Skip to main content

A Hybrid Reinforcement Learning and Cellular Automata Model for Crowd Simulation on the GPU

  • Conference paper
  • First Online:
High Performance Computing (CARLA 2018)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 979))

Included in the following conference series:

Abstract

We present a GPU-based hybrid model for crowd simulations. The model uses reinforcement learning to guide groups of pedestrians towards a goal while adapting to environmental dynamics, and a cellular automaton to describe individual pedestrians’ interactions. In contrast to traditional multi-agent reinforcement learning methods, our model encodes the learned navigation policy into a navigation map, which is used by the cellular automaton’s update rule to calculate the next simulation step. As a result, reinforcement learning is independent of the number of agents, allowing the simulation of large crowds. Implementation of this model on the GPU allows interactive simulations of several hundreds of pedestrians.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    A complete survey on crowd simulation can be found in [28].

  2. 2.

    Deep Reinforcement Learning techniques are out of the scope of this research.

  3. 3.

    Thirty to forty five ms per simulation step.

  4. 4.

    Multi-threading was exposed by Thrust’s TBB backend.

References

  1. NVIDIA Thrust. https://thrust.github.io/. Accessed 14 May 2018

  2. Bandini, S., Mauri, G., Vizzari, G.: Supporting action-at-a-distance in situated cellular agents. Fundamenta Informaticae 69(3), 251–271 (2006)

    MathSciNet  MATH  Google Scholar 

  3. Banerjee, B., Abukmail, A., Kraemer, L.: Advancing the layered approach to agent-based crowd simulation. In: Proceedings of the 22nd ACM/IEEE/SCS Workshop on the Principles of Advanced and Distributed Simulation (PADS), Rome, Italy, pp. 185–192 (2008)

    Google Scholar 

  4. Blue, V., Adler, J.: Emergent fundamental pedestrian flows from cellular automata microsimulation. Transp. Res. Rec. J. Transp. Res. Board 1644(4), 29–36 (1998)

    Article  Google Scholar 

  5. Blue, V.J., Adler, J.L.: Cellular automata microsimulation for modeling bi-directional pedestrian walkways. Transp. Res. Part B Methodol. 35(3), 293–312 (2001)

    Article  Google Scholar 

  6. Burstedde, C., Klauck, K., Schadschneider, A., Zittartz, J.: Simulation of pedestrian dynamics using a two-dimensional cellular automaton. Phys. A Stat. Mech. Appl. 295(3), 507–525 (2001)

    Article  Google Scholar 

  7. Buşoniu, L., Babuška, R., De Schutter, B.: A comprehensive survey of multi-agent reinforcement learning. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 38(2), 156–172 (2008)

    Article  Google Scholar 

  8. Casadiego, L., Pelechano, N.: From one to many: simulating groups of agents with reinforcement learning controllers. In: Brinkman, W.-P., Broekens, J., Heylen, D. (eds.) IVA 2015. LNCS (LNAI), vol. 9238, pp. 119–123. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21996-7_12

    Chapter  Google Scholar 

  9. Dijkstra, E.W.: Cooperating sequential processes. In: Hansen, P.B. (ed.) The Origin of Concurrent Programming, pp. 65–138. Springer, New York (2002). https://doi.org/10.1007/978-1-4757-3472-0_2

    Chapter  Google Scholar 

  10. Feliciani, C., Nishinari, K.: An enhanced cellular automata sub-mesh model to study high-density pedestrian crowds. In: El Yacoubi, S., Wąs, J., Bandini, S. (eds.) ACRI 2016. LNCS, vol. 9863, pp. 227–237. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-44365-2_23

    Chapter  Google Scholar 

  11. Godoy, J., Karamouzas, I., Guy, S.J., Gini, M.: Online learning for multi-agent local navigation. In: The AAMAS-2013 Workshop on Cognitive Agents for Virtual Environments, Saint Paul, Minnesota, USA (2013)

    Google Scholar 

  12. Helbing, D., Molnár, P.: Social force model for pedestrian dynamics. Phys. Rev. E 51, 4282–4286 (1995)

    Article  Google Scholar 

  13. Kirchner, A., Klüpfel, H., Nishinari, K., Schadschneider, A., Schreckenberg, M.: Discretization effects and the influence of walking speed in cellular automata models for pedestrian dynamics. J. Stat. Mech. Theor. Exp. 2004(10), P10011 (2004)

    Article  Google Scholar 

  14. Kirchner, A., Schadschneider, A.: Simulation of evacuation processes using a bionics-inspired cellular automaton model for pedestrian dynamics. Phys. A Stat. Mech. Appl. 312(1), 260–276 (2002)

    Article  Google Scholar 

  15. Klüpfel, H., Meyer-König, T., Wahle, J., Schreckenberg, M.: Microscopic simulation of evacuation processes on passenger ships. In: Bandini, S., Worsch, T. (eds.) Theory and practical issues on cellular automata, pp. 63–71. Springer, London (2001). https://doi.org/10.1007/978-1-4471-0709-5_8

    Chapter  Google Scholar 

  16. Koenig, S., Simmons, R.G.: Complexity analysis of real-time reinforcement learning applied to finding shortest paths in deterministic domains. Carnegie Mellon University, Pittsburgh, PA, USA, Technical report (1992)

    Google Scholar 

  17. Martinez-Gil, F., Barber, F., Lozano, M., Grimaldo, F., Fernández, F.: A reinforcement learning approach for multiagent navigation. In: Proceedings of the International Conference on Agents and Artificial Intelligence, ICAART 2010, Artificial Intelligence, vol. 1, pp. 607–610. SciTePress (2010). https://doi.org/10.5220/0002727906070610. ISBN 978-989-674-021-4

  18. Martinez-Gil, F., Lozano, M., Fernández, F.: Multi-agent reinforcement learning for simulating pedestrian navigation. In: Vrancx, P., Knudson, M., Grześ, M. (eds.) ALA 2011. LNCS (LNAI), vol. 7113, pp. 54–69. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28499-1_4

    Chapter  Google Scholar 

  19. Martinez-Gil, F., Lozano, M., Fernández, F.: MARL-Ped: a multi-agent reinforcement learning based framework to simulate pedestrian groups. Simul. Model. Pract. Theor. 47(Complete), 259–275 (2014)

    Article  Google Scholar 

  20. Moussaïd, M., Helbing, D., Theraulaz, G.: How simple rules determine pedestrian behavior and crowd disasters. Proc. Nat. Acad. Sci. 108(17), 6884–6888 (2011)

    Article  Google Scholar 

  21. Paris, S., Pettre, J., Donikian, S.: Pedestrian Reactive Navigation for Crowd Simulation: a Predictive Approach. Computer Graphics Forum (2007)

    Google Scholar 

  22. Reynolds, C.W.: Flocks, herds and schools: a distributed behavioral model. SIGGRAPH Comput. Graph. 21(4), 25–34 (1987)

    Article  Google Scholar 

  23. Ruiz, S., Hernández, B.: A parallel solver for Markov decision process in crowd simulations. In: 2015 Fourteenth Mexican International Conference on Artificial Intelligence (MICAI), pp. 107–116 (2015)

    Google Scholar 

  24. Ruiz, S., Hernández, B.: Procesos de decisión de Markov y microescenarios para navegación y evasión de colisiones para multitudes. Res. Comput. Sci. 74, 103–116 (2014)

    Google Scholar 

  25. Ruiz, S., Hernández, B.: Real time markov decision processes for crowd simulation. In: Engel, W. (ed.) GPU Zen, pp. 323–341. Black Cat Publishing (2017)

    Google Scholar 

  26. Ruiz, S., Hernández, B., Alvarado, A., Rudomín, I.: Reducing memory requirements for diverse animated crowds. In: Proceedings of Motion on Games, MIG 2013, pp. 55:77–55:86. ACM, New York (2013)

    Google Scholar 

  27. Sarmady, S., Haron, F., Talib, A.Z.: Simulating crowd movements using fine grid cellular automata. In: 12th International Conference On Computer Modelling and Simulation (UKSim 2010), pp. 428–433. IEEE (2010)

    Google Scholar 

  28. Thalmann, D., Musse, S.R.: Crowd Simulation. Springer, London (2013). https://doi.org/10.1007/978-1-84628-825-8

    Book  Google Scholar 

  29. Torrey, L.: Crowd simulation via multi-agent reinforcement learning. In: Proceedings of the Sixth AAAI Conference on Artificial Intelligence and Interactive Digital Entertainment. The AAAI Press (2010)

    Google Scholar 

  30. Weifeng, F., Lizhong, Y., Weicheng, F.: Simulation of bi-direction pedestrian movement using a cellular automata model. Phys. A Stat. Mech. Appl. 321(3), 633–640 (2003)

    Article  Google Scholar 

Download references

Acknowledgements

This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725. We thank NVIDIA for the donation of the Titan X GPU used in this research. Sergio Ruiz would like to thank the Tecnologico de Monterrey Computer Department for its support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Ruiz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ruiz, S., Hernández, B. (2019). A Hybrid Reinforcement Learning and Cellular Automata Model for Crowd Simulation on the GPU. In: Meneses, E., Castro, H., Barrios Hernández, C., Ramos-Pollan, R. (eds) High Performance Computing. CARLA 2018. Communications in Computer and Information Science, vol 979. Springer, Cham. https://doi.org/10.1007/978-3-030-16205-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-16205-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-16204-7

  • Online ISBN: 978-3-030-16205-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics