Skip to main content

Mechanisms of Polymyxin-Induced Nephrotoxicity

  • Chapter
  • First Online:

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1145))

Abstract

Polymyxin-induced nephrotoxicity is the major dose-limiting factor and can occur in up to 60% of patients after intravenous administration. This chapter reviews the latest literature on the mechanisms of polymyxin-induced nephrotoxicity and its amelioration. After filtration by glomeruli, polymyxins substantially accumulate in renal proximal tubules via receptor-mediated endocytosis mainly by megalin and PEPT2. It is believed that subsequently, a cascade of interconnected events occur, including the activation of death receptor and mitochondrial apoptotic pathways, mitochondrial damage, endoplasmic reticulum stress, oxidative stress and cell cycle arrest. The current literature shows that oxidative stress plays a key role in polymyxin-induced kidney damage. Use of antioxidants have a potential in the attenuation of polymyxin-induced nephrotoxicity, thereby widening the therapeutic window. Mechanistic findings on polymyxin-induced nephrotoxicity are critical for the optimization of their use in the clinic and the discovery of safer polymyxin-like antibiotics.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kubin CJ, Ellman TM, Phadke V, Haynes LJ, Calfee DP, Yin MT (2012) Incidence and predictors of acute kidney injury associated with intravenous polymyxin B therapy. J Infect 65:80–87

    Article  PubMed  Google Scholar 

  2. Falagas ME, Kasiakou SK (2006) Toxicity of polymyxins: a systematic review of the evidence from old and recent studies. Crit Care 10:R27

    Article  PubMed  PubMed Central  Google Scholar 

  3. Dezoti Fonseca C, Watanabe M, Vattimo MF (2012) Role of heme oxygenase-1 in polymyxin B-induced nephrotoxicity in rats. Antimicrob Agents Chemother 56:5082–5087

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Elias LS, Konzen D, Krebs JM, Zavascki AP (2010) The impact of polymyxin B dosage on in-hospital mortality of patients treated with this antibiotic. J Antimicrob Chemother 65:2231–2237

    Article  CAS  PubMed  Google Scholar 

  5. Kvitko CH, Rigatto MH, Moro AL, Zavascki AP (2011) Polymyxin B versus other antimicrobials for the treatment of Pseudomonas aeruginosa bacteraemia. J Antimicrob Chemother 66:175–179

    Article  CAS  PubMed  Google Scholar 

  6. Pastewski AA, Caruso P, Parris AR, Dizon R, Kopec R, Sharma S, Mayer S, Ghitan M, Chapnick EK (2008) Parenteral polymyxin B use in patients with multidrug-resistant gram-negative bacteremia and urinary tract infections: a retrospective case series. Ann Pharmacother 42:1177–1187

    Article  CAS  PubMed  Google Scholar 

  7. Mingeot-Leclercq MP, Tulkens PM, Denamur S, Vaara T, Vaara M (2012) Novel polymyxin derivatives are less cytotoxic than polymyxin B to renal proximal tubular cells. Peptides 35:248–252

    Article  CAS  PubMed  Google Scholar 

  8. Evans ME, Feola DJ, Rapp RP (1999) Polymyxin B sulfate and colistin: old antibiotics for emerging multiresistant gram-negative bacteria. Ann Pharmacother 33:960–967

    Article  CAS  PubMed  Google Scholar 

  9. Falagas ME, Kasiakou SK (2005) Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections. Clin Infect Dis 40:1333–1341

    Article  CAS  PubMed  Google Scholar 

  10. Garonzik SM, Li J, Thamlikitkul V, Paterson DL, Shoham S, Jacob J, Silveira FP, Forrest A, Nation RL (2011) Population pharmacokinetics of colistin methanesulfonate and formed colistin in critically ill patients from a multicenter study provide dosing suggestions for various categories of patients. Antimicrob Agents Chemother 55:3284–3294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Crass RL, Rutter WC, Burgess DR, Martin CA, Burgess DS (2017) Nephrotoxicity in patients with or without cystic fibrosis treated with polymyxin B compared to colistin. Antimicrob Agents Chemother 61:e02329-02316

    Article  Google Scholar 

  12. Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005) Evaluation of colistin as an agent against multi-resistant in Gram-negative bacteria. Int J Antimicrob Agents 25:11–25

    Article  CAS  PubMed  Google Scholar 

  13. Phe K, Shields RK, Tverdek FP, Aitken SL, Guervil DJ, Lam WYM, Musgrove RJ, Luce AM, Tam VH (2016) Predicting the risk of nephrotoxicity in patients receiving colistimethate sodium: a multicentre, retrospective, cohort study. J Antimicrob Chemother 71:3585–3587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. John JF, Falci DR, Rigatto MH, Oliveira RD, Kremer TG, Zavascki AP (2018) Severe infusion-related adverse events and renal failure in patients receiving high-dose intravenous polymyxin B. Antimicrob Agents Chemother 62:e01617-01617

    Google Scholar 

  15. Benattar YD, Omar M, Zusman O, Yahav D, Zak-Doron Y, Altunin S, Elbaz M, Daitch V, Granot M, Leibovici L, Paul M (2016) The effectiveness and safety of high-dose colistin: prospective cohort study. Clin Infect Dis 63:1605–1612

    Article  CAS  PubMed  Google Scholar 

  16. Babic JT, Manchandani P, Ledesma KR, Tam VH (2017) Evaluation of urinary KIM-1 for prediction of polymyxin B-induced nephrotoxicity. Antimicrob Agents Chemother 61:e01735-01717

    Article  Google Scholar 

  17. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2003) Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother 47:1766–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Sivanesan S, Roberts K, Wang JP, Chea SE, Thompson PE, Li J, Nation RL, Velkov T (2017) Pharmacokinetics of the individual major components of polymyxin B and colistin in rats. J Nat Prod 80:225–229

    Article  CAS  PubMed  Google Scholar 

  19. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2004) Pharmacokinetics of colistin methanesulphonate and colistin in rats following an intravenous dose of colistin methanesulphonate. J Antimicrob Chemother 53:837–840

    Article  CAS  PubMed  Google Scholar 

  20. Marchand S, Lamarche I, Gobin P, Couet W (2010) Dose-ranging pharmacokinetics of colistin methanesulphonate (CMS) and colistin in rats following single intravenous CMS doses. J Antimicrob Chemother 65:1753–1758

    Article  CAS  PubMed  Google Scholar 

  21. He H, Li JC, Nation RL, Jacob J, Chen G, Lee HJ, Tsuji BT, Thompson PE, Roberts K, Velkov T, Li J (2013) Pharmacokinetics of four different brands of colistimethate and formed colistin in rats. J Antimicrob Chemother 68:2311–2317

    CAS  PubMed  PubMed Central  Google Scholar 

  22. Zhao M, Wu XJ, Fan YX, Zhang YY, Guo BN, Yu JC, Cao GY, Chen YC, Wu JF, Shi YG, Li J, Zhang J (2018) Pharmacokinetics of colistin methanesulfonate (CMS) in healthy Chinese subjects after single and multiple intravenous doses. Int J Antimicrob Agents 51:714–720

    Article  CAS  PubMed  Google Scholar 

  23. Couet W, Gregoire N, Gobin P, Saulnier PJ, Frasca D, Marchand S, Mimoz O (2011) Pharmacokinetics of colistin and colistimethate sodium after a single 80-mg intravenous dose of CMS in young healthy volunteers. Clin Pharmacol Ther 89:875–879

    Article  CAS  PubMed  Google Scholar 

  24. Hartzell JD, Neff R, Ake J, Howard R, Olson S, Paolino K, Vishnepolsky M, Weintrob A, Wortmann G (2009) Nephrotoxicity associated with intravenous colistin (colistimethate sodium) treatment at a tertiary care medical center. Clin Infect Dis 48:1724–1728

    Article  CAS  PubMed  Google Scholar 

  25. Abdelraouf K, He J, Ledesma KR, Hu M, Tam VH (2012) Pharmacokinetics and renal disposition of polymyxin B in an animal model. Antimicrob Agents Chemother 56:5724–5727

