Skip to main content

Human Skin: Composition, Structure and Visualisation Methods

  • Chapter
  • First Online:
Skin Biophysics

Abstract

In this chapter we discuss the molecular composition and structure of the epidermis, dermal-epidermal junction, dermis and hypodermis. We highlight the contribution of long-lived dermal collagens, elastic fibres, proteoglycans and hyaluronic acid to skin function and also consider the role of apparently “minor” skin components. In order to characterise both healthy skin, and the progression of disease and ageing, it is necessary to use microscopical approaches but in addition to conventional ex vivo techniques, which image in two dimensions, valuable information can be gained by complimentary non-invasive and 3D imaging technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Al-Nuaiami Y, Sherratt MJ, Griffiths CEM (2014) Skin health in older age. Maturitas 7:256–264

    Google Scholar 

  2. Bulterijs S, Hull R, Bjork VE, Roy AG (2015) It is time to classify biological aging as a disease. Front Genet 6:205

    Google Scholar 

  3. D'Errico M, Lemma T, Calcagnile A, Proietti De Santis L, Dogliotti E (2007) Cell type and DNA damage specific response of human skin cells to environmental agents. Mutat Res 614:37–47

    Google Scholar 

  4. Fluhr JW, Feingold KR, Elias PM (2006) Transepidermal water loss reflects permeability barrier status: validation in human and rodent in vivo and ex vivo models. Exp Dermatol 15:483–492

    Google Scholar 

  5. Nelson WG, Sun TT (1983) The 50- and 58-kdalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol 97:244–251

    Google Scholar 

  6. Proksch E, Brandner JM, Jensen JM (2008) The skin: an indispensable barrier. Exp Dermatol 17:1063–1072

    Google Scholar 

  7. Madison KC (2003) Barrier function of the skin: “la raison d’etre” of the epidermis. J Invest Dermatol 121:231–241

    Google Scholar 

  8. Elias PM (1983) Epidermal lipids, barrier function, and desquamation. J Invest Dermatol 80:44s–49s

    Google Scholar 

  9. Harding CR (2004) The stratum corneum: structure and function in health and disease. Dermatol Ther 17:6–15

    Google Scholar 

  10. Bollag WB, Dodd ME, Shapiro BA (2004) Protein kinase D and keratinocyte proliferation. Drug News Perspect 17:117–126

    Google Scholar 

  11. Cichorek M, Wachulska M, Stasiewicz A, Tymińska A (2013) Skin melanocytes: biology and development. Adv Dermatol Allergol 30:30–41

    Google Scholar 

  12. Collin M, Milne P (2016) Langerhans cell origin and regulation. Curr Opin Hematol 23:28–35

    Google Scholar 

  13. Mainiero F, Pepe A, Yeon M, Ren Y, Giancotti FG (1996) The intracellular functions of alpha6beta4 integrin are regulated by EGF. J Cell Biol 134:241–253

    Google Scholar 

  14. Keene DR, Sakai LY, Lunstrum GP, Morris NP, Burgeson RE (1987) Type-VII collagen forms an extended network of anchoring fibrils. J Cell Biol 104(3):611–621. https://doi.org/10.1083/jcb.104.3.611

    Article  Google Scholar 

  15. Watson RE, Griffiths CE, Craven NM, Shuttleworth CA, Kielty CM (1999) Fibrillin-rich microfibrils are reduced in photoaged skin. Distribution at the dermal-epidermal junction. J Invest Dermatol 112:782–787

