Skip to main content

Discovery of Novel Polymyxin-Like Antibiotics

  • Chapter
  • First Online:
Polymyxin Antibiotics: From Laboratory Bench to Bedside

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1145))

Abstract

The antimicrobial lipopeptides polymyxin B and colistin (polymyxin E) are used as a ‘last-line’ therapy for infections caused by multidrug-resistant (MDR) Gram-negative pathogens. However, their effective use as antibiotic drugs in the clinical setting is still plagued by significant toxicity issues, in particular their potential for nephrotoxicity. Furthermore, resistance to the polymyxins has begun to emerge in the clinic, which implies a total lack of antibiotics for the treatment of life-threatening infections caused by the Gram-negative ‘superbugs’. This chapter details our current understanding of polymyxin structure-activity relationships as well as recent pre-clinical and clinical drug development efforts aimed at generating new polymyxin antibiotics with improved safety and efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Velkov T, Roberts KD, Nation RL, Thompson PE, Li J (2013) Pharmacology of polymyxins: new insights into an ‘old’ class of antibiotics. Future Microbiol 8(6):711–724

    Article  CAS  PubMed  Google Scholar 

  2. Velkov T, Thompson PE, Nation RL, Li J (2010) Structure-activity relationships of polymyxin antibiotics. J Med Chem 53(5):1898–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Mares J, Kumaran S, Gobbo M, Zerbe O (2009) Interactions of lipopolysaccharide and polymyxin studied by NMR spectroscopy. J Biol Chem 284(17):11498–11506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Pristovsek P, Kidric J (1999) Solution structure of polymyxins B and E and effect of binding to lipopolysaccharide: an NMR and molecular modeling study. J Med Chem 42(22):4604–4613

    Article  CAS  PubMed  Google Scholar 

  5. de Visser PC, Kriek NM, van Hooft PA, Van Schepdael A, Filippov DV, van der Marel GA et al (2003) Solid-phase synthesis of polymyxin B1 and analogues via a safety-catch approach. J Pept Res 61(6):298–306

    Article  PubMed  Google Scholar 

  6. Okimura K, Ohki K, Sato Y, Ohnishi K, Sakura N (2007) Semi-synthesis of polymyxin B (2-10) and colistin (2-10) analogs employing the trichloroethoxycarbonyl (Troc) group for side chain protection of alpha,gamma-diaminobutyric acid residues. Chem Pharm Bull (Tokyo) 55(12):1724–1730

    Article  CAS  Google Scholar 

  7. Sakura N, Itoh T, Uchida Y, Ohki K, Okimura K, Chiba K et al (2004) The contribution of the N-terminal structure of polymyxin B peptides to antimicrobial and lipopolysaccharide binding activity. Bull Chem Soc Jpn 77(10):1915–1924

    Article  CAS  Google Scholar 

  8. Chihara S, Ito A, Yahata M, Tobita T, Koyama Y (1974) Chemical synthesis, isolation and characterization of α-N-fattyacyl colistin nonapeptide with special reference to the correlation between antimicrobial activity and carbon number of fattyacyl moiety. Agric Biol Chem 38(3):521–529

    Article  CAS  Google Scholar 

  9. Tsubery H, Ofek I, Cohen S, Fridkin M (2001) N-terminal modifications of polymyxin B nonapeptide and their effect on antibacterial activity. Peptides 22(10):1675–1681

    Article  CAS  PubMed  Google Scholar 

  10. Vaara M (1991) The outer membrane permeability-increasing action of linear analogues of polymyxin B nonapeptide. Drugs Exp Clin Res 17(9):437–443

    CAS  PubMed  Google Scholar 

  11. Okimura K, Ohki K, Sato Y, Ohnishi K, Uchida Y, Sakura N (2007) Chemical conversion of natural polymyxin B and colistin to their N-terminal derivatives. Bull Chem Soc Jpn 80(3):543–552

    Article  CAS  Google Scholar 

  12. Katsuma N, Sato Y, Ohki K, Okimura K, Ohnishi K, Sakura N (2009) Development of des-fatty acyl-polymyxin B decapeptide analogs with pseudomonas aeruginosa-specific antimicrobial activity. Chem Pharm Bull (Tokyo) 57(4):332–336

    Article  CAS  Google Scholar 

  13. Barnett M, Bushby SR, Wilkinson S (1964) Sodium sulphomethyl derivatives of polymyxins. Br J Pharmacol Chemother 23:552–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Vaara M, Fox J, Loidl G, Siikanen O, Apajalahti J, Hansen F et al (2008) Novel polymyxin derivatives carrying only three positive charges are effective antibacterial agents. Antimicrob Agents Chemother 52(9):3229–3236

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kimura Y, Matsunaga H, Vaara M (1992) Polymyxin B octapeptide and polymyxin B heptapeptide are potent outer membrane permeability-increasing agents. J Antibiot (Tokyo) 45(5):742–749

    Article  CAS  Google Scholar 

  16. Kanazawa K, Sato Y, Ohki K, Okimura K, Uchida Y, Shindo M et al (2009) Contribution of each amino acid residue in polymyxin B(3) to antimicrobial and lipopolysaccharide binding activity. Chem Pharm Bull (Tokyo) 57(3):240–244

    Article  CAS  Google Scholar 

  17. Tsubery H, Ofek I, Cohen S, Fridkin M (2000) Structure activity relationship study of polymyxin B nonapeptide. Adv Exp Med Biol 479:219–222

    Article  CAS  PubMed  Google Scholar 

  18. Rabanal F, Cajal Y (2017) Recent advances and perspectives in the design and development of polymyxins. Nat Prod Rep 34(7):886–908

    Article  CAS  PubMed  Google Scholar 

  19. Brown P, Dawson MJ (2017) Development of new polymyxin derivatives for multi-drug resistant Gram-negative infections. J Antibiot (Tokyo) 70(4):386–394

    Article  CAS  Google Scholar 

  20. Velkov T, Roberts KD, Nation RL, Wang J, Thompson PE, Li J (2014) Teaching ‘old’ polymyxins new tricks: new-generation lipopeptides targeting Gram-negative ‘superbugs’. ACS Chem Biol 9(5):1172–1177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Clements A, Tull D, Jenney AW, Farn JL, Kim SH, Bishop RE et al (2007) Secondary acylation of klebsiella pneumoniae lipopolysaccharide contributes to sensitivity to antibacterial peptides. J Biol Chem 282(21):15569–15577

    Article  CAS  PubMed  Google Scholar 

  22. Moskowitz SM, Ernst RK (2010) The role of pseudomonas lipopolysaccharide in cystic fibrosis airway infection. Subcell Biochem 53:241–253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Moskowitz SM, Ernst RK, Miller SI (2004) PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J Bacteriol 186(2):575–579

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Hancock RE (1997) Peptide antibiotics. Lancet 349(9049):418–422

    Article  CAS  PubMed  Google Scholar 

  25. Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005) Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 25(1):11–25

    Article  PubMed  Google Scholar 

  26. Koike M, Iida K, Matsuo T (1969) Electron microscopic studies on mode of action of polymyxin. J Bacteriol 97(1):448–452

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Soon RL, Velkov T, Chiu F, Thompson PE, Kancharla R, Roberts K et al (2011) Design, synthesis, and evaluation of a new fluorescent probe for measuring polymyxin-lipopolysaccharide binding interactions. Anal Biochem 409(2):273–283

    Article  CAS  PubMed  Google Scholar 

  28. Li J, Milne RW, Nation RL, Turnidge JD, Smeaton TC, Coulthard K (2003) Use of high-performance liquid chromatography to study the pharmacokinetics of colistin sulfate in rats following intravenous administration. Antimicrob Agents Chemother 47(5):1766–1770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Yousef JM, Chen G, Hill PA, Nation RL, Li J (2012) Ascorbic acid protects against the nephrotoxicity and apoptosis caused by colistin and affects its pharmacokinetics. J Antimicrob Chemother 67(2):452–459

    Article  CAS  PubMed  Google Scholar 

  30. Ali FE, Cao G, Poudyal A, Vaara T, Nation RL, Vaara M et al (2009) Pharmacokinetics of novel antimicrobial cationic peptides NAB 7061 and NAB 739 in rats following intravenous administration. J Antimicrob Chemother 64(5):1067–1070

    Article  CAS  PubMed  Google Scholar 

  31. Vaara M (2013) Novel derivatives of polymyxins. J Antimicrob Chemother 68(6):1213–1219

    Article  CAS  PubMed  Google Scholar 

  32. Vaara M, Sader HS, Rhomberg PR, Jones RN, Vaara T (2013) Antimicrobial activity of the novel polymyxin derivative NAB739 tested against Gram-negative pathogens. J Antimicrob Chemother 68(3):636–639

    Article  CAS  PubMed  Google Scholar 

  33. Vaara M, Siikanen O, Apajalahti J, Fox J, Frimodt-Moller N, He H et al (2010) A novel polymyxin derivative that lacks the fatty acid tail and carries only three positive charges has strong synergism with agents excluded by the intact outer membrane. Antimicrob Agents Chemother 54(8):3341–3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Vaara M, Siikanen O, Apajalahti J, Frimodt-Moller N, Vaara T (2010) Susceptibility of carbapenemase-producing strains of Klebsiella pneumoniae and Escherichia coli to the direct antibacterial activity of NAB739 and to the synergistic activity of NAB7061 with rifampicin and clarithromycin. J Antimicrob Chemother 65(5):942–945

    Article  CAS  PubMed  Google Scholar 

  35. Vaara M, Vaara T (2010) Structure-activity studies on novel polymyxin derivatives that carry only three positive charges. Peptides 31(12):2318–2321

    Article  CAS  PubMed  Google Scholar 

  36. Vaara M, Vaara T (2013) The novel polymyxin derivative NAB739 is remarkably less cytotoxic than polymyxin B and colistin to human kidney proximal tubular cells. Int J Antimicrob Agents 41(3):292–293

    Article  CAS  PubMed  Google Scholar 

  37. Vingsbo Lundberg C, Vaara T, Frimodt-Moller N, Vaara M (2010) Novel polymyxin derivatives are effective in treating experimental Escherichia coli peritoneal infection in mice. J Antimicrob Chemother 65(5):981–985

    Article  CAS  PubMed  Google Scholar 

  38. Nielsen R, Birn H, Moestrup SK, Nielsen M, Verroust P, Christensen EI (1998) Characterization of a kidney proximal tubule cell line, LLC-PK1, expressing endocytotic active megalin. J Am Soc Nephrol 9(10):1767–1776

    CAS  PubMed  Google Scholar 

  39. Vaara M, Vaara T, Vingsbo LC (2017) Polymyxin derivatives NAB739 and NAB815 are more effective than polymyxin B in murine Escherichia coli pyelonephritis. J Antimicrob Chemother 73(2):452–455

    Article  Google Scholar 

  40. Vaara M, Vaara T, Tyrrell JM (2017) Structure-activity studies on polymyxin derivatives carrying three positive charges only reveal a new class of compounds with strong antibacterial activity. Peptides 91:8–12

    Article  CAS  PubMed  Google Scholar 

  41. Spero completes $30 million financing [press release]. June 8, 2015

    Google Scholar 

  42. Corbett D, Wise A, Langley T, Skinner K, Trimby E, Birchall S et al (2017) Potentiation of antibiotic activity by a novel cationic peptide: potency and spectrum of activity of SPR741. Antimicrob Agents Chemother 61(8):e00200-17

    Article  PubMed  PubMed Central  Google Scholar 

  43. Zabawa TP, Pucci MJ, Parr TR Jr, Lister T (2016) Treatment of Gram-negative bacterial infections by potentiation of antibiotics. Curr Opin Microbiol 33:7–12

    Article  CAS  PubMed  Google Scholar 

  44. Spero therapeutics announces positive phase 1 clinical data from potentiator platform [press release]. October 3rd, 2017

    Google Scholar 

  45. Spero therapeutics announces positive top-line data for two product candidates from its potentiator platform [press release]. May 23rd, 2018

    Google Scholar 

  46. Vaara M, Vaara T (1983) Polycations sensitize enteric bacteria to antibiotics. Antimicrob Agents Chemother 24(1):107–113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Vaara M, Vaara T (1983) Polycations as outer membrane-disorganizing agents. Antimicrob Agents Chemother 24(1):114–122

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Vaara M, Vaara T (1983) Sensitization of Gram-negative bacteria to antibiotics and complement by a nontoxic oligopeptide. Nature 303(5917):526–528

    Article  CAS  PubMed  Google Scholar 

  49. Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56(3):395–411

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Sato Y, Shindo M, Sakura N, Uchida Y, Kato I (2011) Novel des-fatty acyl-polymyxin B derivatives with Pseudomonas aeruginosa-specific antimicrobial activity. Chem Pharm Bull (Tokyo) 59(5):597–602

    Article  CAS  Google Scholar 

  51. Viswanath DV, Jenkins HJ (1978) Neuromuscular block of the polymyxin group of antibiotics. J Pharm Sci 67(9):1275–1280

    Article  CAS  PubMed  Google Scholar 

  52. Singh YN, Marshall IG, Harvey AL (1982) Pre- and postjunctional blocking effects of aminoglycoside, polymyxin, tetracycline and lincosamide antibiotics. Br J Anaesth 54(12):1295–1306

    Article  CAS  PubMed  Google Scholar 

  53. Bairamashvili DI, Voitenko VG, Gushchin IS, Zinchenko AA, Miroshnikov AI (1989) The histamine-liberating action of polymyxin B and its analogs. Biull Eksp Biol Med 107(4):447–449

    Article  CAS  PubMed  Google Scholar 

  54. Voitenko VG, Bayramashvili DI, Zebrev AI, Zinchenko AA (1990) Relationship between structure and histamine releasing action of polymyxin B and its analogues. Agents Actions 30(1–2):153–156

    Article  CAS  PubMed  Google Scholar 

  55. Leese RA, inventor; Biosource Pharm, Inc., assignee (2010) Antibiotic composition for the treatment of Gram-negative infections. U.S patent US20100160215

    Google Scholar 

  56. Keith DD, Borders D, Curran W, Leese R, Mahamoon A, Jarolmen H et al eds (2010) Poster F1-1619 synthesis and activity of CB-182,804, a novel polymyxin analog active against clinically relevant Gram-negative bacteria. In: 50th Interscience conference on antimicrobial agents and chemotherapy, 2010 September 12–15, Boston, MA, USA

    Google Scholar 

  57. Sader HS, Rhomberg PR, Jones RN eds (2010) Poster F1-1626 Antimicrobial activity of a novel polymyxin analog (CB-182,804) tested against clinical strains of Gram-negative bacilli, including colistin resistant organisms. In: 50th interscience conference on antimicrobial agents and chemotherapy, Boston, USA

    Google Scholar 

  58. Quale J, Shah N, Kelly P, Babu E, Backer M, Rosas-Garcia G et al (2012) Activity of polymyxin B and the novel polymyxin analogue CB-182,804 against contemporary Gram-negative pathogens in New York City. Microb Drug Resist 18(2):132–136

    Article  CAS  PubMed  Google Scholar 

  59. Chen JM, Li ZB, Magee TV, Martinez CA, inventors; Pfizer Inc, assignee (2012) Polymyxin derivatives useful as antibacterial agents. patent WO2012168820

    Google Scholar 

  60. Magee TV, Brown MF, Starr JS, Ackley DC, Abramite JA, Aubrecht J et al (2013) Discovery of Dap-3 polymyxin analogues for the treatment of multidrug-resistant Gram-negative nosocomial infections. J Med Chem 56:5079–5093

    Article  CAS  PubMed  Google Scholar 

  61. Saadi M, Duperchy E, Brown P, Dawson MJ, Wadman SN, inventors; Cantab Anti-Infectives, assignee (2013) Polymyxin derivatives patent WO2013072695

    Google Scholar 

  62. Brown P, Dawson M, Simonovic M, Boakes S, Duperchy E, inventors; Cantab Anti-Infectives, assignee (2014) Polymyxin derivatives and their use in combination therapy together with different antibiotics. patent WO2014188178

    Google Scholar 

  63. Brown P, Dawson M, Simonovic M, Boakes S, Duperchy E, Stanway S, et al., inventors; Cantab Anti-Infectives, assignee (2015) Polymyxin derivatives and their use in combintion theapy together with different antibiotics. patent WO2015135976

    Google Scholar 

  64. Boakes S, Duperchy E, Brown P, Teague J, Payne LJ, Dawson MJ eds (2015) Novel polymyxin derivative CA824: efficacy in neutropenic mouse thigh and lung infection models. In: 55th interscience conference on antimicrobial agents and chemotherapy and 28th international congress of chemotherapy meeting, San Diego USA

    Google Scholar 

  65. Wiederhold NP, Jorgenson JH, Boakes S, Collins M, McElmeel, Cushion MT et al (2015) Anibacterial activity of novel polymyxin B derivatives against Gram-negative bacteria and intial toxicity assessment. In: 55th Interscience conference on antimicrobial agents and chemotherapy and 28th international congress of chemotherapy meeting, San Diego, USA

    Google Scholar 

  66. Spero therapeutics acquires next generation antibacterial candidates from Pro Bono Bio for treatment of multidrug-resistant, Gram-negative infections [press release]. January 31st, 2017

    Google Scholar 

  67. Arends S, Rhomberg P, Lister T, Cotroneo N, Rubio A, Flamm R et al (2018) In vitro activity evaluation of a next-generation polymyxin, SPR206, against non-fermentative gram-negative bacilli responsible for human infections. In: ESCMID/ASM conference on drug development to meet the challenge of antimicrobial resistance, Lisbon, Portugal

    Google Scholar 

  68. Arends S, Rhomberg P, Lister T, Cotroneo N, Rubio A, Flamm R et al (2018) Activity of an investigational polymyxin-B-like compound (SPR206) against a set of enterobacteriaceae organisms responsible for human infections. In: ESCMID/ASM conference on drug development to meet the challenge of antimicrobial resistance, Lisbon, Portugal

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Tony Velkov or Kade D. Roberts .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Velkov, T., Roberts, K.D. (2019). Discovery of Novel Polymyxin-Like Antibiotics. In: Li, J., Nation, R., Kaye, K. (eds) Polymyxin Antibiotics: From Laboratory Bench to Bedside. Advances in Experimental Medicine and Biology, vol 1145. Springer, Cham. https://doi.org/10.1007/978-3-030-16373-0_20

Download citation

Publish with us

Policies and ethics