Skip to main content

Evolving Early Earth: Insights from Peninsular India

  • Chapter
  • First Online:
Geodynamics of the Indian Plate

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

Understanding coupled evolution of the crust-mantle system, building up of habitable continents and tectonics of evolving Earth constitute a major focus of research in Earth and Planetary Sciences. This contribution reviews the processes of the evolution of early Earth, including thermal records, mantle evolution, crustal growth, craton formation and tectonics in the first part, followed by the evolution of individual cratonic blocks in Peninsular India and their assembly into shield framework in the second part. Closely scrutinized global geochronologic and isotope database show that remnants of the Hadean-Eoarchean terrestrial record preserved in the core of cratons provide invaluable insights into planetary evolution. Multidisciplinary studies on the preserved earliest crustal remnants reveal unique features such as distinct lithological associations (tonalite-trondhjemite-granodiorite (TTG)-komatiite dominated greenstones), steeper geothermal gradients, hotter mantle, high rates of crustal growth, dome-basin patterns and plume-dominated tectonics and absence of high-pressure mineral assemblages compared to Phanerozoic Earth.

Peninsular India comprises cratons (Dharwar, Bastar, Singhbhum and Bundelkhand) which are surrounded by mobile belts. These cratonic blocks show distinct thermal records, crustal growth patterns, accretionary and tectonic histories. The Dharwar craton is a composite Archean protocontinent that provides a wide time window for accretionary processes of juvenile crust, continental growth and tectonic processes. The craton was built up in successive stages of accretion in plume-arc settings during ca. 3.6, 3.45–3.3, 3.2–3.15, 3.0–2.9, 2.7–2.6 and 2.57–2.52 Ga with three major reworking events linked to cratonization close to 3.1–3.0, 2.64–2.62 and 2.5 Ga. Bastar craton contains TTGs-supracrustal associations and later granite intrusions. The TTG basement accreted episodically during 3.56 and 3.0 Ga, whilst granitoids intruded during ca. 2.5 Ga. The Singhbhum craton preserves several generations of gneisses, granites and greenstone sequences. Geochronologic and Nd-Hf isotope data show prolonged crustal history (ca. 4.2–2.5 Ga) with multistage craton building episodes in the plume-arc settings. The Bundelkhand craton contains TTG-greenstone assemblages intruded by late granitoids. Published ages reveal episodic accretion of TTG-greenstone during ca. 3.54, 3.30 and 2.70 Ga followed by major granitoid emplacement during ca. 2.57–2.52 Ga. The origin of TTG-greenstones is attributed to their derivation from the depleted mantle in arc environments.

Petrologic, geochronologic, elemental and isotope data of cratonic blocks revealed their independent crustal histories and assembled into shield framework probably along the Central Indian Tectonic Zone (CITZ). The time frame of amalgamation of cratonic blocks is not clear as documented ages ranging from ca. 1.75 to 1.1–0.95 Ga along major tectonic zones like CITZ and palaeomagnetic poles of mafic dykes from these cratons are much closer during 2.45 Ga. More focused integrated studies are needed to unravel the geological and tectonic history of Peninsular India.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbott DH, Burgess L, Longhi J, Smith WHF (1994) An empirical thermal history of the Earth’s upper mantle. J Geophys Res 99:13835–13850

    Article  Google Scholar 

  • Acharyya SK (1993) Greenstones from Singhbhum Craton, their Archaean character, oceanic crustal affinity and tectonics. Proc Natl Acad Sci India Sec A 63A:211–222

    Google Scholar 

  • Acharyya SK (2003) The nature of Mesoproterozoic Central Indian tectonic zone with exhumed and reworked older granulites. Gondw Res 6:197–214

    Article  Google Scholar 

  • Acharyya SK, Gupta A, Orihashi Y (2010) New U–Pb zircon ages from Paleo-Mesoarchean TTG gneisses of the Singhbhum Craton, Eastern India. Geochem J 44:81–88

    Article  Google Scholar 

  • Adam J, Rushmer T, O’Neil J, Francis D (2012) Hadean greenstones from the Nuvvuagittuq fold belt and the origin of the Earth’s early continental crust. Geology 40:363–366

    Article  Google Scholar 

  • Allègre CJ, Turcotte DL (1985) Geodynamic mixing in the mesosphere boundary layer and the origin of oceanic islands. Geophys Res Lett 12:207–210

    Article  Google Scholar 

  • Amaldev T, Santosh M, Tang L, Baiju KR, Tsunogae T, Satyanarayanan M (2013) Mesoarchean convergent margin processes and crustal evolution: petrologic, geochemical and zircon U–Pb and Lu–Hf data from the Mercara Suture Zone, Southern India. Gondw Res 37:182–204

    Article  Google Scholar 

  • Ameen SMM, Wilde SA, Kabir MZ, Akon E, Chowdhury KR, Khan MSH (2007) Paleoproterozoic granitoids in the basement of Bangladesh: a piece of the Indian shield or an exotic fragment of the Gondwana jigsaw? Gondw Res 12:380–387

    Article  Google Scholar 

  • Anand R, Balakrishnan S (2010) Pb, Sr and Nd isotope systematics of metavolcanic rocks of the Hutti greenstone belt, Eastern Dharwar Craton: constraints on age, duration of volcanism and evolution of mantle sources during Late Archean. J Asian Earth Sci 39:1–11

    Article  Google Scholar 

  • Anand R, Balakrishnan S, Kooijman E, Mezger K (2014) Neoarchean crustal growth by accretionary processes: evidence from combined zircon– titanite U–Pb isotope studies on granitoid rocks around the Hutti greenstone belt, Eastern Dharwar Craton, India. J Asian Earth Sci 79:72–85

    Article  Google Scholar 

  • Andreasen R, Sharma M (2009) Comment on “Neodymium-142 evidence for hadean mafic crust”. Science 325:267. https://doi.org/10.1126/science.1169604. author reply 267

    Article  Google Scholar 

  • Armstrong RL (1981) Radiogenic isotopes: the case for crustal recycling on a near-steady state no-continental-growth Earth. Philos Trans R Soc Lond A A301:443–472

    Google Scholar 

  • Arndt N (2008) Komatiite, 1st edn. Cambridge University Press, New York, NY

    Book  Google Scholar 

  • Arndt NT (2013) The formation and evolution of the continental crust. Geochem Perspect 2:405–528

    Article  Google Scholar 

  • Arndt NT, Nisbet RW (1982) Komatiites, 1st edn. George Allen and Unwin, London

    Google Scholar 

  • Asthana D, Pophare AM, Rajalingam S, Kumar H (2015) Neoarchaean Dongargarh rapakivi A-type granites and its relationship to pitepani tholeiites. Gondw Geol Mag Spec 16:25–40

    Google Scholar 

  • Asthana D, Kumar H, Balakrishnan S, Xia Q, Feng M (2016) An early Cretaceous analogue of the ~ 2.5 Ga Malanjkhand porphyry Cu deposit, Central India. Ore Geol Rev 72:1197–1212

    Article  Google Scholar 

  • Asthana D, Kumar S, Vind AK, Zehra F, Kumar H, Pophare AM (2017) Geochemical fingerprinting of ∼2.5 Ga forearc-arc-backarc related magmatic suites in the Bastar Craton, Central India. J Asian Earth Sci 157:218–234

    Article  Google Scholar 

  • Baes M, Gerya T, Sobolev SV (2016) 3-D thermo-mechanical modelling of plume induced subduction initiation. Earth Planet Sci Lett 453:193–203

    Article  Google Scholar 

  • Balakrishnan S, Rajamani V (1987) Geochemistry and petrogenesis of granitoids around the Kolar Schist Belt, South India: constraints for the evolution of the crust in the Kolar area. J Geol 95:219–240. https://doi.org/10.1086/629121

    Article  Google Scholar 

  • Balakrishnan S, Hanson GN, Rajamani V (1990) Pb and Nd isotope constraints on the origin of high Mg and tholeiitic amphibolites, Kolar schist belt, South India. Contrib Mineral Petrol 107:279–292

    Article  Google Scholar 

  • Balakrishnan S, Rajamani V, Hanson GN (1999) U–Pb ages for zircon and Titanite from the Ramagiri area, Southern India: evidence for accretionary origin of the Eastern Dharwar Craton during the late Archean. J Geol 107:69–86

    Article  Google Scholar 

  • Barker F (1979) Trondhjemite: definition, environment and hypothesis of origin. In: Barker F (ed) Trondhjemites, dacites and related rocks. Elsevier, Amsterdam, pp 1–12

    Google Scholar 

  • Barker F, Arth JG (1976) Generation of trondhjemite-tonalite liquids and Archean bimodal trondhjemite-basalt suites. Geology 4:596–600

    Article  Google Scholar 

  • Basu AK (1986) Geology of parts of the Bundelkhand granite massif, Central India. Rec Geol Surv India 117(II):61–124

    Google Scholar 

  • Basu AR, Ray SL, Saha AK, Sarkar SN (1981) Eastern Indian 3800-million-year-old crust and early mantle differentiation. Science 212:1502–1506

    Article  Google Scholar 

  • Basu AR, Bandyopadhyay PK, Chakri R, Zou H (2008) Large 3.4 Ga Algoma type BIF in the Eastern Indian Craton. Geochim Cosmochim Acta 72(12S615 Goldschmidt 2008 Conference Abstract Volume):A59

    Google Scholar 

  • Bédard JH (2006) A catalytic delamination-driven model for coupled genesis of Archaean crust and sub-continental lithospheric mantle. Geochim Cosmochim Acta 70:1188–1214

    Article  Google Scholar 

  • Bedard JH (2018) Stagnant lids and mantle overturns: implications for Archaean tectonics, Magma genesis, crustal growth, mantle evolution, and the start of plate tectonics. Geosci Front 9:19–49

    Article  Google Scholar 

  • Bell E, Mark Harrison T, Kohl I, Young E (2014) Eoarchean crustal evolution of the Jack Hills Zircon Source and Loss of Hadean Crust. Geochim Cosmochim Acta 146:27. https://doi.org/10.1016/j.gca.2014.09.028

    Article  Google Scholar 

  • Belousova EA, Kostitsyn YA, Griffin WL, Begg GC, O’Reilly SY, Pearson NJ (2010) The growth of the continental crust: constraints from zircon Hf-isotope data. Lithos 119:457–466

    Article  Google Scholar 

  • Bhaskar Rao YJ, Griffin WL, Ketchum J, Pearson NJ, Beyer E, O’Reilly SY (2008) An outline of juvenile crust formation and recycling history in the Archaean Western Dharwar Craton, from zircon in situ U–Pb dating and Hf-isotopic compositions. Goldschm Conf Geochim Cosmochim Acta 72:A81

    Google Scholar 

  • Bhattacharya S, Panigrahi MK, Jayananda M (2014) Mineral thermo-barometry and fluid inclusion studies on the Closepet granite, Eastern Dharwar Craton, South India: implications to emplacement and evolution of late-stage fluid. J Asian Earth Sci 91:1–18

    Article  Google Scholar 

  • Bhattacharya A, Das HH, Bell E, Bhattacharya A, Chatterjee N, Saha L, Dutt A (2016) Restoration of Late Neoarchean–early Cambrian tectonics in the Rengali orogen and its environs (Eastern India): the Antarctic connection. Lithos 263:190–212

    Article  Google Scholar 

  • Bhowmik SK, Sarbadhikari AB, Spiering B, Raith MM (2005) Mesoproterozoic reworking of Palaeoproterozoic ultrahigh temperature granulites in the Central Indian Tectonic Zone and its implications. J Petrol 46:1085–1119

    Article  Google Scholar 

  • Bhowmik SK, Wilde SA, Bhandari A, Pal T, Pant NC (2012) Growth of the Greater Indian Landmass and its assembly in Rodinia: geochronological evidence from the Central Indian Tectonic Zone. Gondw Res 22:54–72

    Article  Google Scholar 

  • Bickford ME, Basu A, Kamenov GD, Mueller PA, Patranabis-Deb S, Mukherjee A (2014) Petrogenesis of 1000 Ma felsic tuffs, Chhattisgarh and Indravati Basins, Bastar Craton, India: geochemical and Hf isotope constraints. J Geol 122:43–54

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F (2008) Hafnium in Jack Hills zircons and the formation of the Hadean crust. Earth Planet Sci Lett 265:686–702

    Article  Google Scholar 

  • Blichert-Toft J, Albarède F, Rosing M, Frei R, Bridgwater D (1999) The Nd and Hf isotopic evolution of the mantle through the Archean. Results from the Isua supracrustals, West Greenland, and from the Birimian terranes of West Africa. Geochim Cosmochim Acta 63:3901–3914

    Article  Google Scholar 

  • Bora S, Kumar S, Keewwook Y, Namhoon K, Lee TH (2013) Geochemistry and U–Pb SHRIMP zircon chronology of granitoids and microgranular enclaves from Jhirgadandi Pluton of Mahakoshal Belt, Central India Tectonic Zone, India. J Asian Earth Sci 70-71:99–114

    Article  Google Scholar 

  • Bouhallier H, Choukroune P, Ballèvre M (1993) Diapirism, bulk homogeneous shortening and transcurrent shearing in the Archaean Dharwar Craton: the Holenarsipura area, Southern India. Precambrian Res 63:43–58

    Article  Google Scholar 

  • Bouhallier H, Chardon D, Choukroune P (1995) Strain patterns in Archaean dome-and-basin structures: the Dharwar Craton (Karnataka, South India). Earth Planet Sci Lett 135:57–75

    Article  Google Scholar 

  • Bowring SA, Housh TB (1995) The Earth’s early evolution. Science 269:1535–1540

    Article  Google Scholar 

  • Bowring S, Williams I (1999) Priscoan (4.00–4.03 Ga) orthogenesis from Northwestern Canada. Contrib Mineral Petrol 134:3. https://doi.org/10.1007/s004100050465

    Article  Google Scholar 

  • Bowring SA, Housh TB, Isachsen CE (1990) The Acasta Gneisses: remnant of Earth’s early crust. In: Newsom HE, Jones JH (eds) Origin of the Earth. Oxford University Press, New York, NY, pp 319–343

    Google Scholar 

  • Boyet M, Carlson RW (2005) Nd142 evidence for early (4.53 Ga) global differentiation of the silicate Earth. Science 309:576–581

    Article  Google Scholar 

  • Boyet M, Blichert-Toft J, Rosing M, Storey M, Telouk P, Albarede F (2003) Nd142 evidence for early Earth differentiation. Earth Planet Sci Lett 214:427–442

    Article  Google Scholar 

  • Brown M (2014) The contribution of metamorphic petrology to understanding lithosphere evolution and geodynamics. Geosci Front 5(4):553–569

    Article  Google Scholar 

  • Brun JP (1983) Isotropic points and lines in strain fields. J Struct Geol 5:321–327

    Article  Google Scholar 

  • Cates N, Mojzsis S (2007) Pre-3750 Ma supracrustal rocks from the Nuvvuagittuq supracrustal belt, Northern Québec. Earth Planet Sci Lett 255:9–21. https://doi.org/10.1016/j.epsl.2006.11.034

    Article  Google Scholar 

  • Cawood PA, Kroner A, Pisarevsky S (2006) Precambrian plate tectonics: criteria and evidence. GSA Today 16(7):4

    Article  Google Scholar 

  • Cawood PA, Kröner A, Collins WJ, Kusky TM, Mooney WD, Windley BF (2009) Accretionary orogens through Earth history. Geol Soc Lond Spec Publ 318(1):1–36

    Article  Google Scholar 

  • Cawood PA, Hawkesworth CJ, Dhuime B (2013) The continental record and the generation of continental crust. Geol Soc Am Bulletin 125(1-2):14–32

    Article  Google Scholar 

  • Chadwick B, Ramakrishnan M, Viswanatha MN, Murthy S (1978) Structural studies in the Archean Sargur and Dharwar supracrustal rocks of Karnataka Craton. J Geol Soc India 22:557–567

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Viswanatha MN (1981) Structural and metamorphic relations between Sargur and Dharwar supracrustal rocks and peninsular gneiss in Central Karnataka. J Geol Soc India 22:557–569

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Viswanatha MN (1985) Bababudan —a late Archaean intra-cratonic volcano-sedimentary basin, Karnataka, Southern India. Part II: structure. J Geol Soc India 26:802–821

    Google Scholar 

  • Chadwick B, Ramakrishnan M, Vasudev VN, Viswanatha MN (1989) Facies distributions and structures of a Dharwar volcano-sedimentary basin: evidence for late Archaean transpression in Southern India? J Geol Soc Lond 146(825):834

    Google Scholar 

  • Chadwick B, Vasudev VN, Krishna Rao B, Hedge GV (1991) The stratigraphy and structure of the Dharwar Supergroup adjacent to the Honnalli dome: implications for late Archaean basin development and regional structure in the western part of Karnataka. J Geol Soc India 38:457–484

    Google Scholar 

  • Chadwick B, Vasudev VN, Ahmed N (1996) The Sandur Schist belt and its adjacent plutonic rocks: implications for Late Archean crustal evolution in Karnataka. J Geol Soc India 47:37–57

    Google Scholar 

  • Chadwick B, Vasudev VN, Hegde GV (1997) The Dharwar Craton, Southern India, and its Late Archean plate tectonic setting: current interpretations and controversies. Proc Indian Acad Sci (Earth Planet Sci) 106(4):249–258

    Google Scholar 

  • Chadwick B, Vasudev VN, Hedge GV (2000) The Dharwar Craton, Southern India, interpreted as the result of Late Archaean oblique convergence. Precambrian Res 99:91–101

    Article  Google Scholar 

  • Chadwick B, Vasudev VN, Hedge GV, Nutman AP (2007) Structure and SHRIMP U/Pb zircon ages of granites adjacent to the Chitradurga schist belt: implications for Neoarchean convergence in the Dharwar Craton, Southern India. J Geol Soc India 69:5–24

    Google Scholar 

  • Chakraborty KL, Majumder T (2002) Some important aspects of the banded iron formation (BIF) of Eastern Indian shield (Jharkhand and Orissa). Indian J Geol 74:37–47

    Google Scholar 

  • Chandan Kumar B, Ugarkar G (2017) Geochemistry of mafic-ultramafic magmatism in the Western Ghats Belt (Kuderemukh greenstone belt), Western Dharwar Craton, India: implications for mantle sources and geodynamic setting. Int Geol Rev 59:1507. https://doi.org/10.1080/00206814.2017.1278623

    Article  Google Scholar 

  • Chardon D, Jayananda M (2008) Three-dimensional field perspective on deformation, flow, and growth of the lower continental crust (Dharwar Craton, India). Tectonics 27:TC1014. https://doi.org/10.1029/2007TC002120

    Article  Google Scholar 

  • Chardon D, Choukroune P, Jayananda M (1996) Strain patterns, décollement and incipient sagducted greenstone terrains in the Archaean Dharwar Craton (South India). J Struct Geol 18:991–1004

    Article  Google Scholar 

  • Chardon D, Choukroune P, Jayananda M (1998) Sinking of the Dharwar basin (South India): implications for Archaean tectonics. Precambrian Res 91:15–39

    Article  Google Scholar 

  • Chardon D, Peucat J-J, Jayananda M, Choukroune P, Fanning CM (2002) Archaean granite-greenstone tectonics at Kolar (South India): interplay of diapirism and bulk homogenous contraction during juvenile magmatic accretion. Tectonics 21(3):1016. https://doi.org/10.1029/2001TC901032

    Article  Google Scholar 

  • Chardon D, Jayananda M, Chetty TRK, Peucat J-J (2008) Precambrian continental strain and shear zone patterns: the South Indian case. J Geophys Res Solid Earth 113:B08402. https://doi.org/10.1029/2007JB005299

    Article  Google Scholar 

  • Chardon D, Gapais D, Cagnard F (2009) Flow of ultra-hot orogens: a view from the Precambrian, clues for the Phanerozoic. Tectonophysics 477:105. https://doi.org/10.1016/j.tecto.2009.03.008

    Article  Google Scholar 

  • Chardon D, Jayananda M, Peucat J-J (2011) Lateral constrictional flow of hot orogenic crust: insights from the Neoarchean of South India, geological and geophysical implications for orogenic plateaux. Geochem Geophys Geosyst 12:Q02005. https://doi.org/10.1029/2010GC003398

    Article  Google Scholar 

  • Chattopadhyay A, Das K, Hayasaka Y, Sarkar A (2015) Syn- and post-tectonic granite plutonism in the Sausar Fold Belt, Central India: age constraints and tectonic implications. J Asian Earth Sci 107:110–121

    Article  Google Scholar 

  • Chattopadhyay A, Chatterjee A, Das K, Sarkar A (2017) Neoproterozoic transpression and granite magmatism in the Gavilgarh-Tan Shear Zone, Central India: tectonic significance of U-Pb zircon and U-Th total Pb monazite ages. J Asian Earth Sci 147:485–501

    Article  Google Scholar 

  • Chaudhuri T, Mazumder R, Biswas S (2017) Geochemistry and Sm-Nd isotopic characteristics of the Paleoarchean Komatiites from Singhbhum Craton, Eastern India and their implications. Precambrian Res 298:385–402

    Article  Google Scholar 

  • Chaudhuri T, Wan Y, Mazumder R, Ma M, Liu D (2018) Evidence of enriched, Hadean mantle reservoir from 4.2-4.0 Ga zircon xenocrysts from Paleoarchean TTGs of the Singhbhum Craton, Eastern India. Sci Rep 8:7069

    Article  Google Scholar 

  • Chavagnac V (2004) A geochemical and Nd isotopic study of Barberton komatiites (South Africa): implication for the Archean mantle. Lithos 75:253–281. https://doi.org/10.1016/j.lithos.2004.03.001

    Article  Google Scholar 

  • Choukroune P (1994) Deformations et delplacements dans la croute terrestre. Masson, Paris. 226 p

    Google Scholar 

  • Choukroune P, Bouhallier H, Arndt NT (1995) Soft lithosphere during periods of Archean crustal groeth or crustal reworking. Geol Soc Lond Spec Publ 95:6786

    Article  Google Scholar 

  • Choukroune P, Ludden JN, Chardon D, Calvert AJ, Bouhallier H (1997) Archaean crustal growth and processes: a comparison of the Superior province and the Dharwar Craton India. In: Burg JP, Ford M (eds) Orogeny through time. Geological Society, London, Special Publications, vol 121. Geological Society of London, London, pp 63–98

    Google Scholar 

  • Christensen NI (1987) The interpretation of seismic velocities in the continental crust based on laboratory seismology. In: Noller JS, Kirby SH, Nielson-Pike JE (eds) Geophysics and petrology of the deep crust and upper mantle, U.S. Geological Survey circular, vol 956. U.S. Geological Survey, Denver, CO, pp 23–25

    Google Scholar 

  • Collins W (1989) Polydiapirism of the Archean Mount Edgar Batholith, Pilbara Block, Western Australia. Precambrian Res 43:41–62. https://doi.org/10.1016/0301-9268(89)90004-1

    Article  Google Scholar 

  • Compston W, Pidgeon RT (1986) Jack Hills, evidence of more very old detrital zircons in Western Australia. Nature 321:766–769

    Article  Google Scholar 

  • Condie KC (2003) Incompatible element ratios in oceanic basalts and komatiites: tracking deep mantle sources and continental growth rates with time. Geochem Geophys Geosyst 4(1):1005. https://doi.org/10.1029/2002GC000333

    Article  Google Scholar 

  • Condie KC (2005) TTGs and adakites: are they both slab melts? Lithos 80:33–44

    Article  Google Scholar 

  • Condie KC, Aster RC (2010) Episodic zircon age spectra of orogenic granitoids: the supercontinent connection and continental growth. Precambrian Res 180:227–236. https://doi.org/10.1016/j.precamres.2010.03.008

    Article  Google Scholar 

  • Crookshank H (1963) Geology of Southern Bastar and Jeypore from the Bailadila Range to the Eastern Ghats. Mem Geol Surv India 87:150

    Google Scholar 

  • Cui PL, Sun JG, Sha DM, Wang XJ, Zhang P, Gu AL, Wang ZY (2013) Oldest zircon xenocryst (4.17 Ga) from the North China Craton. Int Geol Rev 55(15):1902–1908

    Article  Google Scholar 

  • Dantas E, Van Schmus W, Hackspacher P, Fetter H, de Brito Neves BB, Cordani U, Nutman A, Williams IS (2004) The 3.4-3.5 Ga São José do Campestre massif, NE Brazil: remnants of the oldest crust in South America. Precambrian Res 130:113–137. https://doi.org/10.1016/j.precamres.2003.11.002

    Article  Google Scholar 

  • Das KN, Royburman KJ, Vatsa US, Mahurkar YV, Dhoundial DP (1990) Sonakhan Schist Belt, a Precambrian granite–greenstone complex. Geol Surv India Spec Publ 28:118–132

    Google Scholar 

  • Dey S (2013) Evolution of Archean crust in the Dharwar Craton: the Nd isotope record. Precambrian Res 227:227–246

    Article  Google Scholar 

  • Dey S, Pandey UK, Rai AK, Chaki A (2012) Geochemical and Nd isotope constraints on petrogenesis of granitoids from NW part of the Eastern Dharwar Craton: possible implications for late Archaean crustal accretion. J Asian Earth Sci 45:40–56

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary AK, Liu Y, Zong K (2014) Origin and evolution of granitoids associated with the Kadiri greenstone belt, Eastern Dharwar Craton: a history of orogenic to anorogenic magmatism. Precambrian Res 246:64–90

    Article  Google Scholar 

  • Dey S, Nandy J, Choudhary AK, Liu Y, Zong K (2015) Neoarchean crustal growth by combined arc–plume action: evidence from the Kadiri Greenstone Belt, EDC, India. In: Roberts NMW, Van Kranendonk M, Parman S, Shirey S, Clift PD (eds) Continent formation through time. Geological Society, London, Special Publications, vol 389, pp 135–163

    Google Scholar 

  • Dey S, Halla J, Kurhila M, Nandy J, Heilimo E, Pal S (2016) Geochronology of Neoarchean granitoids of the NW Eastern Dharwar Craton: implications for crust formation. Geol Soc Lond Spec Publ 449:89

    Article  Google Scholar 

  • Dey S, Topno A, Liu Y, Zong KQ (2017) Generation and evolution of Palaeoarchaean continental crust in the Central part of the Singhbhum Craton, Eastern India. Precambrian Res 298:268–291

    Article  Google Scholar 

  • Dey S, Pal S, Balakrishnan S, Halla J, Kurhila M, Heilimo E (2018a) Both plume and arc: origin of Neoarchaean crust as recorded in Veligallu greenstone belt, Dharwar Craton, India. Precambrian Res 314:41. https://doi.org/10.1016/j.precamres.2018.04.019

    Article  Google Scholar 

  • Dey S, Mitra A, Nandy J, Mondal S, Topno A, Liu Y, Zong KQ (2018b) Early crustal evolution as recorded in the granitoids of the Singhbhum and Western Dharwar Cratons, India. In: Van Kranendok MJ, Bennet V, Hoffmann EJ (eds) Earth’s oldest rocks, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  • Dhuime B, Hawksworth CJ, Cawood PA, Storey CD (2012) A change in the geodynamics of continental growth 3 billion years ago. Science 335:1334–1336

    Article  Google Scholar 

  • Drury SA (1983) A regional tectonic study of the Archaean Chitradurga Greenstone Belt, Karnataka, based on LANDSAT interpretation. Geol Soc India 24:167–184

    Google Scholar 

  • Drury SA, Holt RW (1980) Tectonic framework of South Indian Craton: a reconnaissance involving LANDSAT imagery. Tectonophysics 65:T1–T15

    Article  Google Scholar 

  • Drury SA, Harris NBW, Holt RW, Reeves Smith GJ, Wightman RT (1984) Precambrian tectonics and crustal evolution in South India. J Geol 92:3–20

    Article  Google Scholar 

  • England PC, Bickle MJ (1984) Continental thermal and tectonic regimes during the Archaean. J Geol 92:353–367

    Article  Google Scholar 

  • French JE, Heaman LM (2010) Precise U–Pb dating of Palaeoproterozoic mafic dyke swarms of the Dharwar Craton India: implications for the existence of the Neoarchean super Craton Sclavia. Precambrian Res 183:416–441

    Article  Google Scholar 

  • French JE, Heaman LM, Chacko T, Srivastava RK (2008) 1891–1883 Ma Southern Bastar-Cuddapah mafic igneous events, India: a newly recognized Large Igneous Province. Precambrian Res 160:308–322

    Article  Google Scholar 

  • Friend CRL (1983) The link between granite production and the formation of charnockites: evidence from Kabbaldurga, Karnataka. In: Atherton MP, Gribble CD (eds) Migmatites, Melting and Metamorphism. Shiva Press, Nantwich pp 264–276

    Google Scholar 

  • Friend CRL, Nutman AP (1991) SHRIMP U-Pb geochronology of the Closepet granite and Peninsular gneisses, Karnataka, South of India. J Geol Soc India 38:357–368

    Google Scholar 

  • Frost BR, Barnes CG, Collins WJ, Arculus RJ, Ellis DJ, Frost CD (2001) A geochemical classification for granitic rocks. J Petrol 42:2033–2048

    Article  Google Scholar 

  • Furnes H, de Wit M, Staudigel H, Rosing M, Muehlenbachs K (2007) A vestige of Earth’s oldest ophiolite. Science 315:1704–1707

    Article  Google Scholar 

  • Fyfe WS (1978) The evolution of the Earth’s crust: modern plate tectonics to ancient hot spot tectonics. Chem Geol 23:89–114

    Article  Google Scholar 

  • Ge R, Zhu W, Wilde SA, Wu H (2018) Remnants of Eoarchean crust derived from subducted proto-arc. Sci Adv 4(3159):1–11

    Google Scholar 

  • Gerya T (2014) Precambrian geodynamics: concepts and models. Gondw Res 25:442–463

    Article  Google Scholar 

  • Ghosh PK (1941) The Charnockite series of Bastar State and Western Jeypore. Rec Geol Surv India 75:15. 55 p

    Google Scholar 

  • Ghosh JG (2004) 3.56 Ga tonalite in the Central part of the Bastar Craton, India: oldest Indian date. J Asian Earth Sci 23:359–364

    Article  Google Scholar 

  • Ghosh G, Mukhopadhyay J (2007) Reappraisal of the structure of the Western iron ore group, Singhbhum Craton, and Eastern India: implications for the exploration of BIF-hosted iron ore deposits. Gondw Res 12:525–532

    Article  Google Scholar 

  • Gireesh RV, Sekhamo K-u, Jayananda M (2012) Anatomy of 2.57-2.52 Ga granitoids plutons in the Eastern Dharwar Craton, Southern India: implications for magma chamber processes. Episodes 35(3):398–413

    Article  Google Scholar 

  • Glorie S, De Grave J, Singh T, Payne JL, Collins AS (2014) Crustal root of the Eastern Dharwar Craton: zircon U-Pb age and Lu-Hf isotopic evolution of East Salem block, Southeast India. Precambrian Res 249:229–246

    Article  Google Scholar 

  • Goldfarb RJ, Groves DI, Gardoll S (2001) Orogenic gold and geologic time: a global synthesis. Ore Geol Rev 18:1–75

    Article  Google Scholar 

  • Goodwin AM (1981) Archean plates and greenstone belts. In: Kroner A (ed) Precambrian plate tectonics. Elsevier, Amsterdam, pp 105–135

    Google Scholar 

  • Grosch EG, Slama J (2017) Evidence for 3.3-billion-year-old oceanic crust in the Barberton greenstone belt, South Africa. Geology 45:695–698

    Google Scholar 

  • Grove TL, de Wit MJ, Dann J (1997) Komatiites from the Komati Type Section, Barberton, South Africa. In: de Wit MJ, Ashwal LD (eds) Greenstone belts. Oxford Science Publications, Oxford, pp 422–437

    Google Scholar 

  • Guitreau M, Mukusa SB, Loudin L, Krishnan S (2017) New constraints on early formation of Western Dharwar Craton (India) from igneous zircon U-Pb and Lu-Hf isotopes. Precambrian Res 302:33–49

    Article  Google Scholar 

  • Gupta S, Jayananda M, Fareeduddin (2014) Tourmaline from the Archean G.R.Halli gold deposit, Chitradurga greenstone belt, Dharwar Craton (India): implications for the gold metallogeny. Geosci Front 5:877. https://doi.org/10.1016/j.gsf.2013.12.004

    Article  Google Scholar 

  • Halla J (2005) Late Archean high-Mg granitoids (Sanukitoids) in the Southern Karelian domain, Eastern Finland: Pb and Nd isotopic constraints on crust-mantle interactions. Lithos 79:161–178. https://doi.org/10.1016/j.lithos.2004.05.007

    Article  Google Scholar 

  • Halla J, van Hunen J, Heilimo E, Hölttä P (2009) Geochemical and numerical constraints on Neoarchean plate tectonics. Precambrian Res 179:155–162

    Article  Google Scholar 

  • Hamilton WB (1998) Archean magmatism and deformation were not products of plate tectonics. Precambrian Res 91:143–179

    Article  Google Scholar 

  • Hansen EC, Newton RC, Janardhan AS (1984) Fluid inclusions in rocks from the amphibolite‐facies gneiss to hancockite progression in Southern Karnataka, India: direct evidence concerning the fluids of granulite metamorphism. J Metam Geol 2:249. https://doi.org/10.1111/j.1525-1314.1984.tb00299.x

    Article  Google Scholar 

  • Hanson GN, Langmuir CH (1978) Modelling of major elements in mantle-melt systems using trace element approaches. Geochim Cosmochim Acta 42:725–741. https://doi.org/10.1016/0016-7037(78)90090-X

    Article  Google Scholar 

  • Harish Kumar SB, Jayananda M, Kano T, Shadakshara Swamy N, Mahabaleshwar B (2003) Late Archean juvenile accretion process in the Eastern Dharwar Craton; Kuppam–Karimangala area. Mem Geol Soc India 50:375–408

    Google Scholar 

  • Harley SL, Kelly NM (2007) The Archean of East Antarctic shield. In: Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 149–186

    Google Scholar 

  • Harlov DE, Newton RC, Hansen EC, Janardhan AS (1997) Oxide and sulfide minerals in highly oxidized, Rb-depleted, Archean granulites of the Shevaroy hills massif, South India: oxidation states and the role of metamorphic fluids. J Metam Geol 95:701–717

    Article  Google Scholar 

  • Harrison TM (2009) The Hadean Crust: evidence from N4 Ga zircons. Annu Rev Earth Planet Sci 37:479–505

    Article  Google Scholar 

  • Harrison TM, Blichert-Toft J, Muller W, Albarede F, Holden P, Mojzsis SJ (2005) Heterogeneous Hadean hafnium: evidence of continental crust by 4.4–4.5 Ga. Science 310:1947–1950

    Article  Google Scholar 

  • Hashizume K, Pinti D, Orberger B, Cloquet C, Jayananda M, Soyama H (2016) A biological switch at the ocean surface as a cause of laminations in a Precambrian iron formation. Earth Planet Sci Lett 446:27–36. https://doi.org/10.1016/j.epsl.2016.04.023

    Article  Google Scholar 

  • Hawkesworth C, Dhuime B, Pietranik A, Cawood P, Kemp T, Storey C (2010) The generation and evolution of the continental crust. J Geol Soc Lond 167:229–248. https://doi.org/10.1144/0016-76492009-072

    Article  Google Scholar 

  • Hawkesworth C, Cawood P, Dhuime B (2013) Continental growth and the crustal record. Tectonophysics 609:651–660

    Article  Google Scholar 

  • Hegde VS, Chavadi VC (2009) Geochemistry of Archean meta-greywackes from the Western Dharwar Craton, South India: implications for provenence and nature of late Archean crust. Gondw Res 15:178–187

    Article  Google Scholar 

  • Herzberg C, Condie K, Korenaga J (2010) Thermal history of the Earth and its petrological expression. Earth Planet Sci Lett 292(1-2):79–88

    Article  Google Scholar 

  • Hickman AH, Van Kranendonk MJ (2012) Early Earth evolution: evidence from the3.5–1.8 Ga geological history of the Pilbara region of Western Australia. Episodes 35:283–297

    Article  Google Scholar 

  • Hoffmann JE, MüNker C, Polat A, Rosing M, Schulz T (2011) The origin of decoupled Hf–Nd isotope composition in Eoarchean rocks from Southern West Greenland. Geochim Cosmochim Acta 75:6610–6628. https://doi.org/10.1016/j.gca.2011.08.018

    Article  Google Scholar 

  • Hofmann A, Mazumdar R (2015) A review of the current status of the Older Metamorphic Group and Older Metamorphic Tonalite Gneiss: insight into the Palaeoarchean history of the Singhbhum Craton, India. In: Mazumdar R, Eriksson PG (eds) Precambrian basin of India: stratigraphy and tectonic context. Memoirs, vol 43. Geological Society of London, London, pp 103–107

    Google Scholar 

  • Hokada T, Horie K, Satish-Kumar M, Ueno Y, Nasheeth A, Mishima K, Shiraishi K (2013) An appraisal of Archaean supracrustal sequences in Chitradurga Schist Belt, Western Dharwar Craton, Southern India. Precambrian Res 227:99–119. https://doi.org/10.1016/j.precamres.2012.04.006

    Article  Google Scholar 

  • Holden P, Lanc P, Ireland TR, Harrison TM, Foster JJ, Bruce Z (2009) Mass- spectrometric mining of Hadean zircons by automated SHRIMP multi-collector and single-collector U/Pb zircon age dating: the first 100,000 grains. Int J Mass Spectrom 286:53–63

    Article  Google Scholar 

  • Huenen JV, Moyen JF (2012) Archean subduction: fact or fiction? Annu Rev Earth Planet Sci 40:195–219

    Article  Google Scholar 

  • Hurley PM, Rand JR (1969) Pre-drift continental nuclei. Science 164:1229–1242

    Article  Google Scholar 

  • Hussain MF, Mondal MEA, Ahmad T (2003) Petrological and geochemical characteristics of Archean gneisses and granitoids from Bastar Craton, Central India – implication for Subduction related magmatism. Gondw Res 7:531–537

    Article  Google Scholar 

  • Iizuka T, Horie K, Komiya T, Maruyama S, Hirata T, Hidaka H, Windley B (2006) 4.2 Ga zircon xenocryst in an Acasta gneiss from Northwestern Canada: evidence for early continental crust. Geology 34:245–248. https://doi.org/10.1130/G22124.1

    Article  Google Scholar 

  • Iizuka T, Komiya T, Rino S, Maruyama S, Hirata T (2010) Detrital zircon evidence for Hf isotopic evolution of granitoid crust and continental growth. Geochim Cosmochim Acta 74:2450–2472. https://doi.org/10.1016/j.gca.2010.01.023

    Article  Google Scholar 

  • Iizuka T, Nebel O, McCulloch M (2011) Tracing the provenance and recrystallization processes of the Earth’s oldest detritus at Mt. Narryer and Jack Hills, Western Australia: an in situ Sm-Nd isotopic study of monazite. Earth Planet Sci Lett 308(3-4):350–358

    Article  Google Scholar 

  • Ishwar-Kumar C, Windley BF, Horie K, Kato T, Hokada T, Itaya T, Yagi K (2013) A Rodinia suture in Western India: new insights on India-Madagascar correlations. Precambrian Res 236:227–251

    Article  Google Scholar 

  • Iyenger SVP, Murthy YGK (1982) The evolution of the Archaean Proterozoic crust in parts of Bihar and Orissa, Eastern India. Geol Surv India Rec 112:1–5

    Google Scholar 

  • Jahn B-M, Gruau G, Glikson AY (1982) Komatiites of the Onverwacht Group, S. Africa: REE geochemistry, Sm/Nd age and mantle evolution. Contrib Mineral Petrol 80(1):25–40

    Article  Google Scholar 

  • Jain SC, Yedekar DB, Nair KKK (1991) Central Indian Shear Zone: a major Precambrian crustal boundary. J Geol Soc India 37:521–548

    Google Scholar 

  • Janardhan AS, Srikantappa C, Ramachandra HM (1978) The Sargur schist complex – an Archean high grade terrain in Southern India. In: Windley BF, Naqvi SM (eds) Archean geochemistry. Elsevier, Amsterdam, pp 127–150

    Chapter  Google Scholar 

  • Janardhan AS, Newton RC, Hansen EC (1982) The transformation of amphibolite facies gneiss to charnockite in Southern Karnataka and Northern Tamil Nadu, Inida. Contrib Mineral Petrol 79:130–145

    Article  Google Scholar 

  • Jayananda M, Mahabaleswar B (1991) Relationship between shear zones and igneous activity: the Closepet granite of Southern India. Proc Indian Acad Sci, Earth Planet Sci 100:31–36

    Google Scholar 

  • Jayananda M, Martin H, Mahabaleswar B (1992) The mechanisms of recycling of Archaean continental crust: example of the Closepet granite, Southern India. In: Ho SE, Glover JE (eds) The Archaean: terrains, processes and metallogeny, vol 22. University of West Australia, Perth, WA, pp 213–222

    Google Scholar 

  • Jayananda M, Peucat J-J, Martin H, Mahabaleswar B (1994) Magma mixing in plutonic environment: Geochemical and isotopic evidence from the Closepet batholith, southern India. Curr Sci 66:928–933

    Google Scholar 

  • Jayananda M, Martin H, Peucat J-J, Mahabaleswar B (1995) Late Archaean crust-mantle interactions: geochemistry of LREE-enriched mantle derived magmas. Example of the Closepet batholith, Southern India. Contrib Mineral Petrol 119:314–329

    Article  Google Scholar 

  • Jayananda M, Moyen JF, Martin H, Peucat JJ, Auvray B, Mahabaleswar B (2000) Late Archean (2550–2520) juvenile magmatism in the Eastern Dharwar Craton, Southern India: constraints from geochronology, Nd–Sr isotopes and whole rock geochemistry. Precambrian Res 99:225–254

    Article  Google Scholar 

  • Jayananda M, Harish Kumar SB, Kano T, Mohan A, Mahabaleswar B (2003) Thermal history of the late Achaean juvenile continental crust in Kuppam-Karimangalam area, EDC. Mem Geol Soc India 52:255–287

    Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J, Capdevila R (2006) 2.61 Ga Potassic granites and Crustal reworking in the Western Dharwar Craton, Southern India: tectonic, geochronologic and geochemical constraints. Precambrian Res 150:1–26

    Article  Google Scholar 

  • Jayananda M, Kano T, Peucat J-J, Channabasappa S (2008) 3.35 Ga komatiite volcanism in the Western Dharwar Craton: constraints from Nd isotopes and whole rock geochemistry. Precambrian Res 162:160–179. https://doi.org/10.1016/j.precamres.2007.07.010

    Article  Google Scholar 

  • Jayananda M, Miyazaki T, Gireesh RV, Mahesha N, Kano T (2009) Synplutonic mafic dykes from late Archaean granitoids in the Eastern Dharwar Craton, Southern India. J Geol Soc India 73:117–130

    Article  Google Scholar 

  • Jayananda M, Banerjee M, Pant NC, Dasgupta S, Kano T, Mahesha N, Mahableswar B (2011) 2.62 Ga high-temperature metamorphism in the Central part of the Eastern Dharwar Craton: implications for late Achaean tectonothermal history. Geol J 47:213. https://doi.org/10.1002/gj.1308

    Article  Google Scholar 

  • Jayananda M, Tsutsumi Y, Miyazaki T, Gireesh RV, Kapfo K-u, Tushipokla, Hidaka H, Kano T (2013a) Geochronological constraints on Meso-Neoarchean regional metamorphism and magmatism in the Dharwar Craton, Southern India. J Asian Earth Sci 78:18–38. https://doi.org/10.1016/j.jseaes.2013.04.033

    Article  Google Scholar 

  • Jayananda M, Peucat JJ, Chardon D, Krishna Rao B, Fanning CM, Corfu F (2013b) Neoarchean greenstone volcanism and continental growth, Dharwar Craton, South India: constrains from SIMS U–Pb zircon geochronology and Nd isotopes. Precambrian Res 227:55–76

    Article  Google Scholar 

  • Jayananda M, Gireesh RV, Sekhamo K-u, Miyazaki T (2014) Coeval felsic and mafic magmas in neoarchean calc-alkaline magmatic arcs, Dharwar Craton, Southern India: field and petrographic evidence from mafic to hybrid magmatic enclaves and synplutonic mafic dykes. J Geol Soc India 84:5–28

    Article  Google Scholar 

  • Jayananda M, Chardon D, Peucat J-J, Fanning CM (2015) Paleo- to Mesoarchean TTG accretion and continental growth, Western Dharwar Craton, Southern India: SHRIMP U-Pb zircon geochronology, whole-rock geochemistry and Nd-Sr isotopes. Precambrian Res 268:295–322. https://doi.org/10.1016/j.precamres.2015.07.015

    Article  Google Scholar 

  • Jayananda M, Duraiswami RA, Aadhiseshan KR, Gireesh RV, Prabhakar BC, Kafo K-u, Tushipokla, Namratha R (2016) Physical volcanology and geochemistry of Palaeoarchaean komatiite lava flows from the Western Dharwar Craton, Southern India: implications for Archaean mantle evolution and crustal growth. Int Geol Rev 58(13):1569–1595

    Article  Google Scholar 

  • Jayananda M, Santosh M, Aadhiseshan KR (2018) Formation of Archean continental crust in the Dharwar Craton, Southern India. Earth Sci Rev 181:12–42

    Article  Google Scholar 

  • Jayananda M, Martin G, Tarun Thomas T, Martin H, Aadhiseshan KR, Gireesh RV, Peucat J-J, Satyanarayanan M (2019a) Geochronology and geochemistry of Meso- to Neoarchean magmatic epidote-bearing potassic granites, Western Dharwar Craton (Bellur–Nagamangala–Pandavpura corridor), Southern India: implications for the successive stages of crustal reworking and cratonization. In: Dey S, Moyen J-F (eds) Archean granitoids of India: windows into early Earth tectonics. Geological Society, London, Special Publications, vol 489. Geological Society of London, London. https://doi.org/10.1144/SP489-2018-125

    Chapter  Google Scholar 

  • Jayananda M, Aadhiseshan KR, Kusiak M, Wilde SA, Sekamo K, Guitreau M, Santosh M, Gireesh RV (2019b) Multi-stage crustal growth, Neoarchean orogenic plateau formation and cratonization in the Eastern Dharwar Craton. Gondwana Research (Accepted and in production)

    Google Scholar 

  • Jelsma HA, Van Der Beek PA, Vinyu ML (1993) Tectonic evolution of the Bindura-Shamva greenstone belt (Northern Zimbabwe): progressive deformation around diapiric batholiths. J Struct Geol 15(2):163–176

    Article  Google Scholar 

  • Jenson LS (1976) A new method of classifying alkali volcanic rocks: Ontario Division Mineral, Miscellaneous Paper, 66:22

    Google Scholar 

  • Johnson TE, Brown M, Klaus BJP, Van Tongeren JA (2014) Delamination and recycling of Archaean crust caused by gravitational instabilities. Nat Geosci 7:47–52

    Article  Google Scholar 

  • Johnson TE, Brown M, Gardiner NJ, Kirkland CL, Smithies RH (2017) Earth’s first stable continents did not form by subduction. Nature 543(7644):239–242. https://doi.org/10.1038/nature21383

    Article  Google Scholar 

  • Joshi KB, Bhattacharjee J, Rai G, Halla J, Ahmad T, Kurhila M, Heilimo E, Choudhary AK (2016) The diversification of granitoids and plate tectonic implications at the Archean-Proterozoic boundary in Bundalkhand Craton, Central India. In: Halla J, Whitehouse MJ, Ahmad T, Bagal Z (eds) Crust-mantle interaction and granitoid diversification: insights from Archean Cratons, vol 449. Geological Society, London. https://doi.org/10.1144/SP449.8

    Chapter  Google Scholar 

  • Kamber BS (2015) The evolving nature of terrestrial crust from the Hadean, through the Archaean, into the Proterozoic. Precambrian Res 258:48–82

    Article  Google Scholar 

  • Kamenetsky VS, Gurenko AA, Kerr AC (2010) Composition and temperature of komatiite melts from Gorgona Island, Colombia, constrained from olivine-hosted melt inclusions. Geology 38(11):1003–1006. https://doi.org/10.1130/G31143.1

    Article  Google Scholar 

  • Kano T, Jayananda M, Nishimura K, Kesamaru T (2004) Modal and chemical compositions of peninsular gneisses and Closepet granite in the Dharwar Craton, in comparison with the Phanerozoic Island arc granitoids of hida region Central Japan: a preliminary report. In: International Symposium on Gondwana Assembly and Dispersal, pp 1322–1323. (Gondwana Res. Suppl. Issue)

    Google Scholar 

  • Kaur P, Zeh A, Chaudhri N (2014) Characterization and U–Pb–Hf isotope record of the 3.55 Ga felsic crust from the Bundelkhand Craton, Northern India. Precambrian Res 255:236–244

    Article  Google Scholar 

  • Kaur P, Zeh A, Chaudhari N, Eliyas N (2016) Unravelling the record of Archaean crustal evolution of the Bundelkhand Craton, Northern India using U‐Pb zircon‐monazite ages, Lu‐Hf isotope systematics, and whole‐rock geochemistry of Granitoids. Precambrian Res 281:384–413

    Article  Google Scholar 

  • Kemp AIS, Hawkesworth CJ, Foster GL, Paterson BA, Woodhead JD, Hergt JM, Gray CM, Whitehouse MJ (2007) Magmatic and crustal differentiation history of granitic rocks from Hf–O isotopes in zircon. Science 315:980–983

    Article  Google Scholar 

  • Kemp AIS, Wilde SA, Hawksworth CJ, Coath CD, Nemchin A, Pidgeon RT, Vervoort JD, Du Frane SA (2010) Hadean crustal evolution revisited: new constraints from Pb–Hf isotope systematics of the Jack Hills zircons. Earth Planet Sci Lett 296:45–56

    Article  Google Scholar 

  • Kerrich R, Manikyamba C (2012) Contemporaneous eruption of Nb-enriched basalts - K-adakites, Na-adakites from the 2.7 Ga Penakacherla terrane: implications for subduction zone processes and crustal growth in the Eastern Dharwar Craton, India. Can J Earth Sci 49:615–636. https://doi.org/10.1139/e2012-005

    Article  Google Scholar 

  • Khan MWY, Bhattacharyya TK (1993) A reappraisal of the stratigraphy of Bailadila Group, Bacheli, Bastar district, M. P. J Geol Soc India 42:549–562

    Google Scholar 

  • Khanna TC (2017) Lutetium-hafnium isotope evidence for the cogenesis of Neoarchean Veligallu and Gadwal greenstone belts, Eastern Dharwar Craton, India. J Indian Geophys Union 21:198–206

    Google Scholar 

  • Khanna TC, Bizimis M, Yogodzinski GM, Mallick S (2014) Hafnium–neodymium isotope systematics of the 2.7 Ga Gadwal greenstone terrane, Eastern Dharwar Craton, India: implications for the evolution of the Archean depleted mantle. Geochim Cosmochim Acta 127:10–24

    Article  Google Scholar 

  • Khanna TC, Sesha Sai VV, Bizimis M, Krishna AK (2016) Petrogenesis of ultramafics in the Neoarchean Veligallu greenstone terrane, Eastern Dharwar Craton, India: constraints from bulk-rock geochemistry and Lu-Hf isotopes. Precambrian Res 285:186–201

    Article  Google Scholar 

  • Khanna TC, Bizimis M, Barbeau DL Jr, Krishna AK, Sesha Sai VV (2019) Evolution of ca. 2.5 Ga Dongargarh volcano-sedimentary Supergroup, Bastar Craton, Central India: constraints from zircon U-Pb geochronology, bulk-rock geochemistry and Hf-Nd isotope systematics. Earth Sci Rev 190:273–309

    Article  Google Scholar 

  • Kimura G, Ludden JN, Desrochers JP, Hori R (1993) A model of ocean-crust accretion for the Superior Province, Canada. Lithos 30:337–355

    Article  Google Scholar 

  • Komiya T, Maruyama S, Masuda T, Nohda S, Hayashi M, Okamoto K (1999) Plate tectonics at 3.8–3.7 Ga: field evidence from the Isua accretionary complex, Southern West Greenland. J Geol 107:515–554

    Article  Google Scholar 

  • Komiya T, Yamamoto S, Aoki S, Sawaki Y, Ishikawa A, Tashiro T, Koshida K, Shimojo M, Aoki K, Collerson KD (2015) Geology of the Eoarchean, N3.95 Ga, Nulliak supracrustal rocks in the Saglek Block, Northern Labrador, Canada: the oldest geological evidence for plate tectonics. Tectonophysics 662:40–62

    Article  Google Scholar 

  • Korenaga J (2013) Initiation and evolution of plate tectonics on Earth: theories and observations. Annu Rev Earth Planet Sci 41:117–151

    Article  Google Scholar 

  • Krogstad EJ, Hanson GN, Rajamani V (1991) U–Pb ages of zircon and sphene for two gneiss terrains adjacent to the Kolar Schist Belt, South India: evidence for separate crustal evolution histories. J Geol 99:801–816

    Article  Google Scholar 

  • Krogstad EJ, Hanson GN, Rajamani V (1995) Sources of continental magmatism adjacent to the late Archaean Kolar suture zone, South India: distinct isotopic and elemental signature of two late Archaean magmatic series. Contrib Mineral Petrol 122:159–173

    Article  Google Scholar 

  • Krogstad EJ, Balakrishnan S, Mukhopadhyay DK, Rajamani V, Hanson GN (1989) Plate Tectonics 2.5 Billion Years Ago: Evidence at Kolar, South India. Science 243(4896):1337–1340

    Article  Google Scholar 

  • Kröner A, Hoffmann JE, Xie H, Wu F-Y, Münker C, Hegner E, Wong J, Wan Y, Liu D (2013) Generation of early Archaean felsic greenstone volcanic rocks through crustal melting in the Kaapvaal, Craton, Southern Africa. Earth Planet Sci Lett 381:188–197. https://doi.org/10.1016/j.epsl.2013.08.029

    Article  Google Scholar 

  • Kröner A, Hoffmann JE, Xie H, Münker C, Hegner E, Wan Y, Hofman A, Liu D, Yang J (2014) Generation of early Archaean grey gneisses through melting of older crust in the Eastern kaapvaal Craton, Southern Africa. Precambrian Res 255:823. https://doi.org/10.1016/j.precamres.2014.07.017

    Article  Google Scholar 

  • Kumar S, Rino V (2006) Mineralogy and geochemistry of microgranular enclaves in Palaeoproterozoic Malanjkhand granitoids, Central India: evidence of magma mixing, mingling, and chemical equilibration. Contrib Mineral Petrol 152:591–609

    Article  Google Scholar 

  • Kumar A, Bhaskar Rao YJ, Sivaraman TV, Gopalan K (1996) Sm-Nd ages of Archaean metavolcanic of the Dharwar Craton, South India. Precambrian Res 80:206–215

    Article  Google Scholar 

  • Kumar A, Hamilton MA, Halls HC (2012) A Paleoproterozoic giant radiating dyke swarm in the Dharwar Craton, Southern India. Geochem Geophys Geosyst 13:Q02011. https://doi.org/10.1029/2011GC003926

    Article  Google Scholar 

  • Kumar A, Parashuramulu V, Nagaraju E (2015) A 2082 Ma radiating dyke swarm in the Eastern Dharwar Craton, Southern India and its implications to Cuddapah basin formation. Precambrian Res 266:490. https://doi.org/10.1016/j.precamres.2015.05.039

    Article  Google Scholar 

  • Lambert RSJ, McKerrow WS (1976) The Grampian orogeny. Scottish J Geol 12:271–292. https://doi.org/10.1144/sjg12040271

    Article  Google Scholar 

  • Lana C, Tohver E, Cawood P (2010) Quantifying rates of dome and keel formation in Barberton granitoid-greenstone belt, South Africa. Precambrian Res 177:199–211

    Article  Google Scholar 

  • Lancaster PJ, Storey CD, Hawkesworth CJ (2015a) The Eoarchaean foundation of the North Atlantic Craton. Geol Soc Lond Spec Publ 389(1):261–279

    Article  Google Scholar 

  • Lancaster PJ, Dey S, Storey CD, Mitra AM, Bhunia RK (2015b) Contrasting crustal evolution processes in the Dharwar Craton: insights from detrital zircon U–Pb and Hf isotopes. Gondw Res 28:1361–1372. https://doi.org/10.1016/j.gr.2014.10.010

    Article  Google Scholar 

  • Laurent O, Martin H, Doucelance R, Moyen J-F, Paquette J-L (2011) Geochemistry and petrogenesis of high-K “sanukitoids” from Bulai pluton, Central Limpopo Belt, South Africa: implications for geodynamic changes in Archean-Proterozoic boundary. Lithos 123(1-4):73–91

    Article  Google Scholar 

  • Laurent O, Martin H, Moyen J-F, Doucelance R (2014) The diversity and evolution of late-Archean granitoids: evidence for the onset of “modern-style” plate tectonics between 3.0 and 2.5 Ga. Lithos 205:208–235

    Article  Google Scholar 

  • Liu DY, Nutman AP, Compston W, Wu JS, Shen QH (1992) Remnants of >3800 Ma crust in the Chinese part of the Sino-Korean Craton. Geology 20:339–342

    Article  Google Scholar 

  • Liu SW, Lu YJ, Feng YG, Zhang C, Tian W, Yan QR, Liu XM (2007) Geology and zircon U-Pb isotopic chronology of Dantazi complex, Northern Hebei Province. Geol J China Univ 13:484–497. (in Chinese with English abstract)

    Google Scholar 

  • Machetel P, Weber P (1991) Intermittent layered convection in a model mantle with an endothermic phase change at 670 km. Nature 350:55–57

    Article  Google Scholar 

  • Mahabaleshwar B, Jayananda M, Peucat J-J, Shadakshara Swamy N (1995) Archaean high-grade gneiss complex from Satnur–Halagur–Sivasamudram areas, Karnataka, Southern India: petrogenesis and crustal evolution. J Geol Soc India 45:33–49

    Google Scholar 

  • Maibam B, Deomurari MP, Goswami JN (2003) 207Pb–206Pb ages of zircons from the Nuggihalli schist belt, Dharwar Craton, Southern India. Curr Sci 85(10):1482–1485

    Google Scholar 

  • Maibam B, Goswami JN, Srinivasan R (2011) Pb–Pb zircon ages of Archaean meta-sediments and gneisses from the Dharwar Craton, Southern India: implications for the antiquity of the Eastern Dharwar Craton. J Earth Syst Sci 120(4):643–661

    Article  Google Scholar 

  • Maibam B, Gerdes A, Goswami JN (2016) U-Pb and Hf isotope records in detrital and magmatic zircon from Eastern and Western Dharwar Craton, Southern India: evidence for coeval Archean crustal evolution. Precambrian Res 275:496–512

    Article  Google Scholar 

  • Maibam B, Gerdes A, Srinivasan R, Goswami JN (2017) Sargur meta-sediments, Dharwar Craton, Southern India: new insights on the provenance and crustal evolution. Curr Sci 113(7):1394–1402

    Article  Google Scholar 

  • Malviya VP, Arima M, Pati JK, Kaneko Y (2006) Petrology and geochemistry of metamorphosed basaltic pillow lava and basaltic-komatiite in Mauranipur area: subduction related volcanism in the Archean Bundelkhand Craton, Central India. J Mineral Petrol Sci 101:199–217

    Article  Google Scholar 

  • Manikyamba C, Kerrich R (2011) Geochemistry of alkaline basalts and associated high-Mg basalts from the 2.7 Ga Penakacherla Terrane, Dharwar Craton, India: an Archean depleted mantle-OIB array. Precambrian Res 188:104–122

    Article  Google Scholar 

  • Manikyamba C, Kerrich R (2012) Eastern Dharwar Craton, India: continental lithosphere growth by accretion of diverse plume and arc terranes. Geosci Front 3:225–240

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Naqvi SM, Ram Mohan M (2004) Geochemical systematics tholeiitic basalts from the 2.7 Ga Ramagiri-Hungund composite greenstone belt, Dharwar Craton. Precambrian Res 134:21–39

    Article  Google Scholar 

  • Manikyamba C, Naqvi SM, Rao DVS, Mohan MR, Khanna TC, Rao TG, Reddy GLN (2005) Boninites from the Neoarchean Gadwal greenstone belt, Eastern Dharwar Craton, India: implications for Archean subduction processes. Earth Planet Sci Lett 230:65–83

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna TC, Krishna AK, Satyanarayanan M (2008) Geochemical systematics of komatiite-tholeiite and adakite-arc basalt associations: the role of a mantle plume and convergent margin in formation of the Sandur Superterrane, Dharwar Craton, India. Lithos 106:155–172

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Khanna TC, Satyanarayanan M, Krishna AK (2009) Enriched and depleted arc basalts, with high-Mg andesites and adakites: a potential paired arc-back arc of the 2.7 Ga Hutti greenstone terrane, India. Geochim Cosmochim Acta 73:1711–1736

    Article  Google Scholar 

  • Manikyamba C, Kerrich R, Polat A, Saha A (2013) Geochemistry of two stratigraphically related ultramafic (komatiite) layer from the Neoarchean Siggeguda greenstone terrane, Western Dharwar Craton, India: evidence for compositional diversity in Archean mantle plume. Lithos 177:120–135

    Article  Google Scholar 

  • Manikyamba C, Ganuly S, Santosh M, Rajanikanth Singh R, Saha A (2014) Arc-nascent back-arc signature in metabasalts from the Neoarchaean Jonnagiri greenstone terrane, Eastern Dharwar Craton, India. Geol J 50:651. https://doi.org/10.1002/gj.2581

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Santosh M, Singh MR, Saha A (2015a) Arc-nascent back arc signatures in metabasalts from the Neoarchean Jonnagiri greenstone terrane, Eastern Dharwar Craton, India. Geol J 50:651–659

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Santosh M, Saha A, Chatterjee A, Khelen AC (2015b) Neoarchean arc-juvenile back-arc magmatism in Eastern Dharwar Craton, India: geochemical fingerprints from the basalts of Kadiri greenstone belt. Precambrian Res 258:1–23

    Article  Google Scholar 

  • Manikyamba C, Chandan Kumar B, Rambabu S, Santosh M, Tang L, Saha A, Khelen AC, Ganguly S, Singh TD, Subba Rao DV (2016) Zircon U-Pb geochronology, Lu-Hf isotope systematics, and geochemistry of bimodal volcanic rocks and associated granitoids from Kotri Belt, Central India: implications for Neoarchean–Paleoproterozoic crustal growth. Gondw Res 38:313–333

    Article  Google Scholar 

  • Manikyamba C, Ganguly S, Santosh M, Subramanyam KSV (2017) Volcano-sedimentary and metallogenic records of the Dharwar greenstone terranes, India: window to Archean plate tectonics, continent growth, and mineral endowment. Gondw Res 50:38. https://doi.org/10.1016/j.gr.2017.06.005

    Article  Google Scholar 

  • Manu Prasanth MP, Hari KR, Chalapathi Rao NV, Hou G, Pandit D (2017) An island‐arc tectonic setting for the Neoarchean Sonakhan Greenstone Belt, Bastar Craton, Central India: insights from the chromite mineral chemistry and geochemistry of the siliceous high‐Mg basalts (SHMB). Geol J 53:1526–1542

    Article  Google Scholar 

  • Martin H (1986) Effect of steeper Archean geothermal gradient on geochemistry of subduction-zone magmas. Geology 14:753–756

    Article  Google Scholar 

  • Maya JM, Bhutani R, Balakrishnan S, Rajee Sandhya S (2017) Petrogenesis of 3.15 Ga old Banasandra komatiites from the Dharwar Craton, India: implications for early mantle heterogeneity. Geosci Front 8:467–481

    Article  Google Scholar 

  • Mazumdar R (2005) Proterozoic sedimentation and volcanism in Singhbhum crustal province, India and implications, sedimentation system, stratigraphy related Precambrian sea level. Sediment Geol 176:167–193

    Article  Google Scholar 

  • Mazumder R, Bose PK, Sarkar S (2000) A com-mentary on the tectono-sedimentary record of therpre-2.0 Ga continental growth of India vis-a-visPre-Gondwana Afro-Indian supercontinent. J Afr Earth Sci 30:201–217

    Google Scholar 

  • McKenzie D (1984) The generation and compaction of partially molten rock. J Petrol 25(3):713–765. https://doi.org/10.1093/petrology/25.3.713

    Article  Google Scholar 

  • McKenzie D, Weiss N (1975) Speculations on the thermal and tectonic history of the Earth. Royal Astron Soc Geophys J 42:131. https://doi.org/10.1111/j.1365-246X.1975.tb05855.x

    Article  Google Scholar 

  • McLennan SM, Taylor SR (1991) Sedimentary-rocks and crustal evolution: tectonic setting and secular trends. J Geol 99:1–21. https://doi.org/10.1086/629470

    Article  Google Scholar 

  • Meen JK, Rogers JJ, Fullagar PD (1992) Lead isotopic composition of the Western Dharwar Craton, Southern India: evidence for distinct middle Archaean terrenes in a late Archaean Craton. Geochim Cosmochim Acta 56:2455–2470

    Article  Google Scholar 

  • Meert JG, Pandit MK, Pradhan VR, Banks J, Sirianni R, Stroud M, Newstead B, Gifford J (2010) Precambrian crustal evolution of peninsular India: a 3.0 billion years odyssey. J Asian Earth Sci 39(6):483–515

    Article  Google Scholar 

  • Miller SR, Mueller PA, Meert J, Kamenov GD, Pivarunas AF, Sinha AK, Pandit MK (2018) Detrital zircons reveal evidence of hadean crust in the Singhbhum Craton, India. J Geol 126:541–552

    Article  Google Scholar 

  • Mishra S, Johnson TP (2005) Geochronological constraints on evolution of Singhbhum Mobile Belt and associated basic volcanics of Eastern Indian shield. Gondw Res 8:129–142

    Article  Google Scholar 

  • Mishra S, Deomurari MP, Wiedenbeck M, Goswami JN, Ray S, Saha AK (1999) 207Pb/206Pb zircon ages and the evolution of the Singhbhum Craton, Eastern India: an ion microprobe study. Precambrian Res 93:139–151

    Article  Google Scholar 

  • Mishra S, Sarkar SS, Ghosh S (2002) Evolution of Mayurbhanj Granite Pluton, Eastern Singhbhum, India: a case study of petrogenesis of an A-type granite in bimodal association. J Asian Earth Sci 15:965–989

    Article  Google Scholar 

  • Mohakul JP, Bhutia SP (2015) Regional structural analysis and reinterpretation in the Bonai-Keonjhar Belt, Singhbhum Craton: implication for revision of the lithostratigraphic succession. J Geol Soc India 85(1):26–36

    Article  Google Scholar 

  • Mohan MR, Singh SP, Santosh M, Siddiqui MA, Balaram V (2012) TTG suite from the Bundelkhand Craton, Central India: geochemistry, petrogenesis and implications for Archean crustal evolution. J Asian Earth Sci 58:38–50

    Article  Google Scholar 

  • Mohan MR, Satyanarayanan M, Santosh M, Sylvester PJ, Tubrett M, Lam R (2013) Neoarchean supra-subduction zone arc magmatism in Southern India. Geochemistry and U-Pb geochronology and Hf isotopes of Sittampundi aNorthosite complex. Gondw Res 23:539–557

    Article  Google Scholar 

  • Mohan MR, Sarma DS, McNaughton NJ, Fletcher IR, Wilde SA, Siddiqui MH, Rasmussen B, Krapez B, Gregory CJ, Kamo SL (2014) SHRIMP zircon and titanite U-Pb ages, Lu-Hf isotope signatures and geochemical constraints for 2.56 Ga granite magmatism in Western Dharwar Craton, Southern India: evidence for short-lived Neoarchean episodic crustal growth. Precambrian Res 243:197–220

    Article  Google Scholar 

  • Mohanty M, Panda PK, Mohanty BK (2008) Petrogenesis of pal laharha granite gneiss in Eastern India Craton: evidence from field relation and petrochemistry. J Geol Soc India 72:415–431

    Google Scholar 

  • Mohanty N, Singh SP, Satyanarayanan M, Jayananda M, Korakoppa MM, Hiloidari S (2019) Chromian spinel compositions from Madawara ultramafics, Bundelkhand Craton: implications on petrogenesis and tectonic evolution of the Southern part of Bundelkhand Craton, Central India. Geol J 54:2099–2123. https://doi.org/10.1002/gj.3286

    Article  Google Scholar 

  • Mojzsis S, Harrison TM (2002) Origin and significance of Archean quartzose rocks at Akilia, Greenland. Science 298:917. https://doi.org/10.1126/science.298.5595.917a. discussion 917

    Article  Google Scholar 

  • Mojzsis SJ, Devaraju TC, Newton RC (2003) Ion microprobe U–Pb age determinations on zircon from the late Archean granulite facies transition zone of Southern India. J Geol 111(4):407–425

    Article  Google Scholar 

  • Mojzsis SJ, Cates N, Caro G, Trail D, Abramov O, Guitreau M, Blichert-Toft J, Hopkins M, Bleeker W (2014) Component geochronology in the polyphase ca. 3920 Ma Acasta Gneiss. Geochim Cosmochim Acta 133:68–96. https://doi.org/10.1016/j.gca.2014.02.019

    Article  Google Scholar 

  • Mole D, Fiorentini M, Thébaud N, Cassidy K, McCuaig T, Kirkland C, Romano S, Doublier M, Belousova E, Barnes S, Miller J (2014) Archean komatiite volcanism controlled by the evolution of early continents. Proc Natl Acad Sci U S A 111:10083. https://doi.org/10.1073/pnas.1400273111

    Article  Google Scholar 

  • Mondal MEA, Sharma KK, Rahman A, Goswami JN (1998) Ion microprobe207Pb/206Pb zircon ages for gneiss-granitoid rocks from Bundelkhand massif: evidence for Archaean components. Curr Sci 74:70–75

    Google Scholar 

  • Mondal MEA, Goswami JN, Deomurari MP, Sharma KK (2002) Ion microprobe 207Pb/206Pb ages of zircons from the Bundelkhand massif, Northern India: implications for crustal evolution of the Bundelkhand–Aravalli protocontinent. Precambrian Res 117:85–100

    Article  Google Scholar 

  • Mondal MEA, Hussain MF, Ahmad T (2006) Continental growth of Bastar Craton, Central Indian shield during Precambrian via multiphase subduction and lithospheric extension/rifting: evidence from geochemistry of gneisses, granitoids and mafic dykes. J Geosci Osaka City Univ 49:137–151

    Google Scholar 

  • Moyen JF (2000) Late-Archean Granitic Magmatism: Example of the Dharwar CRATON southern India (Closepet Granite and Related Intrusions). Universite de Blais- Pascal, Clermont Ferrand, France (Ph.D. Thesis).

    Google Scholar 

  • Moyen J-F (2011) The composite Archaean grey gneisses: petrological significance, and evidence for a non-unique tectonic setting for Archaean crustal growth. Lithos 123:21–36

    Article  Google Scholar 

  • Moyen J-F, Laurent O (2018) Archaean tectonic systems: a view from igneous rocks. Lithos 302-303:99–125

    Article  Google Scholar 

  • Moyen J-F, Martin H, Jayananda M (2001) Multi-element geochemical modelling of crust-mantle interactions during late-Archaean crustal growth: the Closepet granite (South India). Precambrian Res 112:87–105

    Article  Google Scholar 

  • Moyen J-F, Martin A, Jayananda M, Auvray B (2003a) Late Archaean granites: a typology based on the Dharwar Craton (India). Precambrian Res 127:102–123

    Article  Google Scholar 

  • Moyen J-F, Nedelec A, Martin H, Jayananda M (2003b) Syn-tectonic granite emplacement at different structural levels: the Closepet granite, South India. J Struct Geol 25:611–631

    Article  Google Scholar 

  • Moyniera F, Yina Q-Z, Irisawaa K, Boyet M, Jacobsen B, Rosing MT (2010) Coupled 182W-142Nd constraints for early Earth differentiation. Proc Natl Acad Sci 107:10810–10814

    Article  Google Scholar 

  • Mukhopadhyay D (1986) Structural pattern in the Dharwar Craton. J Geol 94:167–186

    Article  Google Scholar 

  • Mukhopadhyay D (2001) The Archaean nucleus of singhbhum: the present state of knowledge. Gondw Res 4:307–318

    Article  Google Scholar 

  • Mukhopadhyay J, Beukes NJ, Armstrong RA, Zimmermann U, Ghosh G, Medda RA (2008) Dating the oldest greenstone in India: a 3.51-Ga precise U-Pb SHRIMP zircon age for dacitic lava of the Southern iron ore group, Singhbhum Craton. J Geol 116:449–461

    Article  Google Scholar 

  • Mukhopadhyay J, Ghosh G, Zimmermann U, Guha S, Mukherje T (2012) A 3.51 Ga bimodal volcanic-BIF-ultramafic succession from Singhbhum Craton: implications for Palaeoarchaean geodynamic processes from the oldest greenstone succession of the Indian subcontinent. Geol J 47:284–311

    Article  Google Scholar 

  • Mukhopadhyay J, Beukes NJ, Armstrong R (2014) Depositional setting and new age constraints of the Bailadila Group, Bastar Craton: implications for the oldest ‘Superior type’ Iron Formation in India and its economic potential. Gondw Geol Mag Spec 16:2013–2214

    Google Scholar 

  • Naganjaneyulu K, Santosh M (2010) The Central India Tectonic Zone: a geophysical perspective on continental amalgamation along a Mesoproterozoic suture. Gondw Res 18:547–564. https://doi.org/10.1016/j.gr.2010.02.017

    Article  Google Scholar 

  • Naha K, Mukhopadhyay D, Dastidar S, Mukhopadhyay RP (1995) Basement–cover relations between granite gneiss body and its metasedimentary envelope: a structural study from early Precambrian Dharwar tectonic province, Southern India. Precambrian Res 72:238–299

    Article  Google Scholar 

  • Naqvi SM (2005) Geology and evolution of the Indian plate from Hadean to Holocene. CPC, New Delhi

    Google Scholar 

  • Naqvi SM, Allen P, Condie KC (1983) Geochemistry of some unusual early Archaean meta-sediments from Dharwar Craton, India. Precambrian Res 22:125–147

    Article  Google Scholar 

  • Naqvi SM, Sawkar RH, Subba Rao DV, Govil PK, Gnaneshwar Rao T (1988) Geology and geochemistry and tectonic setting of Archean graywackes from Karnataka Nucleus, India. Precambrian Res 39:193–216

    Article  Google Scholar 

  • Naqvi SM, Manikyamba C, Gnaneshwar Rao T, Subba Rao DV, Ram Mohan M, Srinivasa Sarma D (2002) Geochemical and isotopic constraints of Neoarchaean fossil plumes for evolution of the volcanic rocks of the Sandur Greenstone Belt, India. J Geol Soc India 60:27–56

    Google Scholar 

  • Naqvi SM, Khan RMK, Manikyamba C, Ram Mohan M, Khanna TC (2006) Geochemistry of the Neoarchaean high-Mg basalts, boninites and adakites from the Kushtagi–Hungund greenstone belt of the Eastern Dharwar Craton (EDC); implications for the tectonic setting. J Asian Earth Sci 27:25–44

    Article  Google Scholar 

  • Nasheeth A, Okudaira T, Horie K, Hokada T, Satish Kumar M (2016) U-Pb SHRIMP ages of detrital zircons from hiriyur formation in Chitradurga Greenstone Belt and its implication to the Neoarchean evolution of Dharwar Craton, South India. J Geol Soc India 87:43–54

    Article  Google Scholar 

  • Nebel O, Campbell I, Sossi P, Van Kranendonk M (2014) Hafnium and iron isotopes in early Archean komatiites record a plume-driven convection cycle in the Hadean Earth. Earth Planet Sci Lett 397:111–120. https://doi.org/10.1016/j.epsl.2014.04.028

    Article  Google Scholar 

  • Nelson D, Bhattacharya HN, Thern ER, Altermann W (2014) Geochemical and ion-microprobe U–Pb zircon constraints on the Archaean evolution of Singhbhum Craton, Eastern India. Precambrian Res 255:412–432

    Article  Google Scholar 

  • Newton RC (1990) The late high-grade terrain of South and the deep structure of the Dharwar Craton. In: Salisbury MH, Fountain DM (eds) Exposed cross sections of the continental crust. Kluwer Academic, Amsterdam, pp 305–326

    Chapter  Google Scholar 

  • Nisbet EG, Cheadle MJ, Arndt NT, Bickle MJ (1993) Constraining the potential temperature of the Archaean mantle: a review of the evidence from komatiites. Lithos 30:291–307

    Article  Google Scholar 

  • Nutman AP, Chadwick B, Ramakrishnan M, Viswanatha MN (1992) SHRIMP U-Pb ages of detrital zircon in Sargur supracrustal rocks in Western Karnataka, Southern India. J Geol Soc India 39:367–374

    Google Scholar 

  • Nutman AP, Chadwick B, Krishna Rao B, Vasudev VN (1996) SHRIMP U/Pb zircon ages of acid volcanic rocks in the Chitradurga and Sandur groups, and granites adjacent to the Sandur Schist belt, Karnataka. J Geol Soc India 47:153–164

    Google Scholar 

  • Nutman AP, Bennet VC, Friend CRL, Jenner FE, Wan Y, Liu DH (2009) Eoarchaean crustal growth in West Greenland (Itsaq Gneiss Complex) and in North-Eastern China (Anshan area): review and synthesis. Geol Soc Lond Spec Publ 318(1):127–154

    Article  Google Scholar 

  • O’Connor JT (1965) A classification for quartz-rich igneous rocks based on feldspar ratios. US Geol Surv Prof Paper 525(B):79–84

    Google Scholar 

  • O’Neil J, Carlson RW, Francis D, Stevenson RK (2008) Neodymium-142 evidence for Hadean mafic crust. Science 321(5897):1828–1831. https://doi.org/10.1126/science.1161925

    Article  Google Scholar 

  • Pandey OP, Mezger K, Ranjan S, Upadhyay D, Villa IM, Nagler TF, Vollstaedt H (2019) Genesis of the Singhbhum Craton, Eastern India; implications for Archean crust-mantle evolution of the Earth. Chem Geol 512:85–106

    Article  Google Scholar 

  • Panigrahi MK, Bream BR, Misra KC, Naik RK (2004) Age of granitic activity associated with copper-molybdenum mineralization at Malanjkhand, Central India. Miner Deposita 39:670–677

    Article  Google Scholar 

  • Paquette JL, Barbosa J, Rohais S, Cruz SCP, Goncalves P, Peucat JJ, Leal ABM, Santos-Pinto M, Martin H (2015) The geological roots of South America: 4.1Ga and 3.7Ga zircon crystals discovered in N.E. Brazil and N.W. Argentina. Precambrian Res 271:49–55. https://doi.org/10.1016/j.precamres.2015.09.027

    Article  Google Scholar 

  • Parman S (2018) An Archaean mushy mantle. Nat Geosci 11. https://doi.org/10.1038/s41561-018-0060-5

    Article  Google Scholar 

  • Parman S, Dann J, Grove TL, de Wit MJ (1997) Emplacement conditions of komatiite magmas from the 3.49 Ga Komati Formation, Barberton Greenstone Belt, South Africa. Earth Planet Sci Lett 150:303–323

    Article  Google Scholar 

  • Pati JK, Patel SC, Pruseth KL, Malviya VP, Arima M, Raju S, Pati P, Prakash K (2007) Geology and geochemistry of giant quartz veins from the Bundelkhand Craton, Central India and their implications. J Earth Syst Sci 116:497–510

    Article  Google Scholar 

  • Peucat J-J, Mahabaleswar M, Jayananda M (1993) Age of younger tonalitic magmatism and granulite metamorphism in the amphibolite–granulite transition zone of Southern India (Krishnagiri area): comparison with older peninsular gneisses of Gorur-Hassan area. J Metam Geol 11:879–888

    Article  Google Scholar 

  • Peucat J-J, Bouhallier H, Fanning CM, Jayananda M (1995) Age of Holenarsipur schist belt, relationships with the surrounding gneisses (Karnataka, South India). J Geol 103:701–710

    Article  Google Scholar 

  • Peucat J-J, Jayananda M, Chardon D, Capdevila R, Fanning Marc C, Paquette J-L (2013) The lower crust of Dharwar Craton, South India: patchwork of Archean granulitic domains. Precambrian Res 227:4–29. https://doi.org/10.1016/j.precamres.2012.06.009

    Article  Google Scholar 

  • Pichamuthu CS (1965) Regional metamorphism and charnockitisation in Mysore state India. Indian Mineralog 6:116–126

    Google Scholar 

  • Polat A, Kerrich R (1999) Formation of an Archean tectonic mélange in the Schreiber‐Hemlo greenstone belt, Superior Province, Canada: implications for Archean subduction‐accretion process. Tectonics 18:733. https://doi.org/10.1029/1999TC900032

    Article  Google Scholar 

  • Polat A, Wang L, Appel PWU (2015) A review of structural patterns and melting processes in the Archean Craton of West Greenland: evidence for crustal growth at convergent plate margins as opposed to non-uniformitarian models. Tectonophysics 662:67–94

    Article  Google Scholar 

  • Prabhakar N, Bhattacharya A (2013) Paleoarchean partial convective overturn in the Singhbhum Craton, Eastern India. Precambrian Res 231:106–121

    Article  Google Scholar 

  • Prabhakar BC, Jayananda M, Shareef M, Kano T (2009) Synplutonic mafic injections into crystallizing granite pluton in the Northern part of the Eastern Dharwar Craton: implications for the magma chamber processes. J Geol Soc India 74:171–188

    Article  Google Scholar 

  • Prakash D, Chandra Singh P, Tewari S, Joshi M, Frimmel HE, Hokada T, Rakotonandrasana T (2017) Petrology, pseudosection modelling and U-Pb geochronology of silica-deficient Mg-Al granulites from the Jagtiyal section of Karimnagar granulite terrane, northeastern Dharwar Craton, India. Precambrian Res 299:177–194

    Article  Google Scholar 

  • Raase P, Raith M, Ackermand D, Lal RK (1986) Progressive metamorphism of mafic rocks from greenschist to granulite facies in the Dharwar Craton of South India. J Geol 94:261–282

    Article  Google Scholar 

  • Radhakrishna BP (1983) Archean Granite-Greenstone terrain of the South Indian shield. Mem Geol Soc India 4:1–46

    Google Scholar 

  • Radhakrishna BP (1989) Suspect tectono-stratigraphic terrane elements in the Indian Subcontinent. J Geol Soc India 34:1–24

    Google Scholar 

  • Radhakrishna T, Joseph M (1996) Proterozoic paleomagnetism of the mafic dyke swarms in the high grade region of Southern India. Precambrian Res 76:31–46. https://doi.org/10.1016/0301‐9268(95)00022‐4

    Article  Google Scholar 

  • Radhakrishna BP, Naqvi SM (1986) Precambrian continental crust of India and its evolution. J Geol 94:145–166

    Article  Google Scholar 

  • Radhakrishna T, Joseph M, Krishnendu NR, Balasubramonian G (2003) Palaeomagnetism of mafic dykes in the Karnataka Craton: possible geodynamic implications. Geol Soc India Mem 50:193–224

    Google Scholar 

  • Radhakrishna T, Chandra R, Srivastava AK, Balasubramonian G (2013) Central/Eastern Indian Bundelkhand and Bastar Cratons in the Palaeoproterozoic supercontinental reconstructions: a palaeomagnetic perspective. Precambrian Res 226:91–104

    Article  Google Scholar 

  • Raith M, Raase P, Ackermand D, Lal RK (1982) The Archean Dharwar Craton of Southern India: metamorphic evolution and P–T conditions. Geologisches Rundschau 71:280–290

    Article  Google Scholar 

  • Rajamani V, Shivkumar K, Hanson GN, Shirey SB (1985) Geochemistry and petrogenesis of amphibolites, Kolar Schist Belt, South India: evidence for komatiitic magma derived by low percentage of melting of the mantle. J Petrol 96:92–123

    Article  Google Scholar 

  • Rajamanickam M, Balakrishnan S, Bhutani R (2014) Rb–Sr and Sm–Nd isotope systematics and geochemical studies on metavolcanic rocks from Peddavura greenstone belt: evidence for presence of Mesoarchean continental crust in easternmost part of Dharwar Craton, India. J Earth Syst Sci 123:989–1011

    Article  Google Scholar 

  • Rajesh HM, Mukhopadhyay J, Beukes J, Gutzmer J, Belyanin GA, Armstrong RA (2009) Evidence for an early Archaean granite from Bastar Craton, India. J Geol Soc Lond 166:193–196

    Article  Google Scholar 

  • Ramachandra HM, Roy A (1998) Geology of intrusive granitoids with particular reference to Dongargarh granite and their impact on tectonic evolution of the Precambrian in Central India. Indian Miner 52:15–32

    Google Scholar 

  • Ramakrishnan M (1990) Crustal development in Southern Bastar, Central Indian Craton. Geol Surv India Spec Publ 28:44–66

    Google Scholar 

  • Ramakrishnan M, Vaidyanadhan R (2010) Geology of India, vol 1. Geological Society of India, Bangalore. 556 p

    Google Scholar 

  • Ramakrishnan M, Viswanatha MN, Swami Nath J (1976) Basement-cover relationships of Peninsular Gneisses with high grade schists and greenstone belts of Southern Karnataka. J Geol Soc India 17:97–111

    Google Scholar 

  • Ramakrishnan M, Kröner A, Vankata Dasu SP (1994) Mid-Archean zircon age of Sargur Group by single grain zircon dating and geochemical evidence from clastic origin of metaquartzite from JC Pura greenstone belt, Karnataka. J Geol Soc India 29:471–482

    Google Scholar 

  • Ramiz MM, Mondal MEA, Farooq SH (2019) Geochemistry of ultramafic–mafic rocks of the Madawara Ultramafic Complex in the Southern part of the Bundelkhand Craton, Central Indian shield: implications for mantle sources and geodynamic setting. Geol J 54:2185

    Article  Google Scholar 

  • Rao TG, Naqvi SM (1995) Geochemistry, depositional environment and tectonic setting of the BIF are of the Late Archaean Chitradurga Schist Belt, India. Chem Geol 121(1–4):217–243

    Article  Google Scholar 

  • Rao MJ, Poornachandra Rao GVS, Widdowson M, Kelley SP (2005) Evolution of Proterozoic mafic dyke swarms of the Bundelkhand Granite Massif, Central India. Curr Sci 88:502–506

    Google Scholar 

  • Ratheesh Kumar RT, Santosh M, Yang Q-Y, Iswar Kumar C, Chen NS, Sajeev K (2016) Archean tectonics and crustal evolution of the Bligiri Rangan Block, Southern India. Precambrian Res 275:406–428

    Article  Google Scholar 

  • Raval U, Veeraswamy K (2011) Mapping of tectonic corridors through hidden parts of greater Dharwar Terrane, Southern India. J Asian Earth Sci 42:1210–1225

    Article  Google Scholar 

  • Raza A, Mondal MEA (2019) Geochemistry of the mafic metavolcanic rocks of Mauranipur-Babina Greenstone Belt, Bundelkhand Craton, Central India: implication for tectonic settings during the Archaean. In: Mondal ME (ed) Geological evolution of the Precambrian Indian shield. Springer, Cham, pp 577–607. https://doi.org/10.1007/978-3-319-89698-4-22

    Chapter  Google Scholar 

  • Rekha S, Viswanath TA, Bhattacharya A, Naraga P (2013) Meso/Neoarchean crustal domains along the North Konkan coast, Western India: the Western Dharwar Craton and the Antongil-Masora Block (NE Madagascar) connection. Precambrian Res 233:316–336. https://doi.org/10.1016/j.precamres.2013.05.008

    Article  Google Scholar 

  • Rey P, Vanderhaeghe O, Teyssier C (2001) Gravitational collapse of the continental crust: definition, regimes and modes. Tectonophysics 342:435–449

    Article  Google Scholar 

  • Reymer A, Schubert G (1984) Phanerozoic addition rates to the continental crust and crustal growth. Tectonics 3:63–77

    Article  Google Scholar 

  • Richter FM (1985) Models for the Archean thermal regime. Earth Planet Sci Lett 73:350–360

    Article  Google Scholar 

  • Roberts NMW, Spencer CJ (2015) The zircon archive of continent formation through time. Geological Society, London, Special Publications 389(1):197–225

    Article  Google Scholar 

  • Roberts NMW, Santosh M (2018) Capturing the mesoarchean emergence of continental crust in the Coorg Block, Southern India. Geophys Res Lett 45:7444. https://doi.org/10.1029/2018GL078114

    Article  Google Scholar 

  • Rogers AJ, Kolb J, Meyer FM, Armstrong RA (2007) Tectono-magmatic evolution of the Hutti–Maski Greenstone Belt, India: constrained using geochemical and geochronological date. J Asian Earth Sci 31:55–70

    Article  Google Scholar 

  • Rogers AJ, Kolb J, Meyer FM, Vennemann T (2013) Two stages of gold mineralization at Hutti Mine, India. Miner Deposita 48:99–114

    Article  Google Scholar 

  • Rollinson HR, Windley BF, Ramakrishnan M (1981) Contrasting high and intermediate pressures of metamorphism in the Archaean Sargur Schists of Southern India. Contrib Mineral Petrol 76:420–429

    Article  Google Scholar 

  • Roth ASG, Bourdon B, Mojzsis SJ, Touboul M, Sprung P, Guitreau M, Blichert-Toft J (2013) Inherited 142Nd anomalies in Eoarchean protoliths. Earth Planet Sci Lett 361:50–57. https://doi.org/10.1016/j.epsl.2012.11.023

    Article  Google Scholar 

  • Roy AB, Bhattacharya HN (2012) Tectonostratigraphic and geochronologic reappraisal constraining the growth and evolution of Singhbhum Archaean Craton, Eastern India. J Geol Soc India 80:455–469

    Article  Google Scholar 

  • Roy A, Hanuma Prasad M (2003) Tectonothermal events in Central Indian Tectonic Zone (CITZ) and its implications in Rodinian crustal assembly. J Asian Earth Sci 22:115–129

    Article  Google Scholar 

  • Saha AK (1994) Crustal evolution of Singhbhum – North Orissa, Eastern India. Mem Geol Soc India 27:339

    Google Scholar 

  • Saha AK, Ray SL (1984) The structural and geochemical evolution of the Singhbhum granite batholithic complex, India. Tectonophysics 105:163–176

    Article  Google Scholar 

  • Saha AK, Ghosh S, Dasgupta D, Mukhopadhyay K, Ray SL (1984) Studies on crustal evolution of the Singhbhum-Orissa iron-ore Craton. In: Crustal evolution of parts of India shield. Indian Society of Earth Science, Kolkata, pp 1–74

    Google Scholar 

  • Saha AK, Basu AR, Garzione CN, Bandyopadhyay PK, Chakrabarti A (2004) Geochemical and petrological evidence for subduction-accretion process in the Archean Eastern Indian Craton. Earth Planet Sci Lett 220:91–106

    Article  Google Scholar 

  • Saha L, Pant NC, Pati JK, Upadhyay D, Berndt J, Bhattacharya A, Satynarayanan M (2011) Neoarchean high-pressure margarite–phengitic muscovite–chlorite corona mantled corundum in quartz-free high-Mg, Al phlogopite–chlorite schists from the Bundelkhand Craton, North Central India. Contrib Mineral Petrol 161(4):511–530

    Article  Google Scholar 

  • Saha L, Hofmann A, Xie H (2012) Archaean evolution of the Singhbhum Craton: constraints from new metamorphic-geochemical data and SHRIMP zircon ages. In: Craton formation and destruction with special emphasis on BRICS Cratons, University of Johannesburg, South Africa, pp 7–9

    Google Scholar 

  • Saha L, Frei D, Gerdes A, Pati JK, Sarkar S, Patole V, Nasipuri P (2016) Crustal geodynamics from the Archaean Bundelkhand Craton, India: constraints from zircon U‐Pb‐Hf isotope studies. Geol Mag 153:170–192

    Article  Google Scholar 

  • Samuel V, Santosh M, Yang QY, Sajeev K (2016) Geochemistry and zircon geochronology of the Neoarchean volcano-sedimentary sequence along the Northern margin of the Nilgiri Block, Southern India. Lithos 263:257–273. https://doi.org/10.1016/j.lithos2016.01.027

    Article  Google Scholar 

  • Sandiford M, Powell R (1991) Some remarks on high‐temperature—low‐pressure metamorphism in convergent orogens. J Metam Geol 9(3):333–340

    Article  Google Scholar 

  • Santosh M, Yokoyama K, Acharyya SK (2004) Geochronology and Tectonic Evolution of Karimnagar and Bhopalpatnam Granulite Belts, Central India. Gondwana Research 7(2):501–518

    Article  Google Scholar 

  • Santosh M, Yang QY, Shaji E, Tsunogae T, Ram Mohan M, Satyanaranyanan M (2015) An exotic Mesoarchean microcontinent: the Coorg Block, Southern India. Gondw Res 27:165–195

    Article  Google Scholar 

  • Santosh M, Arai T, Maruyama S (2017) Hedean Earth and primordial continents: the cradle of perbiotic life. Geosci Front 8:309–327

    Article  Google Scholar 

  • Santosh M, Li SS (2018) Anorthosites from an Archean continental arc in the Dharwar craton, southern India: implications for terrance assembly and cratonization. Precambrian Res 308:126–147

    Article  Google Scholar 

  • Sarkar A, Sarkar G, Paul DK, Mitra ND (1990) Precambrian geochronology of the Central Indian shield-a review. Geol Surv India Spec Publ 28:453–482

    Google Scholar 

  • Sarkar G, Corfu F, Paul DK, McNaughton NJ, Gupta SN, Bishui PK (1993) Early Archaean crust in Bastar Craton, Central India: a geochemical and isotopic study. Precambrian Res 62:127–137

    Article  Google Scholar 

  • Sarma DS, Neal J, McNaughton NJ, Fletcher IR, Groves DI, Ram Mohan M, Balaram V (2008) Timing of gold mineralization in the Hutti gold deposit, Dharwar Craton, South India. Econ Geol 103:1715–1727

    Article  Google Scholar 

  • Sarma DS, Fletcher IR, Rasmussen B, McNaughton NJ, Mohan MR, Groves DI (2011) Archaean gold mineralization synchronous with late cratonization of the Western Dharwar Craton, India: 2. 52 Ga U-Pb ages of hydrothermal monazite and xenotime in gold deposits. Miner Deposita 46:273–288

    Article  Google Scholar 

  • Sarma DS, McNaughton NJ, Belusova E, Ram Mohan M, Fletcher IR (2012) Detrital zircon U–Pb ages and Hf-isotope systematics from the Gadag Greenstone Belt: Archean crustal growth in the Western Dharwar Craton, India. Gondw Res 22:843–854

    Article  Google Scholar 

  • Saunders AD, Norry MJ, Tarney J (1988) Origin of MORB and chemically depleted mantle reservoirs: trace element constraints. J Petrol 29:415–445

    Article  Google Scholar 

  • Sawada H, Isozaki Y, Sakata S, Hirata T, Maruyama S (2016) Secular change in lifetime of granitic crust and the continental growth: a new view from detrital zircon ages of sandstones. Geosci Front 9(4):1099–1115

    Article  Google Scholar 

  • Schiotte L, Compston W, Bridgwater D (1989) Ion probe U-Th-Pb zircon dating of polymetamorphic orthogneisses from Northern Labrodar, Canada. Can J Earth Sci 26:1533–1556

    Article  Google Scholar 

  • Sengupta S, Paul DK, de Laeter JR, McNaughton NJ, Bandopadhyay PK, de Smeth JB (1991) Mid-Archaean evolution of the Eastern Indian Craton: geochemical and isotopic evidence from the Bonai pluton. Precambrian Res 49:23–37

    Article  Google Scholar 

  • Sengupta S, Acharyya SK, DeSmith JB (1997) Geochemistry of Archaean volcanic rocks from Iron Ore Supergroup, Singhbhum, Eastern India. Proc Indian Acad Sci (Earth Planet Sci) 106:327–342

    Google Scholar 

  • Sensarma S (2007) A bimodal large igneous province and the plume debate: the Paleoproterozoic Dongargarh Group, Central India. Geol Soc Am Spec Paper 430:831–839

    Google Scholar 

  • Sensarma S, Palme H, Mukhopadhyay D (2002) Crust–mantle interaction in the genesis of siliceous high magnesian basalts: evidence from the Early Proterozoic Dongargarh Supergroup, India. Chem Geol 187:21–37

    Article  Google Scholar 

  • Seshadri TS, Chaudhuri A, Harinadhababu P, Chayapathi N (1981) Chitradurga belt. In: Swaminath J, Ramakrishnan M (eds) Early Precambrian supracrustals of Southern Karnataka. Geological Survey of India Memoir, vol 112. Geological Survey of India, Kolkata, pp 163–198

    Google Scholar 

  • Shaji E, Santosh M, He X-F, Fan H-R, Dev SGD, Yang K-F, Thangal MK, Pradeepkumar AP (2014) Convergent margin processes during Archean–Proterozoic transition in southern India: Geochemistry and zircon U–Pb geochronology of gold-bearing amphibolites, associated metagabbros, and TTG gneisses from Nilambur. Precambrian Res 250:68–96

    Article  Google Scholar 

  • Sharma KK (1998) Geological evolution and crustal growth of Bundelkhand Craton and its relict in the surrounding regions, North Indian shield. In: Paliwal BS (ed) The Indian Precambrian, vol 1593. Scientific Publishers, Jodhpur, pp 33–43

    Google Scholar 

  • Sharma M, Basu AR, Ray SL (1994) Sm-Nd isotopic and geochemical study of the Archaean tonalite-amphibolite association from the Eastern Indian Craton. Contrib Mineral Petrol 117:45–55

    Article  Google Scholar 

  • Shirey SB, Hanson N, Gilbert (1984) Mantle-derived Archean monzodiorites and trachy-andesites. Nature 310:222–224. https://doi.org/10.1038/310222a0

    Article  Google Scholar 

  • Shirey SB, Kamber BS, Whitehouse MJ, Mueller PA, Basu AR (2008) A review of the isotopic and trace element evidence for mantle and crustal processes in the Hadean and Archean: implications for the onset of plate tectonic subduction. In: Condie KC, Pease V (eds) When did plate tectonics begin on planet Earth?: Geological Society of America Special Paper, vol 440. Geological Society of America, New York, NY, pp 1–29. https://doi.org/10.1130/2008.2440(01)

    Chapter  Google Scholar 

  • Singh VK, Slabunov A (2015) The Central Bundelkhand Archaean greenstone complex, Bundelkhand Craton, Central India: geology, composition, and geochronology of supracrustal rocks. Int Geol Rev 57:1349–1364

    Article  Google Scholar 

  • Singh VK, Slabunov A (2016) Two types of Archaean supracrustal belts in the Bundelkhand Craton, India: geology, geochemistry, age and implication for Craton crustal evolution. J Geol Soc India 88:539–548

    Article  Google Scholar 

  • Singh MR, Manikyamba C, Ray J, Ganguly S, Santosh M, Saha A, Rambabu S, Sawant SS (2016) Major, trace and platinum group element (PGE) geochemistry of Archean Iron Ore Group and Proterozioc Malangtoli metavolcanic rocks of Singhbhum craton, Eastern India: Inferences on mantle melting and sulphur saturation history. Ore Geol Rev 72:1263–1289

    Article  Google Scholar 

  • Singh SP, Subramanyam KSV, Manikyamba C, Santosh M, Singh MR, Kumar BC (2018) Geochemical systematics of the Mauranipur-Babina greenstone belt, Bundelkhand Craton, Central India: insights on Neoarchean mantle plume-arc accretion and crustal evolution. Geosci Front 9(3):769–788

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Perchuk LL (2010) Subduction styles in the Precambrian: insights from numerical experiments. Lithos 116(3-4):209–229

    Article  Google Scholar 

  • Sizova E, Gerya T, Stuwe K, Brown M (2015) Generation of felsic crust in the Archean: A geodynamic modeling perspective. Precambrian Res 271:198–224

    Article  Google Scholar 

  • Sizova E, Gerya T, Brown M, Stuwe K (2018) What drives metamorphism in early Archean greenstone belts? Insights from numerical modelling. Tectonophysics 746:587. https://doi.org/10.1016/j.tecto.2017.07.020

    Article  Google Scholar 

  • Sleep NH (1979) Thermal history and degassing in the Earth: some simple calculations. J Geol 87:671–686

    Article  Google Scholar 

  • Smithies RH, Champion DC, Sun S-S (2004) The case of Archaean boninites. Contrib Mineral Petrol 147:705–721

    Article  Google Scholar 

  • Smithies RH, Champion DC, Van Kranendonk MJ (2009) Formation of continental crust through infracrustal melting of enriched basalt. Earth Planet Sci Lett 281:298–306

    Article  Google Scholar 

  • Smithies RH, Ivanic TJ, Lowrey JR, Morris PA, Barnes SJ, Wyche S, Lu YJ (2018) Two distinct origins for Archean greenstone belts. Earth Planat Sci Lett 487:106–116

    Article  Google Scholar 

  • Snowden PA (1984) Non-diapiric batholiths in the North of Zimbabwe shield. In: Kroner A, Greiling R (eds) Precambrian tectonics illustrated. Nagele and Obermiller, Stuttgart, pp 135–145

    Google Scholar 

  • Sobolev A, Asafov E, Gurenko A, Arndt AN, Batanova V, Portnyagin M, Garbe-Schönberg D, Krasheninnikov S (2016) Komatiites reveal a hydrous Archaean deep-mantle reservoir. Nature 531:628–632. https://doi.org/10.1038/nature17152

    Article  Google Scholar 

  • Söderlund U, Bleeker W, Demirer K, Srivastava RK, Hamilton M, Nilsson M, Pesonen L, Samal AK, Jayananda M, Ernst R, Srinivas M (2019) Emplacement ages of Paleoproterozoic mafic dyke swarms in Eastern Dharwar Craton, India: implications for paleo reconstructions and evidence for a ~30° internal block rotation. Precambrian Res 329:26–43. https://doi.org/10.1016/j.precamres.2018.12.017

    Article  Google Scholar 

  • Spencer CJ, Roberts NMW, Santosh M (2017) Growth, destruction, and preservation of Earth’s continental crust. Earth Sci Rev 172:87–106

    Article  Google Scholar 

  • Srinivas B, Dey S, Bhaskar Rao YJ, Vijaya Kumar T, Babu EVSSK, Williams IS (2019) A new cache of Eoarchean detrital zircons from the Singhbhum Craton, Eastern India and constraints on early Earth geodynamics. Geosci Front 10(4):1359–1370

    Article  Google Scholar 

  • Srinivasan R, Naha K (1993) Archean sedimentation in the Dharwar Craton, Southern India. Proc Natl Acad Sci India 63:1–13

    Google Scholar 

  • Srinivasan R, Ojakangas RW (1986) Sedimentology of quartz-pebble conglomerates and quartzites of the Archean Bababudan Group, Dharwar Craton, South India: evidence for early crustal stability. J Geol 94(2):199–214

    Article  Google Scholar 

  • Srivastava RK (2006) Geochemistry and petrogenesis of Neoarchean high-Mg low-Ti mafic igneous rocks in an intra cratonic setting, Central India Craton: evidence for boninite magmatism. Geochem J 40:15–31

    Article  Google Scholar 

  • Srivastava RK, Singh RK, Verma SP (2004) Neoarchean mafic volcanic rocks from the Southern Bastar greenstone belt, Central India: petrological and tectonic significance. Precambrian Res 131:305–322

    Article  Google Scholar 

  • Srivastava RK, Jayananda M, Gautama GC, Gireesh V, Samal AK (2014a) Geochemistry of an ENE–WSW to NE–SW trending ~ 2.37 Ga mafic dyke swarm of the Eastern Dharwar Craton, India: does it represent a single magmatic event? Geochemistry 74:251

    Article  Google Scholar 

  • Srivastava RK, Jayananda M, Gautam G, Samal A (2014b) Geochemical studies and petrogenesis of ~2.21–2.22 Ga Kunigal mafic dyke swarm (trending N-S to NNW-SSE) from Eastern Dharwar Craton, India: implications for Palaeoproterozoic large igneous provinces and superCraton superia. Mineral Petrol 108:695–711. https://doi.org/10.1007/s00710-014-0327-5

    Article  Google Scholar 

  • Stein M, Hofmann AW (1994) Mantle plumes and episodic crustal growth. Nature 372:63–68

    Article  Google Scholar 

  • Stern CR (1991) Role of subduction erosion in the generation of Andean magmas. Geology 19:78–81

    Article  Google Scholar 

  • Swami Nath J, Ramakrishnan M (1981) Early Precambrian supracrustals of Southern Karnataka. Geol Surv India Mem 112:350

    Google Scholar 

  • Swami Nath J, Ramakrishnan M, Viswanatha MN (1976) Dharwar stratigraphic model and Karnataka Craton evolution. Rec Geol Surv India 107:149–175

    Google Scholar 

  • Sylvester PJ (1994) Archaean granite plutons. In: Condie K (ed) Archaean crustal taxitic dioritic-tonalitic gneisses and Neoarchean crustal growth in Eastern Evolution. Developments in Precambrian geology. Elsevier, Amsterdam, pp 261–314

    Google Scholar 

  • Tackley PJ, Stevenson DJ, Glatzmaier GA, Schubert G (1993) Effects of an endothermic phase transition at 670 km depth in a spherical model of convection in the Earth’s mantle. Nature 361:699–704

    Article  Google Scholar 

  • Tait J, Zimmermann U, Miyazaki T, Presnyakov S, Chang Q, Mukhopadhyay J, Sergeev S (2011) Possible juvenile Palaeoarchaean TTG magmatism in Eastern India and its constraints for the evolution of the Singhbhum Craton. Geol Mag 148:340–347

    Article  Google Scholar 

  • Taylor SR, McLennan SM (1985) The continental crust: its composition and evolution. Blackwell Scientific Publication, Carlton, VIC. 312 p

    Google Scholar 

  • Taylor PN, Chadwick B, Moorbath S, Ramakrishnan M, Viswanatha MN (1984) Petrography, chemistry and isotopic ages of Peninsular Gneiss, Dharwar acid volcanic rocks and the Chitradurga granite with special reference to the late Archean evolution of the Karnataka Craton. Precambrian Res 23:349–375

    Article  Google Scholar 

  • Topno A, Dey S, Liu Y, Zong K (2018) Early Neoarchaean A-type granitic magmatism by crustal reworking in Singhbhum Craton: evidence from Pala Lahara area, Orissa. J Earth Syst Sci 127(43):1–22

    Google Scholar 

  • Trendall AF, de Laeter JR, Nelson DR, Mukhopadhyay D (1997a) A precise U–Pb age for the base of Mulaingiri formation (Bababudan Group, Dharwar Supergroup) of the Karnataka Craton. J Geol Soc India 50:161–170

    Google Scholar 

  • Trendall AF, de Laeter JR, Nelson DR, Bhaskar Rao YJ (1997b) Further zircon U–Pb age data for the Daginikatte formation, Dharwar Supergroup, Karnataka Craton. J Geol Soc India 50:25–30

    Google Scholar 

  • Turcotte DL, Schubert G (2002) Geodynamics. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Tushipokla, Jayananda M (2013) Geochemical constraints on komatiite volcanism from Sargur Group Nagamangala greenstone belt, Western Dharwar Craton, Southern India: implications for Mesoarchean mantle evolution and continental growth. Geosci Front 4:321–340

    Article  Google Scholar 

  • Ugarkar AG, Paniskar DB, Ranganatha Gowda G (2000) Geochemistry, petrogenesis and tectonic setting of metavolcanics and their implications for gold mineralization in Gadag Gold Field, Southern India. Gondw Res 3:371–384

    Article  Google Scholar 

  • Ugarkar AG, Chandan Kumar B, Manuvachari TB (2012) Lithology and geochemistry of metavolcanics and metasediments of Northern part of Dharwar-Shimoga Schist Belt, Western Dharwar Craton. Indian Miner 46:162–178

    Google Scholar 

  • Upadhyay D, Scherer EE, Mezger K (2009) 142Nd evidence for an enriched Hadean reservoir in cratonic roots. Nature 459:1118–1120

    Article  Google Scholar 

  • Upadhyay D, Chattopadhyay S, Kooijman E, Mezger K, Berndt J (2014) Magmatic and metamorphic history of Paleoarchean tonalite-trondhjemite-granodiorite (TTG) suites from the Singhbhum Craton, Eastern India. Precambrian Res 252:180–190

    Article  Google Scholar 

  • Upadhyay D, Chattopadhyay S, Mezger K (2019) Formation of Paleoarchean-Mesoarchean Na-rich (TTG) and K-rich granitoid crust of the Singhbhum Craton, Eastern India: constraints from major and trace element geochemistry and Sr-Nd-Hf isotope composition. Precambrian Res 327:255–272

    Article  Google Scholar 

  • Valdiya KS (2016) The making of India, Society of Earth Scientist series. Springer, Cham. https://doi.org/10.1007/1978-3-314-25029-8_24

    Book  Google Scholar 

  • Van Kranendonk MJ (2010) Two types of Archean continental crust: plume and plate tectonics on early Earth. Am J Sci 310:1187–1209

    Article  Google Scholar 

  • Van Kranendonk MJ, Hickman A, Smithies RH (2007) The East Pilbara Terrane of the Pilbara Craton, Western Australia: formation of a continental nucleus through repeated mantle plume magmatism. In: Van Kranendonk MJ, Smithies RH, Bennet V (eds) Earth’s oldest rocks. Developments in Precambrian geology, vol 15. Elsevier, Amsterdam, pp 307–337

    Google Scholar 

  • Van Kranendonk MJ, Smithies RH, Griffin WL, Huston DL, Hickman AH, Champion DC, Anhaeusser CR, Piranjo F (2015) Making it thick: a volcanic plateau origin of Palaeoarchean continental lithosphere of the Pilbara and Kaapvaal Cratons. In: Roberts NMW, Van Kranendonk M, Parman S, Shirey S, Clift PD (eds) Continent formation through time. Geological Society, London, Special Publications, vol 389. Geological Society of London, London, pp 83–111

    Google Scholar 

  • Veizer J (1979) Secular variations in chemical composition of sediments: areview. Phys Chem Earth 11:269–278

    Article  Google Scholar 

  • Veizer J, Jansen SL (1979) Basement and sedimentary recycling and continental evolution. J Geol 87:341–370

    Article  Google Scholar 

  • Veizer J, Jansen SL (1985) Basement and sedimentary recycling 2: time dimension to global tectonics. J Geol 93:625–643

    Article  Google Scholar 

  • Venkata Dasu SP, Ramakrishnan M, Mahabaleswar B (1991) Sargur–Dharwar relationship around the komatiite rich J.C. Pura greenstone belt in Karnataka. J Geol Soc India 38:577–592

    Google Scholar 

  • Verma SK, Verma SP, Oliveria EP, Singh VK, Moreno JA (2016) LA‐SF‐ICP‐MS zircon U‐Pb geochronology of granitic rocks from the Central Bundelkhand greenstone complex, Bundelkhand Craton, India. J Asian Sci 118:125–137

    Google Scholar 

  • Vijaya Rao V, Murty ASN, Sarkar D, Bhaskar Rao YJ, Khare P, Prasad ASSSRS, Sridher V, Raju S, Rao GSP, Karuppannan, Prem Kumar N, Sen MK (2015) Crustal velocity structure of the Neoarchean convergence zone between the Eastern and Western blocks of Dharwar Craton, India from seismic wide-angle studies. Precambrian Res 266:282–295

    Article  Google Scholar 

  • Viljoen MJ, Viljoen FP, Pearton TN (1982) The nature and distribution of Archaean komatiite volcanics in South Africa. In: Arndt NT, Nisbet EG (eds) Komatiites. Allen and Unwin, London, pp 53–79

    Google Scholar 

  • Viswanatha MN, Ramakrishnan M (1975) The pre Dharwar supracrustal rocks of Sargur schist complex in Southern Karnataka and their Tectono-metamorphic significance. Indian Mineralog 16:48–65

    Google Scholar 

  • Wang Y, Zhang Y, Zhao G, Fan W, Xia X, Zhang F, Zhang Y (2009) Zircon U-Pb geochronological constraints on the petrogenesis of Taishan Sanukitoids (Shandong) implications for Neoarchean subduction in the Eastern Block, North China Craton. Precambrian Res 174:273–286

    Article  Google Scholar 

  • Wani H, Mondal MEA (2019) Geochemistry and tectonic setting of the Precambrian Mahakoshal and Sonakhan greenstone belts of the Central Indian shield. In: Mondal MEA (ed) Geological evolution of the Precambrian Indian shield. Springer, Cham, pp 695–724. https://doi.org/10.1007/978-3-319-89698-4_26

    Chapter  Google Scholar 

  • Wasserburg GJ, MacDonald GJF, Hoyle F, Fowler WA (1964) Relative contribution of U, Th, and K t o heat production in the Earth. Science 143:465–467

    Article  Google Scholar 

  • Wilde SA (2015) Final amalgamation of the Central Asian Orogenic Belt in NE China: Paleo-Asian Ocean closure versus Paleo-Pacific plate subduction-A review of the evidence. Tectonophysics 662:345–362

    Article  Google Scholar 

  • Wilde SA, Valley JW, Peck WH, Graham CM (2001) Evidence from detrital zircons for the existence of continental crust and oceans on the Earth 4.4 Gyr ago. Nature 409:175–178

    Article  Google Scholar 

  • Windley BF, Bridgwater D (1971) The evolution of Archean low- and high-grade terrains. Geol Soc Aust Spec Publ 3:33–46

    Google Scholar 

  • Wyman D (2018) Do cratons preserve evidence of stagnant lid tectonics? Geosci Front 9:3–17

    Article  Google Scholar 

  • Yang QY, Santosh M (2015) Zircon U-Pb geochronology and Lu-Hf isotopes from the Kolar greenstone belt, Dharwar Craton, India: implications for crustal evolution in an ocean-trench-continental transect. J Asian Earth Sci 113(2):797–811

    Article  Google Scholar 

  • Zachariah JK, Hanson GN, Rajamani V (1995) Post crystallization disturbance in the neodymium and lead isotope systems of metabasalts from the Ramagiri schist belt, Southern India. Geochem Cosmochem Acta 59:3189–3203

    Article  Google Scholar 

  • Zeh A, Gerdes A, Barton JM (2009) Archean accretion and crustal evolution of the Kalahari Craton—the zircon age and Hf isotope record of granitic rocks from Barberton/Swaziland to the Francistown arc. J Petrol 50:933

    Article  Google Scholar 

  • Zhai M, Santosh M (2011) The early Precambrian odyssey of the North China Craton: a synoptic overview. Gondw Res 20:6–25. https://doi.org/10.1016/j.gr.2011.02.005

    Article  Google Scholar 

Download references

Acknowledgements

M. Jayananda thanks Prof. S.K. Tandon for the invitation to contribute to this book and for editorial guidance that enhanced the readability of this chapter. We thank Prof. Neal Gupta for efficient editorial handling. Dr. Pritam Nasipuri and two anonymous reviewers are thanked for helpful comments. M. Jayananda gratefully acknowledges the funding support from DST transect project (ESS/16/334/2008 during 2008–2013) which was continued by the UGC (F-42-72/2013(SR)) and DST-FIST (No. SR/FST/ESI-146/2016(C)) funding support. Thanks to Dr. C. Manikyamba, Dr. Kumar Batuk Joshi and Dr. Chandan Kumar for providing some of the field photos. Dr. R.V. Gireesh and Mr. S.V Balaji Manasa Rao are thanked for their assistance at various stages of writing this chapter.

SD research on the Singhbhum craton is funded by the Ministry of Earth Sciences project No. MoES/P.O. (Geoscience)/45/2015 and the Department of Science and Technology project number EMR/2016/002586. Aniruddha Mitra and Sumit Mishra gracefully provided some field photos of the Singhbhum craton.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Jayananda, M., Dey, S., Aadhiseshan, K.R. (2020). Evolving Early Earth: Insights from Peninsular India. In: Gupta, N., Tandon, S. (eds) Geodynamics of the Indian Plate. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-15989-4_2

Download citation

Publish with us

Policies and ethics