    Google Scholar 

  16. Briggaman RA, Wheeler CEJR (1975) The epidermal-dermal junction. J Invest Dermatol 65:71–84

    Google Scholar 

  17. Burgeson RE, Christiano AM (1997) The dermal-epidermal junction. Curr Opin Cell Biol 9:651–658

    Google Scholar 

  18. Hashmi S, Marinkovich MP (2011) Molecular organization of the basement membrane zone. Clin Dermatol 29:398–341

    Google Scholar 

  19. Xiong X, Wu T, He S (2013) Physical forces make rete ridges in oral mucosa. Med Hypotheses 81:883–886

    Google Scholar 

  20. Naylor EC, Watson RE, Sherratt MJ (2011) Molecular aspects of skin ageing. Maturitas 69:249–256

    Google Scholar 

  21. Mienaltowski MJ, Birk DE (2014) Structure, physiology, and biochemistry of collagens. Adv Exp Med Biol 802:5–29

    Google Scholar 

  22. Ramshaw JA, Shah NK, Brodsky B (1998) Gly-X-Y tripeptide frequencies in collagen: a context for host-guest triple-helical peptides. J Struct Biol 122:86–91

    Google Scholar 

  23. Brodsky B, Ramshaw JA (1997) The collagen triple-helix structure. Matrix Biol 15:545–554

    Google Scholar 

  24. Dolz R, Engel J, Kuhn K (1988) Folding of collagen IV. Eur J Biochem 178:357–366

    Google Scholar 

  25. Bonadio J et al (1990) Transgenic mouse model of the mild dominant form of osteogenesis imperfecta. Proc Natl Acad Sci USA 87:7145–7149

    Google Scholar 

  26. Bruckner-Tudeman L, Has C (2014) Disorders of the cutaneous basement membrane zone—the paradigm of epidermolysis bullosa. Matrix Biol 33:29–34

    Google Scholar 

  27. Kivirikko KI (1993) Collagens and their abnormalities in a wide spectrum of diseases. Ann Med 25:113–126

    Google Scholar 

  28. Metsaranta M, Garofalo S, Decker G, Rintala M, De Crombrugghe B, Vuorio E (1992) Chondrodysplasia in transgenic mice harboring a 15-amino acid deletion in the triple helical domain of pro alpha 1(II) collagen chain. J Cell Biol 118:203–212

    Google Scholar 

  29. Danielson KG, Baribault H, Holmes DF, Graham H, Kadler KE, Iozzo RV (1997) Targetted disruption of decorin leads to abnormal collagen fibril morphology and skin fragility. J Cell Biol 136:729–743

    Google Scholar 

  30. Chanut-Delalande H, Bonod-Bidaud C, Cogne S, Malbouyres M, Ramirez F, Fichard A, Ruggiero F (2004) Development of a functional skin matrix requires deposition of collagen V heterotrimers. Mol Cell Biol 24:6049–6057

    Google Scholar 

  31. Fleischmajer R, Macdonald ED, Perlish JS, Burgeson RE, Fisher LW (1990) Dermal collagen fibrils are hybrids of type I and type III collagen molecules. J Struct Biol 105:162–169

    Google Scholar 

  32. Lucero HA, Kagan HM (2006) Lysyl oxidase: an oxidative enzyme and effector of cell function. Cell Mol Life Sci 63:2304–2316

    Google Scholar 

  33. Pinnell SR, Martin GR (1968) The cross-linking of collagen and elastin: enzymatic conversion of lysine in peptide linkage to alpha-aminoadipic-delta-semialdehyde (allysine) by an extract from bone. Proc Natl Acad Sci USA 61:708–716

    Google Scholar 

  34. Smith-Mungo LI, Kagan HM (1998) Lysyl oxidase: properties, regulation and multiple functions in biology. Matrix Biol 16:387–398

    Google Scholar 

  35. Vogel HG (1974) Correlation between tensile strength and collagen content in rat skin. Effect of age and cortisol treatment. Connect Tissue Res 2:177–182

    Google Scholar 

  36. Weber L, Kirsch E, Muller P, Krieg T (1984) Collagen type distribution and macromolecular organization of connective tissue in different layers of human skin. J Invest Dermatol 82:156–160

    Google Scholar 

  37. Gelse K, Poschl E, Aigner T (2003) Collagens—structure, function, and biosynthesis. Adv Drug Deliv Rev 55:1531–1546

    Google Scholar 

  38. Graham HK, Hodson NW, Hoyland JA, Millward-Sadler SJ, Garrod D, Scothern A, Griffiths CE, Watson RE, Cox TR, Erler JT, Trafford AW, Sherratt MJ (2010) Tissue section AFM: in situ ultrastructural imaging of native biomolecules. Matrix Biol 29:254–260

    Google Scholar 

  39. Abreeu-Velez AM, Howard MS (2012) Collagen IV in normal skin and in pathological processes. N Am J Med Sci 4:1–8

    Google Scholar 

  40. Loffek S, Hurskainen T, Jackow J, Sigloch FC, Schilling O, Tasanen K, Bruckner-Tuderman L, Franzke CW (2014) Transmembrane collagen XVII modulates integrin dependent keratinocyte migration via PI3K/Rac1 signaling. PLoS One 9:e87263

    Google Scholar 

  41. Godwin AR, Starborg T, Sherratt MJ, Roseman AM, Baldock C (2017) Defining the hierarchical organisation of collagen VI microfibrils at nanometre to micrometre length scales. Acta Biomater 52:21–32

    Google Scholar 

  42. Sabatelli P, Gara SK, Grumati P, Urciuolo A, Gualandi F, Curci R, Squarzoni S, Zamparelli A, Martoni E, Merlini L, Paulsson M, Bonaldo P, Wagener R (2011) Expression of the collagen VI alpha 5 and alpha 6 chains in normal human skin and in skin of patients with collagen VI-related myopathies. J Invest Dermatol 131:99–107

    Google Scholar 

  43. Theocharidis G, Drymoussi Z, Kao AP, Barber AH, Lee DA, Braun KM, Connelly JT (2016) Type VI collagen regulates dermal matrix assembly and fibroblast motility. J Invest Dermatol 136:74–83

    Google Scholar 

  44. Baldwin AK, Cain SA, Lennon R, Godwin A, Merry CL, Kielty CM (2014) Epithelial-mesenchymal status influences how cells deposit fibrillin microfibrils. J Cell Sci 127(Pt 1):158–171. https://doi.org/10.1242/jcs.134270

    Article  Google Scholar 

  45. Kielty CM, Sherratt MJ, Shuttleworth CA (2002) Elastic fibres. J Cell Sci 115:2817–2828

    Google Scholar 

  46. Sherratt MJ, Baldock C, Haston JL, Holmes DF, Jones CJP, Shuttleworth CA, Wess TJ, Kielty CM (2003) Fibrillin microfibrils are stiff reinforcing fibres in compliant tissues. J Mol Biol 332(1):183–193. https://doi.org/10.1016/S0022-2836(03)00829-5

    Article  Google Scholar 

  47. Bax DV, Mahalingam Y, Cain S, Mellody K, Freeman L, Younger K, Shuttleworth CA, Humphries MJ, Couchman JR, Kielty CM (2007) Cell adhesion to fibrillin-1: identification of an Arg-Gly-Asp-dependent synergy region and a heparin-binding site that regulates focal adhesion formation. J Cell Sci 120:1383–1392

    Google Scholar 

  48. Lee P, Bax DV, Bilek MM, Weiss AS (2014) A novel cell adhesion region in tropoelastin mediates attachment to integrin alphaVbeta5. J Biol Chem 289:1467–1477

    Google Scholar 

  49. Bax DV, Bernard SE, Lomas A, Morgan A, Humphries J, Shuttleworth CA, Humphries MJ, Kielty CM (2003) Cell adhesion to fibrillin-1 molecules and microfibrils is mediated by alpha 5 beta 1 and alpha v beta 3 integrins. J Biol Chem 278:34605–34616

    Google Scholar 

  50. Sakamoto H, Broekelmann T, Cheresh DA, Ramirez F, Rosenbloom J, Mecham RP (1996) Cell-type specific recognition of RGD- and non-RGD-containing cell binding domains in fibrillin-1. J Biol Chem 271:4916–4922

    Google Scholar 

  51. Chaudhry SS, Cain SA, Morgan A, Dallas SL, Shuttleworth CA, Kielty CM (2007) Fibrillin-1 regulates the bioavailability of TGFbeta1. J Cell Biol 176:355–367

    Google Scholar 

  52. Massam-Wu T, Chiu M, Choudhury R, Chaudhry SS, Baldwin AK, Mcgovern A, Baldock C, Shuttleworth CA, Kielty CM (2010) Assembly of fibrillin microfibrils governs extracellular deposition of latent TGF beta. J Cell Sci 123:3006–3018

    Google Scholar 

  53. Cotta-Pereira G, Rodrigo G, Bittencourt-Sampaio S (1976) Oxytalan, elaunin and elastic fibers in the human skin. J Investig Dermatol 66:143–148

    Google Scholar 

  54. Tiedemann K, Sasaki T, Gustafsson E, Göhring W, Bätge B, Notbohm H, Timpl R, Wedel T, Schlötzer-Schrehardt U, Reinhardt DP (2005) Microfibrils at basement membrane zones interact with perlecan via fibrillin-1. J Biol Chem 280:11404–11412

    Google Scholar 

  55. Schaefer L, Schaefer RM (2010) Proteoglycans: from structural compounds to signaling molecules. Cell Tissue Res 339:237–246

    Google Scholar 

  56. Hascall VC, Majors AK, De La Motte CA, Evanko SP, Wang A, Drazba JA, Strong SA, Wight TN (2004) Intracellular hyaluronan: a new frontier for inflammation? Biochim Biophys Acta 1673:3–12

    Google Scholar 

  57. Oh JH, Kim YK, Jung JY, Shin JE, Kim KH, Cho KH, Eun HC, Chung JH (2011) Intrinsic aging- and photoaging-dependent level changes of glycosaminoglycans and their correlation with water content in human skin. J Dermatol Sci 62:192–201

    Google Scholar 

  58. Evanko SP, Tammi M, Tammi RH, Wight TN (2007) Hyaluronan-dependent pericellular matrix. Adv Drug Deliv Rev 59:1351–1365

    Google Scholar 

  59. Maquart FX, Monboisse JC (2014) Extracellular matrix and wound healing. Pathol Biol (Paris) 62:91–95

    Google Scholar 

  60. Lyon M, Rushton G, Gallagher JT (1997) The interaction of the transforming growth factor-βs with heparin/heparan sulfate is isoform-specific. J Biol Chem 272:18000–18006

    Google Scholar 

  61. Hynes RO, Naba A (2012) Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb Perspect Biol 4:a004903

    Google Scholar 

  62. Rucker RB, Kosonen T, Clegg MS, Mitchell AE, Rucker BR, Uriu-Hare JY, Keen CL (1998) Copper, lysyl oxidase, and extracellular matrix protein cross-linking. Am J Clin Nutr 67:996S–1002S

    Google Scholar 

  63. Yurchenco PD (2011) Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb Perspect Biol 3

    Google Scholar 

  64. Lorand L, Graham RM (2003) Transglutaminases: crosslinking enzymes with pleiotropic functions. Nat Rev Mol Cell Biol 4:140–156

    Google Scholar 

  65. Doring G (1994) The role of neutrophil elastase in chronic inflammation. Am J Respir Crit Care Med 150:S114–S117

    Google Scholar 

  66. Kahari VM, Saarialho-Kere U (1997) Matrix metalloproteinases in skin. Exp Dermatol 6:199–213

    Google Scholar 

  67. Mccarty SM, Percival SL (2013) Proteases and delayed wound healing. Adv Wound Care (New Rochelle) 2:438–447

    Google Scholar 

  68. Mezentsev A, Nikolaev A, Bruskin S (2014) Matrix metalloproteinases and their role in psoriasis. Gene 540:1–10

    Google Scholar 

  69. Singh D, Srivastava SK, Chaudhuri TK, Upadhyay G (2015) Multifaceted role of matrix metalloproteinases (MMPs). Front Mol Biosci 2:19

    Google Scholar 

  70. Zeeuwen PLJM (2004) Epidermal differentiation: the role of proteases and their inhibitors. Eur J Cell Biol 83:761–773

    Google Scholar 

  71. Duca L, Floquet N, Alix AJ, Haye B, Debelle L (2004) Elastin as a matrikine. Crit Rev Oncol Hematol 49:235–244

    Google Scholar 

  72. Maquart FX, Simeon A, Pasco S, Monboisse JC (1999) Regulation of cell activity by the extracellular matrix: the concept of matrikines. J Soc Biol 193:423–428

    Google Scholar 

  73. Wells JM, Gaggar A, Blalock JE (2015) MMP generated Matrikines. Matrix Biol 44–46:122–129

    Google Scholar 

  74. Bonnans C, Chou J, Werb Z (2014) Remodelling the extracellular matrix in development and disease. Nat Rev Mol Cell Biol 15:786–801

    Google Scholar 

  75. Murphy G (2011) Tissue inhibitors of metalloproteinases. Genome Biol 12:233

    Google Scholar 

  76. Hubmacher D, Apte SS (2015) ADAMTS proteins as modulators of microfibril formation and function. Matrix Biol 47:34–43

    Google Scholar 

  77. Rijken F, Bruijnzeel PL (2009) The pathogenesis of photoaging: the role of neutrophils and neutrophil-derived enzymes. J Investig Dermatol Symp Proc 14:67–72

    Google Scholar 

  78. Starcher B, Conrad M (1995) A role for neutrophil elastase in solar elastosis. Ciba Found Symp 192:338–346

    Google Scholar 

  79. Godeau G, Hornebeck W (1988) Morphometric analysis of the degradation of human skin elastic fibres by human leukocyte elastase (EC 3-4-21-37) and human skin fibroblast elastase (EC 3-4-24). Pathol Biol (Paris) 36:1133–1138

    Google Scholar 

  80. Sengle G, Charbonneau NL, Ono RN, Sasaki T, Alvarez J, Keene DR, Bächinger HP, Sakai LY (2008) Targeting of bone morphogenetic protein growth factor complexes to fibrillin. J Biol Chem 283:13874–13888

    Google Scholar 

  81. Jensen SA, Robertson IB, Handford PA (2012) Dissecting the fibrillin microfibril: structural insights into organization and function. Structure 20(2):215–225

    Google Scholar 

  82. Kaartinen V, Warburton D (2003) Fibrillin controls TGF-β activation. Nat Genet 33:331–332

    Google Scholar 

  83. Massagué J (1998) TGF-β signal transduction. Annu Rev Biochem 67:753–791

    Google Scholar 

  84. Lemaire R, Bayle J, Lafyatis R (2006) Fibrillin in Marfan syndrome and tight skin mice provides new insights into transforming growth factor-beta regulation and systemic sclerosis. Curr Opin Rheumatol 18:582–587

    Google Scholar 

  85. Bliss E, Heywood WE, Benatti M, Sebire NJ, Mills K (2016) An optimised method for the proteomic profiling of full thickness human skin. Biol Procedures Online 18:15

    Google Scholar 

  86. Mikesh LM, Aramadhaka LR, Moskaluk C, Zigrino P, Mauch C, Fox JW (2013) Proteomic anatomy of human skin. J Proteomics 84:90–200

    Google Scholar 

  87. Aziz N, Detels R, Quint JJ, Li Q, Gietson D, Butch AW (2016) Stability of cytokines, chemokines and soluble activation markers in unprocessed blood stored under different conditions. Cytokine 84:17–24

    Google Scholar 

  88. Brinster RL, Brunner S, Joseph X, Levey IL (1979) Protein degradation in the mouse blastocyst. J Biol Chem 254:1927–1931

    Google Scholar 

  89. Kuehl L, Sumsion EN (1970) Turnover of several glycolytic enzymes in rat liver. J Biol Chem 245:6616–6623

    Google Scholar 

  90. Price JC, Guan S, Burlingame A, Prusiner SB, Ghaemmaghami S (2010) Analysis of proteome dynamics in the mouse brain. Proc Natl Acad Sci 107:14508–14513

