-(7α)-kemp-11-en-20-oate: the revised structure for the kempane derivate from the frontal gland secretion of Nasutitermes costalis soldiers. Collect Czech Chem Commun 52:707

    CAS  Google Scholar 

  757. Webster FX, Prestwich GD, Park SK, Deuring LA, Daljeet A, Bentley BL (1988) Isolation and tentative identification of rojofuran, an unstable furanoditerpene from the defense secretion of a Venezuelan Nasutitermes species. In: Sehnal F, Zabza A, Denlinger DL (eds) Endocrinological frontiers in physiological insect ecology. Wroclaw Technical University Press, Wroclaw, p 449

    Google Scholar 

  758. Snyder SA, Wespe DA, Hof von JM (2011) A concise, stereocontrolled total synthesis of rippertenol. J Am Chem Soc 133:8850

    CAS  PubMed  Google Scholar 

  759. Prestwich GD, Spanton SG, Lauher JW, Vrkoc J (1980) Structure of 3α-hydroxy-15-rippertene. Evidence for 1,2-methylmigration during biogenesis of a tetracyclic diterpene in termites. J Am Chem Soc 102:6825

    CAS  Google Scholar 

  760. Taber DF (1993) On the attempted synthesis of 3β-hydroxy-7β-kemp-8(9)-en-6-one. Tetrahedron Lett 34:1883

    CAS  Google Scholar 

  761. Paquette LA, Sauer DR, Cleary DG, Kinsella MA, Blackwell CM, Anderson LG (1992) Application of palladium catalyzed [3+2] cycloaddition technology to the elaboration of kempane diterpenes. Stereocontrolled synthesis of (±)-3α-hydroxy-7β-kemp-8(9)-en-6-one and (±)-3β-hydroxykemp-7(8)-en-6-one. J Am Chem Soc 114:7375

    CAS  Google Scholar 

  762. Liu CJ, Burnell DJ (1997) Synthetic studies toward the kempane diterpenes: preparation of the ring system. J Am Chem Soc 119:9584

    CAS  Google Scholar 

  763. Liu CJ, Bao GL, Burnell DJ (2001) Synthetic studies toward the kempane diterpenes. Diels-Alder additions to bicyclic dienes. J Chem Soc Perkin Trans 1:2644

    Google Scholar 

  764. Bao GL, Liu CJ, Burnell DJ (2001) Synthetic studies toward the kempane diterpenes. Approaches to the assembly of the ring system. J Chem Soc Perkin Trans 1:2657

    Google Scholar 

  765. Bao GL, Zhao L, Burnell DJ (2005) Synthetic studies toward the kempane diterpenes. Construction of a key tricyclic intermediate. Org Biomol Chem 3:3576

    CAS  PubMed  Google Scholar 

  766. Zhao L, Burnell DJ (2006) Synthesis of the tetracyclic core of the kempanes by a ring-closing metathesis strategy. Org Lett 8:155

    CAS  PubMed  Google Scholar 

  767. Kato T, Tanaka M, Takagi S-S, Nakanishi K, Hoshikawa M (2004) Synthesis of (±)-kempa-6,8-dien-3-ol (= (2aRS,3SR,4aSR,7RS,7aSR,10bSR,10cSR)-2,2a,3,4,4a,5,6,7,7a,8,10b,10c-dodecahydro-2a,7,10,10c-tetramethylnaphth[2,18-cde]azulen-3-ol). Helv Chim Acta 87:197

    CAS  Google Scholar 

  768. Hong BC, Chen FL, Chen SH, Liao JH, Lee GH (2005) Intramolecular Diels-Alder cycloadditions of fulvenes. Application to kigelinol, neoamphilectane, and kempane skeletons. Org Lett 7:557

    CAS  PubMed  Google Scholar 

  769. Caussanel F, Wang K, Ramachandran SA, Deslongchamps P (2006) Synthetic approach toward the total synthesis of kempane diterpenes via transannular Diels-Alder strategy. J Org Chem 71:7370

    CAS  PubMed  Google Scholar 

  770. Wang Y, Jäger A, Gruner M, Lübken T, Metz P (2017) Enantioselective total synthesis of 3β-hydroxy-7β-kemp-8(9)-en-6-one, a diterpene isolated from higher termites. Angew Chem Int 56:15861

    CAS  Google Scholar 

  771. Liotta D, Saindane M, Sunay U, Jamison WCL, Grossman J, Phillips P (1985) Acetylide addition to enediones. Regioselectivity based on stereoelectronic control. J Org Chem 50:3241

    CAS  Google Scholar 

  772. Burnell DJ, Liu CJ (1997) Regio-and stereoselectivity in the reductions of cyclic enedione systems. J Org Chem 62:3683

    Google Scholar 

  773. McMurry JE (1989) Carbonyl-coupling reactions using low-valent titanium. Chem Rev 89:1513

    CAS  Google Scholar 

  774. Li JW, Lee D (2011) Enyne-metathesis-based tandem processes. Eur J Org Chem:4269

    Google Scholar 

  775. Boyer FD, Hanna I (2007) Substituent effects in tandem ring-closing metathesis reactions of dienynes. Eur J Org Chem:417

    Google Scholar 

  776. Hu QY, Zhou G, Corey EJ (2004) Application of chiral cationic catalyst to several classical syntheses of racemic natural products transforms them into highly enantioselective pathways. J Am Chem Soc 126:13708

    CAS  PubMed  Google Scholar 

  777. Liu D, Canales E, Corey EJ (2007) Chiral oxazaborolidine-aluminum bromide complexes are unusually powerful and effective catalysts for enantioselective Diels-Alder reactions. J Am Chem Soc 129:1498

    CAS  PubMed  Google Scholar 

  778. Mukherjee S, Corey EJ (2010) Enantioselective synthesis based on catalysis by chiral oxazaborolidinium cations. Aldrichim Acta 43:4

    Google Scholar 

  779. Fleming I, Paterson I (1979) A simple synthesis of carvone using silyl enol ethers. Synthesis:736

    Google Scholar 

  780. Suffert J, Toussaint D (1995) An easy and useful preparation of propynyllithium from (Z/E)-1-bromopropene. J Org Chem 60:3550

    CAS  Google Scholar 

  781. Kim S, Park JH (1995) Trialkyl triflate promoted conjugate addition of organoaluminates to α,β-unsaturated ketones. Synlett:163

    Google Scholar 

  782. Bradshaw B, Etxebarria-Jardi G, Bonjoch J, Viozquez SF, Guillena G, Najera C (2009) Efficient solvent-free Robinson annulation protocols for the highly enantioselective synthesis of the Wieland-Miescher ketone and analogues. Adv Synth Catal 351:2482

    CAS  Google Scholar 

  783. Rathke MW, Lindert A (1978) The alkylation of ketone enolates in the presence of triethanolamineborate. Control of polyalkylation. Synth Commun 8:9

    CAS  Google Scholar 

  784. Negishi E-I, Idacavage I (1979) A highly selective method for α-alkylation of ketones via potassium enoxytrialkylborates. Tetrahedron Lett:845

    Google Scholar 

  785. Abad A, Agullo C, Cuñat AC, Llosa MC (1999) Stereoselective construction of the tetracyclic sclarane skeleton from carvone. J Chem Soc Chem Commun:427

    Google Scholar 

  786. Earnshaw C, Wallis CJ, Warren S (1979) Synthesis of E and Z-vinyl ethers by the Horner-Wittig reaction. J Chem Soc Perkin Trans I:3099

    Google Scholar 

  787. Ziegler FE, Wallace OB (1995) The total synthesis of (±)-scopadulcic acids A and B and (±)-scopadulciol. J Org Chem 60:3626

    CAS  Google Scholar 

  788. Mukaiyama T, Matsuo J, Kitagawa H (2000) A new and one-pot synthesis of α,β-unsaturated ketones by dehydrogenation of various ketones with N-tert-butyl phenylsulfinimidoyl chloride. Chem Lett 29:1250

    Google Scholar 

  789. Girijavallabhan V, Alvarez C, Njoroge FG (2011) Regioselective cobalt-catalyzed addition of sulfides to unactivated alkenes. J Org Chem 70:6442

    Google Scholar 

  790. Waser J, Gaspar B, Nambu H, Carreira EM (2006) Hydrazines and azides via the metal-catalyzed hydrazination and hydroazidation of olefins. J Am Chem Soc 128:11693

    CAS  PubMed  Google Scholar 

  791. Trost BM (1986) [3+2] Cycloaddition approaches to five-membered rings via trimethylenemethane and its equivalents [New Synthetic Methods (55)]. Angew Chem Int 25:1

    Google Scholar 

  792. Stork G, Ganem B (1973) α-Silylated vinylketones. A new class of reagents for the annelation of ketones. J Am Chem Soc 95:6152

    CAS  Google Scholar 

  793. Stork G, Singh J (1974) Regiospecific Michael reactions in aprotic solvents with α-silylated electrophilic olefins. Application to annelation reactions. J Am Chem Soc 96:6181

    CAS  Google Scholar 

  794. Knapp S, O’Connor V, Mobilis D (1980) A [3+2] annulation procedure for methylenopropane. Tetrahedron Lett 21:4557

    CAS  Google Scholar 

  795. Prestwich GD, Lauher JW, Collins MS (1979) Two new tetracyclic diterpenes from the defense secretion of the neotropical termite Nasutitermes octopilis. Tetrahedron Lett:3830

    Google Scholar 

  796. Trost BM, Masuyama Y (1984) Chemoselectivity in molybdenum catalyzed alcohol and aldehyde oxidations. Tetrahedron Lett 25:173

    CAS  Google Scholar 

  797. Evans DA, Chapman KT, Carreira EM (1988) Directed reduction of β-hydroxy ketones employing tetramethylammonium triacetoxyborohydride. J Am Chem Soc 110:3560

    CAS  Google Scholar 

  798. Grob CA, Schiess PW (1967) Heterolytic fragmentation. A class of organic reactions. Angew Chem Int Ed 6:1

    CAS  Google Scholar 

  799. Chidambaran N, Chandrasekaran S (1987) tert-Butyl hydroperoxide-pyridinium dichromate: a convenient reagent system for allylic and benzylic oxidations. J Org Chem 52:5048

    Google Scholar 

  800. Corey EJ, Ravindranathan T (1971) Simple route to a key intermediate for the synthesis of 11-desoxyprostaglandins. Tetrahedron Lett:4753

    Google Scholar 

  801. Shapiro RH (1976) Alkene from tosylhydrazones. Org Reaction 23:405

    CAS  Google Scholar 

  802. Harding KE, Strickland JB, Pommerville J (1988) A new synthesis of (±)-sirenin and a physiologically active analogue. J Org Chem 53:4877

    CAS  Google Scholar 

  803. Stork G, Zhao K (1989) A simple method of dethioacetalization. Tetrahedron Lett 30:287

    CAS  Google Scholar 

  804. Schreiber J, Maag H, Hashimoto N, Eschenmoser A (1971) Dimethyl(methylene)ammonium iodide. Angew Chem Int Ed 10:330

    CAS  Google Scholar 

  805. Liu C, Burnell DJ (1997) Regioselectivity in the reduction of cyclic enediones with NaBH4/CeCl3. Tetrahedron Lett 37:6573

    Google Scholar 

  806. Scholl S, Ding S, Lee CW, Grubbs RH (1999) Simple synthesis and activity of a new generation of ruthenium-based olefin metathesis catalysts coordinated with 1,3-dimesityl-4,5-dihydroimidazol-2-ylidene ligands. Org Lett 1:953

    CAS  PubMed  Google Scholar 

  807. Nair V, Nair AG, Radhakrishnan KV, Sheela KC, Nandakumar MV, Rath MP (1997) Diels-Alder reaction of a 6-arenylfulvene participation both as a diene and dienophile. Synlett:767

    Google Scholar 

  808. Chen C-S, Fujimoto Y, Girdaukas G, Sih C (1982) Quantitative analyses of biochemical kinetic resolutions of enantiomers. J Am Chem Soc 104:7294

    CAS  Google Scholar 

  809. Corey EJ, Fuchs PL (1972) A synthetic method for formyl→ethynyl conversion (RCHO→RC≡CH or RC≡CR′). Tetrahedron Lett 13:3769

    Google Scholar 

  810. Larock R, Han X (1999) Palladium catalyzed cross coupling of 2,5-cyclohexadienyl-substituted aryl or vinylic iodides and carbon and heteroatom nucleophiles. J Org Chem 64:1875

    CAS  PubMed  Google Scholar 

  811. Takano S, Takahashi N, Ogasawara K (1980) Synthesis of (±)-antirhine from (±)-norcamphor. J Am Chem Soc 102:4282

    CAS  Google Scholar 

  812. Piers E, Oballa RM (1996) Concise total synthesis of the sesquiterpenoids (–)-homalomenol A and (–)-homalomenol B. J Org Chem 61:8439

    CAS  Google Scholar 

  813. Crivello JV, Malik R, Lai YL (1996) Ketene acetal monomers: synthesis and characterization. J Polym Sci A Polym Chem 34:3091

    CAS  Google Scholar 

  814. Metz P, Bertels S, Fröhlich R (1993) An enantioselective approach to 3α-hydroxy-15-rippertene. Construction of the tetracyclic ring system. J Am Chem Soc 115:12595

    CAS  Google Scholar 

  815. Kreuzer T, Metz P (2008) Enantioselective synthesis of the hydroazulene core of 3α-hydroxy-15-rippertene. Eur J Org Chem:572

    Google Scholar 

  816. Hennig R, Metz P (2009) Enantioselective synthesis of 4-desmethyl-3α-hydroxy-15-rippertene. Angew Chem Int Ed 48:1157

    CAS  Google Scholar 

  817. Barton DHR, Levisalles JED, Pinhey JT (1962) Photochemical transformations. Part XIV. Some analogues of isophotosantonic lactone. J Chem Soc:3472

    Google Scholar 

  818. BĂĽchi G, Kauffman JM, Loewenthal HJE (1966) Synthesis of 1-epi-cyclocolorenone and stereochemistry of cyclocolorenone. J Am Chem Soc 88:3403

    Google Scholar 

  819. Hayakawa K, Aso K, Shiro M, Kanematsu K (1989) Competitive intramolecular [4+2]-cycloaddition and tandem [2+2] cycloaddition [3,3]-sigmatropic rearrangement sequence of allenyl 3-vinyl-2-cyclohexenyl ethers. Evidence for switching of the reaction pathway by the substituent effects. J Am Chem Soc 111:5312 (and literature cited therein especially Refs. [3–10])

    CAS  Google Scholar 

  820. Langer F, Devasagayaraj A, Chavant PY, Knochel P (1994) Preparation of new polyfunctional diorganozincs using a boron-zinc exchange reaction. Synlett:410

    Google Scholar 

  821. Hashimoto N, Aoyama T, Shioiri T (1980) New methods and reagents in organic synthesis. 10. Trimethylsilyldiazomethane (TMSCHN2). A new, stable, and safe reagent for the homologation of ketones. Tetrahedron Lett 21:4619

    CAS  Google Scholar 

  822. Ito Y, Hirao T, Saegusa T (1978) Synthesis of α,β-unsaturated carbonyl compounds by palladium(II)-catalyzed dehydrosilylation of silyl enol ethers. J Org Chem 43:1011

    CAS  Google Scholar 

  823. Larock RC, Hightower TR, Kraus GA, Hahn P, Zheng D (1995) A simple effective, new palladium-catalyzed conversion of enol silanes to enones and enals. Tetrahedron Lett 36:2423

    CAS  Google Scholar 

  824. Lipshutz BH, Pollart D, Monforte J, Kotsuki H (1985) Pd(II)-catalyzed acetal/ketal hydrolysis/exchange reactions. Tetrahedron Lett 26:705

    CAS  Google Scholar 

  825. Tsuji J (1989) Selectivities in organic reactions via π-allyl-palladium complexes. Pure Appl Chem 61:1673

    CAS  Google Scholar 

  826. Derdar F, Martin J, Martin C, Bregeault JM, Mercier J (1988) Cetonisation catalytique du methyl-2-butene-3-ol-2 par des complexes du rhodium (III) ou du palladium(II). J Organomet Chem 338:C21

    CAS  Google Scholar 

  827. Hu T, Takenaka N, Panek JS (2002) Asymmetric crotylation reactions in synthesis of polypropionate-derived macrolides. Application to total synthesis of oleandolide. J Am Chem Soc 124:12806

    CAS  PubMed  Google Scholar 

  828. Mehta G, Murty AN (1990) Synthetic studies toward the novel tetracyclic longipenol: construction of the ABD tricarbocyclic framework. J Org Chem 55:3568

    CAS  Google Scholar 

  829. Mehta G, Srikrishna A, Reddy AV, Nair MS (1981) A novel, versatile synthetic approach to linearly fused tricyclopentanoids via photo-thermal olefin metathesis. Tetrahedron 37:4543

    CAS  Google Scholar 

  830. Mehta G, Murty AN (1987) A general approach to the 5,8 fused ring system. Application to the total synthesis of marine natural product (±)-precapneladiene. J Org Chem 52:2875

    CAS  Google Scholar 

  831. Carlsen PHJ, Katsuki T, Martin VS, Sharpless KB (1981) A greatly improved procedure for ruthenium tetroxide catalyzed oxidations of organic compounds. J Org Chem 46:3936

    CAS  Google Scholar 

  832. Tori K, Ueyama M, Horibe I, Tamura Y, Takeda K (1975) Carbon-13 NMR spectra of some furanosesquiterpenes, major components of Lindera strychnifolia. Tetrahedron Lett:4583

    Google Scholar 

  833. Woodward RB, Eastman RH (1950) The autoxidation of menthofuran. J Am Chem Soc 72:399

    CAS  Google Scholar 

  834. Pankewitz F, Hilker M (2008) Polyketides in insects: ecological role of these widespread chemicals and evolutionary aspects of their biogenesis. Biol Rev 83:209

    PubMed  Google Scholar 

  835. Guo L, Quilici DR, Chase J, Blomquist GJ (1991) Gut tract microorganisms supply the precursors for methyl-branched hydrocarbon biosynthesis in the termite Zootermopsis nevadensis. Insect Biochem 21:327

    CAS  Google Scholar 

  836. Reed JR, Quilici DR, Blomquist GJ, Reitz RC (1995) Proposed mechanism for the cytochrome-P450 catalyzed conversion of aldehydes to hydrocarbons in the housefly Musca domestica. Biochemistry 34:26221

    Google Scholar 

  837. Reed JR, Vanderwel D, Choi S, Pomonis JG, Reitz RC, Blomquist GJ (1994) Unusual mechanism of hydrocarbon formation in the housefly: cytochrome-P450 converts aldehyde to the sex pheromone component (Z)-9-tricosene and CO2. Proc Natl Acad Sci USA 91:10000

    CAS  PubMed  Google Scholar 

  838. Belles X, Martin D, Piulachs MD (2005) The mevalonate pathway and the synthesis of juvenile hormone in insects. Annu Rev Entomol 50:181

    CAS  PubMed  Google Scholar 

  839. Clark AJ, Bloch K (1959) The absence of sterol synthesis in insects. J Biol Chem 234:2578

    CAS  PubMed  Google Scholar 

  840. Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343:425

    CAS  PubMed  Google Scholar 

  841. Jongepier E, Kemena C, Lopez-Ezquerra A, Belles X, Bornberg-Bauer E, Korb J (2018) Remodeling of the juvenile hormone pathway through caste-biased gene expression and positive selection along a gradient of termite eusociality. J Exp Zool Mol Dev Evol:1

    Google Scholar 

  842. Miura T, Scharf ME (2011) Molecular basis underlying caste differentiation in termites. In: Bignell DE, Roisin Y, Lo N (eds) Biology of termites: a modern synthesis. Springer, Dordrecht, Chapter 9, p 211

    Google Scholar 

  843. Hojo M, Matsumoto T, Miura T (2007) Cloning and expression of a geranylgeranyl diphosphate synthase gene: insights into the synthesis of termite defence secretion. Insect Mol Biol 16:121

    CAS  PubMed  Google Scholar 

  844. Hojo M, Toga K, Watanabe D, Yamamoto T, Maekawa K (2011) High-level expression of the geranylgeranyl diphosphate synthase gene in the frontal gland of soldiers in Reticulitermes speratus (Isoptera: Rhinotermitidae). Arch Insect Biochem Physiol 77:17

    CAS  PubMed  Google Scholar 

  845. Hojo M, Maekawa K, Saitoh S, Shigenobu S, Miura T, Hayashi Y, Tokuda G, Maekawa H (2012) Exploration and characterization of genes involved in the synthesis of diterpene defence secretion in nasute termite soldiers. Insect Mol Biol 21:545

    CAS  PubMed  Google Scholar 

  846. Kirby J, Nishimoto M, Park JG, Withers ST, Nowroozi F, Behrendt D, Garcia Rutledge EJ, Fortman JL, Johnson HE, Anderson JV, Keasling JD (2010) Cloning of casbene and neocembrene synthases from Euphorbiaceae plants and expression in Saccharomyces cerevisiae. Phytochemistry 71:1466

    CAS  PubMed  Google Scholar 

  847. Meguro A, Tomita T, Nishiyama M, Kuzuyama T (2013) Identification and characterization of bacterial diterpene cyclases that synthesize the cembrane skeleton. ChemBioChem 14:316

    CAS  PubMed  PubMed Central  Google Scholar 

  848. Singh AK, Prestwich GD (1986) Synthesis of tritium-labelled cembrene-A. J Labelled Comp Radiopharmaceut 23:377

    CAS  Google Scholar 

  849. Demuth M (1991) Synthetic aspects of the oxadi-Ď€-methane rearrangement. Org Photochem 11:37

    CAS  Google Scholar 

  850. Schaffner K (1976) 1-Acyl-2-cyclopentenes and 5-acylbicyclo[2.1.0]pentanes: photochemical and thermal isomerizations. Tetrahedron 32:641

    CAS  Google Scholar 

  851. Hixson SS, Mariano PS, Zimmerman HE (1973) The di-Ď€-methane and oxa-di-Ď€-methane rearrangements. Chem Rev 73:531

    CAS  Google Scholar 

  852. Winkler R, Hertweck C (2007) Biosynthesis of nitro compounds. ChemBioChem 8:973

    CAS  PubMed  Google Scholar 

  853. Jirosova A, Jancarik A, Menezes RC, Bazalova O, Dolejsova K, Vogel H, Jedlicka P, Bucek A, Brabcova J, Majer P, Hanus R, Svatos A (2018) Metabolomic and transcriptomic data on major metabolic/biosynthesis pathways in workers and soldiers of the termite Prorhinotermes simplex (Isoptera: Rhinotermitidae) and chemical synthesis of intermediates of defensive (E)-nitropentadec-1-ene biosynthesis. Data Brief 18:1614

    PubMed  PubMed Central  Google Scholar 

  854. Merrill AH Jr (2011) Sphingolipid and glycosphingolipid metabolic pathways in the era of sphingolipidomics. Chem Rev 111:6387

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgment

The author thanks the editors, especially Prof. Falk for his help and patience and Prof. Kinghorn for trying to improve my meager English. Many thanks to Dr. F. Wuggenig for reading through the manuscript. Last but not least I have to thank the team of the Fernleihe of OEZBPH; without their help in providing copies of hard to attain publications, this work could never have been done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edda Gössinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gössinger, E. (2019). Chemistry of the Secondary Metabolites of Termites. In: Kinghorn, A.D., Falk, H., Gibbons, S., Kobayashi, J., Asakawa, Y., Liu, JK. (eds) Progress in the Chemistry of Organic Natural Products 109. Progress in the Chemistry of Organic Natural Products, vol 109. Springer, Cham. https://doi.org/10.1007/978-3-030-12858-6_1

Download citation

Publish with us

Policies and ethics