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Manchandani P, Dubrovskaya Y, Gao S, Tam VH (2016) Comparative pharmacokinetic profiling of different polymyxin B components. Antimicrob Agents Chemother 60:6980–6982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zavascki AP, Goldani LZ, Cao GY, Superti SV, Lutz L, Barth AL, Ramos F, Boniatti MM, Nation RL, Li J (2008) Pharmacokinetics of intravenous polymyxin B in critically ill patients. Clin Infect Dis 47:1298–1304

    Article  CAS  PubMed  Google Scholar 

  28. Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, Behle TF, Bordinhao RC, Wang J, Forrest A, Nation RL, Li J, Zavascki AP (2013) Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 57:524–531

    Article  CAS  PubMed  Google Scholar 

  29. Zavascki AP, Nation RL (2017) Nephrotoxicity of Polymyxins: is there any difference between Colistimethate and Polymyxin B? Antimicrob Agents Chemother 61:e02319-02316

    Article  Google Scholar 

  30. Azad MA, Roberts KD, Yu HH, Liu B, Schofield AV, James SA, Howard DL, Nation RL, Rogers K, de Jonge MD, Thompson PE, Fu J, Velkov T, Li J (2015) Significant accumulation of polymyxin in single renal tubular cells: a medicinal chemistry and triple correlative microscopy approach. Anal Chem 87:1590–1595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Yun B, Azad MAK, Nowell CJ, Nation RL, Thompson PE, Roberts KD, Velkov T, Li J (2015) Cellular uptake and localization of polymyxins in renal tubular cells using rationally designed fluorescent probes. Antimicrob Agents Chemother 59:7489–7496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Yun B, Azad MA, Wang J, Nation RL, Thompson PE, Roberts KD, Velkov T, Li J (2014) Imaging the distribution of polymyxins in the kidney. J Antimicrob Chemother 70:827–829

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Nilsson A, Goodwin RJA, Swales JG, Gallagher R, Shankaran H, Sathe A, Pradeepan S, Xue AX, Keirstead N, Sasaki JC, Andren PE, Gupta A (2015) Investigating nephrotoxicity of polymyxin derivatives by mapping renal distribution using mass spectrometry imaging. Chem Res Toxicol 28:1823–1830

    Article  CAS  PubMed  Google Scholar 

  34. Manchandani P, Zhou J, Ledesma KR, Truong LD, Chow DS, Eriksen JL, Tam VH (2016) Characterization of polymyxin B biodistribution and disposition in an animal model. Antimicrob Agents Chemother 60:1029–1034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Velkov T, Yun B, Schneider EK, Azad MA, Dolezal O, Morris FC, Nation RL, Wang J, Chen K, Yu HH, Wang L, Thompson PE, Roberts KD, Li J (2016) A novel chemical biology approach for mapping of polymyxin lipopeptide antibody binding epitopes. ACS Infect Dis 2:341–351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Vattimo Mde F, Watanabe M, da Fonseca CD, Neiva LB, Pessoa EA, Borges FT (2016) Polymyxin B nephrotoxicity: from organ to cell damage. PLoS One 11:e0161057

    Article  PubMed  CAS  Google Scholar 

  37. Li J, Milne RW, Nation RL, Turnidge JD, Coulthard K (2003) Stability of colistin and colistin methanesulfonate in aqueous media and plasma as determined by high-performance liquid chromatography. Antimicrob Agents Chemother 47:1364–1370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Nation RL, Li J, Cars O, Couet W, Dudley MN, Kaye KS, Mouton JW, Paterson DL, Tam VH, Theuretzbacher U, Tsuji BT, Turnidge JD (2015) Framework for optimisation of the clinical use of colistin and polymyxin B: the Prato polymyxin consensus. Lancet Infect Dis 15:225–234

    Article  CAS  PubMed  Google Scholar 

  39. Metcalf AP, Hardaker LEA, Hatley RHM (2017) A simple method for assaying colistimethate sodium in pharmaceutical aerosol samples using high performance liquid chromatography. J Pharm Biomed Anal 142:15–18

    Article  CAS  PubMed  Google Scholar 

  40. British Pharmacopoeia (2018) Monographs for colistimethate sodium. In: British Pharmacopoeia 2018. Stationery Office, London, pp I-675–I-678

    Google Scholar 

  41. Azad MAK, Cheah SE, Yun B, Maifiah MHM, Johnson MD, Wang J, Boughton BA, Chapman R, Gould J, Hertzog P, Velkov T, Creek DJ, Li J (2015) Understanding polymyxin-induced nephrotoxicity: combination of transcriptomics, metabolomics and mass spectrometry imaging. Interscience Conference of Antimicrobial Agents and Chemotherapy/International Congress of Chemotherapy, San Diego, CA, USA, A-942: Poster

    Google Scholar 

  42. Abdelraouf K, Chang KT, Yin T, Hu M, Tam VH (2014) Uptake of polymyxin B into renal cells. Antimicrob Agents Chemother 58:4200–4202

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Azad MA, Yun B, Roberts KD, Nation RL, Thompson PE, Velkov T, Li J (2014) Measuring polymyxin uptake by renal tubular cells: is BODIPY-polymyxin B an appropriate probe? Antimicrob Agents Chemother 58:6337–6338

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8:711–724

    Article  CAS  PubMed  Google Scholar 

  45. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53:1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Suzuki T, Yamaguchi H, Ogura J, Kobayashi M, Yamada T, Iseki K (2013) Megalin contributes to kidney accumulation and nephrotoxicity of colistin. Antimicrob Agents Chemother 57:6319–6324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Mattson MP, Chan SL (2003) Calcium orchestrates apoptosis. Nat Cell Biol 5:1041–1043

    Article  CAS  PubMed  Google Scholar 

  48. Yousef JM, Chen G, Hill PA, Nation RL, Li J (2012) Ascorbic acid protects against the nephrotoxicity and apoptosis caused by colistin and affects its pharmacokinetics. J Antimicrob Chemother 67:452–459

    Article  CAS  PubMed  Google Scholar 

  49. Sivanesan S, Azad MAK, Schneider EK, Ahmed MU, Huang J, Wang J, Li J, Nation RL, Velkov T (2017) Gelofusine ameliorates colistin-induced nephrotoxicity. Antimicrob Agents Chemother 61:e00985-17

    Google Scholar 

  50. Jacquemin E, Hagenbuch B, Stieger B, Wolkoff AW, Meier PJ (1994) Expression cloning of a rat liver Na(+)-independent organic anion transporter. Proc Natl Acad Sci U S A 91:133–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Kekuda R, Prasad PD, Wu X, Wang H, Fei YJ, Leibach FH, Ganapathy V (1998) Cloning and functional characterization of a potential-sensitive, polyspecific organic cation transporter (OCT3) most abundantly expressed in placenta. J Biol Chem 273:15971–15979

    Article  CAS  PubMed  Google Scholar 

  52. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H (1996) Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604

    Article  CAS  PubMed  Google Scholar 

  53. Okuda M, Saito H, Urakami Y, Takano M, Inui K (1996) cDNA cloning and functional expression of a novel rat kidney organic cation transporter, OCT2. Biochem Biophys Res Commun 224:500–507

    Article  CAS  PubMed  Google Scholar 

  54. Nigam SK (2015) What do drug transporters really do? Nat Rev Drug Discov 14:29–44

    Article  CAS  PubMed  Google Scholar 

  55. Petzinger E, Geyer J (2006) Drug transporters in pharmacokinetics. Naunyn Schmiedeberg’s Arch Pharmacol 372:465–475

    Article  CAS  Google Scholar 

  56. Hua WJ, Hua WX, Jian Z, Wei PH, Ni LY, Hua LY, Wen CD, Ying Z, Li C (2016) The role of drug transporters in the pharmacokinetics of antibiotics. Curr Drug Metab 17:799–805

    Article  CAS  PubMed  Google Scholar 

  57. International Transporter Consortium, Giacomini KM, Huang SM, Tweedie DJ, Benet LZ, Brouwer KL, Chu X, Dahlin A, Evers R, Fischer V, Hillgren KM, Hoffmaster KA, Ishikawa T, Keppler D, Kim RB, Lee CA, Niemi M, Polli JW, Sugiyama Y, Swaan PW, Ware JA, Wright SH, Yee SW, Zamek-Gliszczynski MJ, Zhang L (2010) Membrane transporters in drug development. Nat Rev Drug Discov 9:215–236

    Article  CAS  Google Scholar 

  58. Eshbach ML, Weisz OA (2017) Receptor-mediated endocytosis in the proximal tubule. Annu Rev Physiol 79:425–448

    Article  CAS  PubMed  Google Scholar 

  59. Manchandani P, Zhou J, Babic JT, Ledesma KR, Truong LD, Tam VH (2017) Role of renal drug exposure in polymyxin B-induced nephrotoxicity. Antimicrob Agents Chemother 61:e02391-16

    Article  PubMed  PubMed Central  Google Scholar 

  60. Hori Y, Aoki N, Kuwahara S, Hosojima M, Kaseda R, Goto S, Iida T, De S, Kabasawa H, Kaneko R, Aoki H, Tanabe Y, Kagamu H, Narita I, Kikuchi T, Saito A (2017) Megalin blockade with cilastatin suppresses drug-induced nephrotoxicity. J Am Soc Nephrol 28:1783–1791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ma Z, Wang J, Nation RL, Li J, Turnidge JD, Coulthard K, Milne RW (2009) Renal disposition of colistin in the isolated perfused rat kidney. Antimicrob Agents Chemother 53:2857–2864

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Wu X, George RL, Huang W, Wang H, Conway SJ, Leibach FH, Ganapathy V (2000) Structural and functional characteristics and tissue distribution pattern of rat OCTN1, an organic cation transporter, cloned from placenta. Biochim Biophys Acta 1466:315–327

    Article  CAS  PubMed  Google Scholar 

  63. Shen H, Smith DE, Yang T, Huang YG, Schnermann JB, Brosius FC 3rd (1999) Localization of PEPT1 and PEPT2 proton-coupled oligopeptide transporter mRNA and protein in rat kidney. Am J Phys 276:F658–F665

    CAS  Google Scholar 

  64. Lu XX, Chan T, Xu CH, Zhu L, Zhou QT, Roberts KD, Chan HK, Li J, Zhou FF (2016) Human oligopeptide transporter 2 (PEPT2) mediates cellular uptake of polymyxins. J Antimicrob Chemother 71:403–412

    Article  CAS  PubMed  Google Scholar 

  65. Daniel H, Rubio-Aliaga I (2003) An update on renal peptide transporters. Am J Physiol Renal 284:F885–F892

    Article  CAS  Google Scholar 

  66. Chaabane W, User SD, El-Gazzah M, Jaksik R, Sajjadi E, Rzeszowska-Wolny J, Los MJ (2013) Autophagy, apoptosis, mitoptosis and necrosis: interdependence between those pathways and effects on cancer. Arch Immunol Ther Exp 61:43–58

    Article  CAS  Google Scholar 

  67. Wang S, Zhang C, Hu L, Yang C (2016) Necroptosis in acute kidney injury: a shedding light. Cell Death Dis 7:e2125

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Linkermann A (2016) Nonapoptotic cell death in acute kidney injury and transplantation. Kidney Int 89:46–57

    Article  PubMed  Google Scholar 

  69. Pabla N, Dong Z (2008) Cisplatin nephrotoxicity: mechanisms and renoprotective strategies. Kidney Int 73:994–1007

    Article  CAS  PubMed  Google Scholar 

  70. Hanigan MH, Devarajan P (2003) Cisplatin nephrotoxicity: molecular mechanisms. Cancer Ther 1:47–61

    PubMed  PubMed Central  Google Scholar 

  71. Eadon MT, Hack BK, Alexander JJ, Xu C, Dolan ME, Cunningham PN (2013) Cell cycle arrest in a model of colistin nephrotoxicity. Physiol Genomics 45:877–888

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Sutton TA, Hato T, Mai E, Yoshimoto M, Kuehl S, Anderson M, Mang H, Plotkin Z, Chan RJ, Dagher PC (2013) p53 is renoprotective after ischemic kidney injury by reducing inflammation. J Am Soc Nephrol 24:113–124

    Article  CAS  PubMed  Google Scholar 

  73. Chen SC, Kuo PL (2016) The role of galectin-3 in the kidneys. Int J Mol Sci 17:565

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  74. Yun B, Zhang T, Azad MAK, Wang J, Nowell CJ, Kalitsis P, Velkov T, Hudson DF, Li J (2016) Targeting the ‘Achilles heel’: investigating the mechanisms of polymyxin-induced nephrotoxicity. ComBio 2016, Brisbane, Australia: Poster-101

    Google Scholar 

  75. Yun B, Zhang T, Azad MAK, Wang J, Nowell CJ, Kalitsis P, Velkov T, Hudson DF, Li J (2018) Polymyxin B causes DNA damage in HK-2 cells and mice. Arch Toxicol 92:2259–2271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Ozyilmaz E, Ebinc FA, Derici U, Gulbahar O, Goktas G, Elmas C, Oguzulgen IK, Sindel S (2011) Could nephrotoxicity due to colistin be ameliorated with the use of N-acetylcysteine? Intens Care Med 37:141–146

    Article  CAS  Google Scholar 

  77. Yousef JM, Chen G, Hill PA, Nation RL, Li J (2011) Melatonin attenuates colistin-induced nephrotoxicity in rats. Antimicrob Agents Chemother 55:4044–4049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Dai C, Li J, Tang S, Li J, Xiao X (2014) Colistin-induced nephrotoxicity in mice involves the mitochondrial, death receptor, and endoplasmic reticulum pathways. Antimicrob Agents Chemother 58:4075–4085

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  79. Azad MA, Finnin BA, Poudyal A, Davis K, Li J, Hill PA, Nation RL, Velkov T, Li J (2013) Polymyxin B induces apoptosis in kidney proximal tubular cells. Antimicrob Agents Chemother 57:4329–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Vaara M, Vaara T (2013) The novel polymyxin derivative NAB739 is remarkably less cytotoxic than polymyxin B and colistin to human kidney proximal tubular cells. Int J Antimicrob Agents 41:292–293

    Article  CAS  PubMed  Google Scholar 

  81. Roberts KD, Azad MAK, Wang JP, Horne AS, Thompson PE, Nation RL, Velkov T, Li J (2015) Antimicrobial activity and toxicity of the major lipopeptide components of polymyxin B and colistin: last-line antibiotics against multidrug-resistant Gram-negative bacteria. ACS Infect Dis 1:568–575

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Azad MA, Akter J, Rogers K, Nation RL, Velkov T, Li J (2015) Major pathways of polymyxin-induced apoptosis in rat kidney proximal tubular cells. Antimicrob Agents Chemother 59:2136–2143

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Ozkan G, Ulusoy S, Orem A, Alkanat M, Mungan S, Yulug E, Yucesan FB (2013) How does colistin-induced nephropathy develop and can it be treated? Antimicrob Agents Chemother 57:3463–3469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Azad MAK, Sivanesan S, Wang J, Chen K, Nation RL, Thompson PE, Roberts KD, Velkov T, Li J (2017) Methionine ameliorates polymyxin-induced nephrotoxicity by attenuating cellular oxidative stress. Antimicrob Agents Chemother 62:e01254-01217

    Article  Google Scholar 

  85. Azad MAK, Zhu Y, Han ML, Wang J, Creek DJ, Velkov T, Li J (2016) Effect of poly-L-aspartic acid on polymyxin-induced nephrotoxicity: a systems pharmacology approach. ASM Microbe 2017:Poster-217

    Google Scholar 

  86. Sirijatuphat R, Limmahakhun S, Sirivatanauksorn V, Nation RL, Li J, Thamlikitkul V (2015) Preliminary clinical study of the effect of ascorbic acid on colistin-associated nephrotoxicity. Antimicrob Agents Chemother 59:3224–3232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Dalfino L, Puntillo F, Ondok MJM, Mosca A, Monno R, Coppolecchia S, Spada ML, Bruno F, Brienza N (2015) Colistin-associated acute kidney injury in severely ill patients: a step toward a better renal care? A prospective cohort study. Clin Infect Dis 61:1771–1777

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Azad, M.A.K., Nation, R.L., Velkov, T., Li, J. (2019). Mechanisms of Polymyxin-Induced Nephrotoxicity. In: Li, J., Nation, R., Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside. Advances in Experimental Medicine and Biology, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-16373-0_18

Download citation

Publish with us

Policies and ethics