    Google Scholar 

  91. Verzijl N, DeGroot J, Ben ZC, Brau-Benjamin O, Maroudas A, Bank RA, Mizrahi J, Schalkwijk CG, Thorpe SR, Baynes JW, Bijlsma JW, Lafeber FP, TeKoppele JM (2000) Age-related accumulation of Maillard reaction products in human articular cartilage collagen. Biochem J 350:381–387

    Google Scholar 

  92. Stenhouse MJ, Baxter MS (1977) Bomb 14C as a biological tracer. Nature 267:828

    Google Scholar 

  93. Shapiro SD, Endicott SK, Province MA, Pierce JA, Campbell EJ (1991) Marked longevity of human lung parenchymal elastic fibers deduced from prevalence of D-aspartate and nuclear weapons-related radiocarbon. J Clin Investig 87:1828–1834

    Google Scholar 

  94. Kanitakis J (2009) Anatomy histology and immunohistochemistry of normal human skin: the epidermis. Eur J Dermatol 12(4):1–13

    Google Scholar 

  95. Fenske NA, Lober CW (1986) Structural and functional changes of normal aging skin. J Am Acad Dermatol 15:571–585

    Google Scholar 

  96. Ezure T, Amano S (2015) Increment of subcutaneous adipose tissue is associated with decrease of elastic fibres in the dermal layer. Exp Dermatol 24:924–929

    Google Scholar 

  97. Sherratt MJ (2015) Body mass index and elastic fibre remodelling. Exp Dermatol 24:922–923

    Google Scholar 

  98. Coons AH, Creech HJ, Jones RN (1941) Immunological properties of an antibody containing a fluorescent group. Proc Soc Exp Biol 47:200–202

    Google Scholar 

  99. Walton LA, Bradley RS, Withers PJ, Newton VL, Watson REB, Austin C, Sherratt MJ (2015) Morphological characterisation of unstained and intact tissue micro-architecture by X-ray computed micro- and nano-tomography. Sci Rep 5:10074

    Google Scholar 

  100. Newton VL, Bradley RS, Seroul P, Cherel M, Griffiths CE, Rawlings AV, Voegeli R, Watson RE, Sherratt MJ (2017) Novel approaches to characterize age-related remodelling of the dermal-epidermal junction in 2D, 3D and in vivo. Skin Res Technol 23:131–148

    Google Scholar 

  101. Disney CM, Lee PD, Hoyland JA, Sherratt MJ, Bay BK (2018) A review of techniques for visualising soft tissue microstructure deformation and quantifying strain Ex Vivo. J Microsc 272(3):165–179. doi: https://doi.org/10.1111/jmi.12701

  102. Disney CM, Madi K, Bodey AJ, Lee PD, Hoyland JA, Sherratt MJ (2017) Visualising the 3D microstructure of stained and native intervertebral discs using X-ray microtomography. Sci Rep 7:16279

    Google Scholar 

  103. Shearer T, Bradley RS, Hidalgo-Bastida A, Sherratt MJ, Cartmell SH (2016) Commentary: 3D visualisation of soft biological structures by microCT. J Cell Sci 129:13

    Google Scholar 

  104. Newton VL, Mcconnell JC, Hibbert SA, Graham HK, Watson RE (2015) Skin aging: molecular pathology, dermal remodelling and the imaging revolution. G Ital Dermatol Venereol 150:665–674

    Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the generous financial support of Walgreens Boots Alliance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael J. Sherratt .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Graham, H.K., Eckersley, A., Ozols, M., Mellody, K.T., Sherratt, M.J. (2019). Human Skin: Composition, Structure and Visualisation Methods. In: Limbert, G. (eds) Skin Biophysics. Studies in Mechanobiology, Tissue Engineering and Biomaterials, vol 22. Springer, Cham. https://doi.org/10.1007/978-3-030-13279-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-13279-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-13278-1

  • Online ISBN: 978-3-030-13279-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics