Skip to main content

Deep Learning vs. Traditional Computer Vision

  • Conference paper
  • First Online:
Advances in Computer Vision (CVC 2019)

Abstract

Deep Learning has pushed the limits of what was possible in the domain of Digital Image Processing. However, that is not to say that the traditional computer vision techniques which had been undergoing progressive development in years prior to the rise of DL have become obsolete. This paper will analyse the benefits and drawbacks of each approach. The aim of this paper is to promote a discussion on whether knowledge of classical computer vision techniques should be maintained. The paper will also explore how the two sides of computer vision can be combined. Several recent hybrid methodologies are reviewed which have demonstrated the ability to improve computer vision performance and to tackle problems not suited to Deep Learning. For example, combining traditional computer vision techniques with Deep Learning has been popular in emerging domains such as Panoramic Vision and 3D vision for which Deep Learning models have not yet been fully optimised.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep convolutional neural networks. In: Proceedings of 25th International Conference on Neural Information Processing System, NIPS 2012, vol. 1, pp. 1097–1105 (2012)

    Google Scholar 

  2. Nash, W., Drummond, T., Birbilis, N.: A review of deep learning in the study of materials degradation. npj Mater. Degrad. 2 (2018). Article number: 37. https://doi.org/10.1038/s41529-018-0058-x

  3. Bonaccorso, G.: Machine Learning Algorithms: Popular Algorithms for Data Science and Machine Learning, 2nd edn. Packt Publishing Ltd., Birmingham (2018)

    Google Scholar 

  4. O’Mahony, N., Murphy, T., Panduru, K., et al.: Improving controller performance in a powder blending process using predictive control. In: 2017 28th Irish Signals and Systems Conference (ISSC), pp. 1–6. IEEE (2017)

    Google Scholar 

  5. O’Mahony, N., Murphy, T., Panduru, K., et al.: Real-time monitoring of powder blend composition using near infrared spectroscopy. In: 2017 Eleventh International Conference on Sensing Technology (ICST), pp. 1–6. IEEE (2017)

    Google Scholar 

  6. O’Mahony, N., Murphy, T., Panduru, K., et al.: Adaptive process control and sensor fusion for process analytical technology. In: 2016 27th Irish Signals and Systems Conference (ISSC), pp. 1–6. IEEE (2016)

    Google Scholar 

  7. Koehn, P.: Combining genetic algorithms and neural networks: the encoding problem (1994)

    Google Scholar 

  8. Wang, J., Ma, Y., Zhang, L., Gao, R.X.: Deep learning for smart manufacturing: methods and applications. J. Manufact. Syst. 48, 144–156 (2018). https://doi.org/10.1016/J.JMSY.2018.01.003

    Article  Google Scholar 

  9. Voulodimos, A., Doulamis, N., Doulamis, A., Protopapadakis, E.: Deep learning for computer vision: a brief review. Comput. Intell. Neurosci. 2018, 1–13 (2018). https://doi.org/10.1155/2018/7068349

    Article  Google Scholar 

  10. Dumoulin, V., Visin, F., Box, G.E.P.: A guide to convolution arithmetic for deep learning. arXiv Prepr arXiv:1603.07285v2 (2018)

  11. Hayou, S., Doucet, A., Rousseau, J.: On the selection of initialization and activation function for deep neural networks. arXiv Prepr arXiv:1805.08266v2 (2018)

  12. Horiguchi, S., Ikami, D., Aizawa, K.: Significance of softmax-based features in comparison to distance metric learning-based features (2017)

    Google Scholar 

  13. Deshpande, A.: A beginner’s guide to understanding convolutional neural networks. CS Undergrad at UCLA (2019). https://adeshpande3.github.io/A-Beginner%27s-Guide-To-Understanding-Convolutional-Neural-Networks/. Accessed 19 July 2018

  14. Karami, E., Shehata, M., Smith, A.: Image identification using SIFT algorithm: performance analysis against different image deformations (2017)

    Google Scholar 

  15. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: speeded up robust features, pp. 404–417. Springer, Heidelberg (2006)

    Google Scholar 

  16. Rosten, E., Drummond, T.: Machine learning for high-speed corner detection, pp. 430–443. Springer, Heidelberg (2006)

    Google Scholar 

  17. Goldenshluger, A., Zeevi, A.: The hough transform estimator 32 (2004). https://doi.org/10.1214/009053604000000760

  18. Tsai, F.C.D.: Geometric hashing with line features. Pattern Recogn. 27, 377–389 (1994). https://doi.org/10.1016/0031-3203(94)90115-5

    Article  Google Scholar 

  19. Wang, J., Perez, L.: The effectiveness of data augmentation in image classification using deep learning

    Google Scholar 

  20. Schöning, J., Faion, P., Heidemann, G.: Pixel-wise ground truth annotation in videos - an semi-automatic approach for pixel-wise and semantic object annotation. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, pp. 690–697. SCITEPRESS - Science and Technology Publications (2016)

    Google Scholar 

  21. Zhang, X., Lee, J.-Y., Sunkavalli, K., Wang, Z.: Photometric stabilization for fast-forward videos (2017)

    Google Scholar 

  22. Alhaija, H.A., Mustikovela, S.K., Mescheder, L., et al.: Augmented reality meets computer vision : efficient data generation for urban driving scenes (2017)

    Google Scholar 

  23. Meneghetti, G., Danelljan, M., Felsberg, M., Nordberg, K.: Image alignment for panorama stitching in sparsely structured environments, pp. 428–439. Springer, Cham (2015)

    Google Scholar 

  24. Alldieck, T., Kassubeck, M., Magnor, M.: Optical flow-based 3D human motion estimation from monocular video (2017)

    Google Scholar 

  25. Zheng, B., Zhao, Y., Yu, J., et al.: Scene understanding by reasoning stability and safety. Int. J. Comput. Vis. 112, 221–238 (2015). https://doi.org/10.1007/s11263-014-0795-4

    Article  MathSciNet  Google Scholar 

  26. Zheng, L., Yang, Y., Tian, Q.: SIFT meets CNN: a decade survey of instance retrieval

    Google Scholar 

  27. AlDahoul, N., Md Sabri, A.Q., Mansoor, A.M.: Real-time human detection for aerial captured video sequences via deep models. Comput. Intell. Neurosci. 2018, 1–14 (2018). https://doi.org/10.1155/2018/1639561

    Article  Google Scholar 

  28. Conventional computer vision coupled with deep learning makes AI better. Network World. https://www.networkworld.com/article/3239146/internet-of-things/conventional-computer-vision-coupled-with-deep-learning-makes-ai-better.html. Accessed 12 Sept 2018

  29. Bahrampour, S., Ramakrishnan, N., Schott, L., Shah, M.: Comparative study of deep learning software frameworks (2015)

    Google Scholar 

  30. An in-depth look at Google’s first tensor processing unit (TPU). Google cloud big data and machine learning blog. Google cloud platform (2017). https://cloud.google.com/blog/big-data/2017/05/an-in-depth-look-at-googles-first-tensor-processing-unit-tpu. Accessed 11 Jan 2018

  31. Vision Processing Unit: Machine vision technology. Movidius. https://www.movidius.com/solutions/vision-processing-unit. Accessed 11 Jan 2018

  32. Ng, H.-W., Nguyen, D., Vonikakis, V., Winkler, S.: Deep learning for emotion recognition on small datasets using transfer learning. https://doi.org/10.1145/2818346.2830593

  33. Pepik, B., Stark, M., Gehler, P., Schiele, B.: Teaching 3D geometry to deformable part models. In: Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition (2012)

    Google Scholar 

  34. Russakovsky, O., Deng, J., Su, H., et al.: ImageNet large scale visual recognition challenge. Int. J. Comput. Vis. 115, 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  35. Lin, T.-Y., Maire, M., Belongie, S., et al.: Microsoft COCO: common objects in context (2014)

    Google Scholar 

  36. CS231n convolutional neural networks for visual recognition. http://cs231n.github.io/transfer-learning/. Accessed 9 Mar 2018

  37. Highlander, T.C.: Efficient training of small kernel convolutional neural networks using fast fourier transform

    Google Scholar 

  38. Highlander, T., Rodriguez, A.: Very efficient training of convolutional neural networks using fast fourier transform and overlap-and-add (2016)

    Google Scholar 

  39. Li, F., Wang, C., Liu, X., et al.: A composite model of wound segmentation based on traditional methods and deep neural networks. Comput. Intell. Neurosci. 2018, 1–12 (2018). https://doi.org/10.1155/2018/4149103

    Article  Google Scholar 

  40. Nijhawan, R., Das, J., Raman, B.: A hybrid of deep learning and hand-crafted features based approach for snow cover mapping. Int. J. Remote Sens. 1–15 (2018). https://doi.org/10.1080/01431161.2018.1519277

  41. Zeng, G., Zhou, J., Jia, X., et al.: Hand-crafted feature guided deep learning for facial expression recognition. In: 2018 13th IEEE International Conference on Automatic Face & Gesture Recognition (FG 2018), pp. 423–430. IEEE (2018)

    Google Scholar 

  42. Burchfiel, B., Konidaris, G.: Hybrid Bayesian eigenobjects: combining linear subspace and deep network methods for 3D robot vision

    Google Scholar 

  43. Marcus, G.: Deep learning: a critical appraisal

    Google Scholar 

  44. Nalisnick, E., Smyth, P.: Learning priors for invariance, pp. 366–375 (2018)

    Google Scholar 

  45. Diligenti, M., Roychowdhury, S., Gori, M.: Integrating prior knowledge into deep learning. In: 2017 16th IEEE International Conference on Machine Learning and Applications (ICMLA), pp. 920–923. IEEE (2017)

    Google Scholar 

  46. Zhu, H., Nie, Y., Yue, T., Cao, X.: The role of prior in image based 3D modeling: a survey. Front. Comput. Sci. 11, 175–191 (2017). https://doi.org/10.1007/s11704-016-5520-8

    Article  Google Scholar 

  47. Tran, D., Bourdev, L., Fergus, R., et al.: Learning spatiotemporal features with 3D convolutional networks. arXiv Prepr arXiv:1412.0767 (2015)

  48. Pang, G., Neumann, U.: 3D point cloud object detection with multi-view convolutional neural network. In: 2016 23rd International Conference on Pattern Recognition (ICPR), pp. 585–590. IEEE (2016)

    Google Scholar 

  49. Lan, Q., Wang, Z., Wen, M., et al.: High performance implementation of 3D convolutional neural networks on a GPU. Comput. Intell. Neurosci. 2017, 1–8 (2017). https://doi.org/10.1155/2017/8348671

    Article  Google Scholar 

  50. Ahmed, E., Saint, A., Shabayek, A.E.R., et al.: Deep learning advances on different 3D data representations: a survey. arXiv Prepr arXiv:1808.01462 (2018)

  51. Zhou, Y., Tuzel, O.: VoxelNet: end-to-end learning for point cloud based 3D object detection. arXiv Prepr arXiv:1711.06396 (2017)

  52. Qi, C.R., Yi, L., Su, H., Guibas, L.J.: PointNet ++: deep hierarchical feature learning on point sets in a metric space. arXiv Prepr arXiv:1706.02413v1 (2017)

  53. Braeger, S., Foroosh, H.: Curvature augmented deep learning for 3D object recognition. In: 2018 25th IEEE International Conference on Image Processing (ICIP), pp. 3648–3652. IEEE (2018)

    Google Scholar 

  54. O’Mahony, N., Campbell, S., Krpalkova, L., et al.: Deep learning for visual navigation of unmanned ground vehicles; a review (2018)

    Google Scholar 

  55. Karami, E., Prasad, S., Shehata, M.: Image matching using SIFT, SURF, BRIEF and ORB: performance comparison for distorted images

    Google Scholar 

  56. Angelina Uy, M., Hee Lee, G.: PointNetVLAD: deep point cloud based retrieval for large-scale place recognition

    Google Scholar 

  57. Camposeco, F., Cohen, A., Pollefeys, M., Sattler, T.: Hybrid scene compression for visual localization

    Google Scholar 

  58. Loghmani, M.R., Planamente, M., Caputo, B., Vincze, M.: Recurrent convolutional fusion for RGB-D object recognition

    Google Scholar 

  59. Clément, M., Kurtz, C., Wendling, L.: Learning spatial relations and shapes for structural object description and scene recognition. Pattern Recogn. 84, 197–210 (2018). https://doi.org/10.1016/J.PATCOG.2018.06.017

    Article  Google Scholar 

  60. Ran, L., Zhang, Y., Zhang, Q., et al.: Convolutional neural network-based robot navigation using uncalibrated spherical images. Sensors 17, 1341 (2017). https://doi.org/10.3390/s17061341

    Article  Google Scholar 

  61. Silva, R.M.A., Feijó, B., Gomes, P.B., et al.: Real time 360° video stitching and streaming. In: ACM SIGGRAPH 2016 Posters on - SIGGRAPH 2016, pp. 1–2. ACM Press, New York (2016)

    Google Scholar 

  62. Fernandez-Labrador, C., Perez-Yus, A., Lopez-Nicolas, G., Guerrero, J.J.: Layouts from panoramic images with geometry and deep learning

    Google Scholar 

  63. Schöning, J., Faion, P., Heidemann, G.: Pixel-wise ground truth annotation in videos - an semi-automatic approach for pixel-wise and semantic object annotation. In: Proceedings of the 5th International Conference on Pattern Recognition Applications and Methods, pp. 690–697. SCITEPRESS - Science and and Technology Publications (2016)

    Google Scholar 

  64. Ioannidou, A., Chatzilari, E., Nikolopoulos, S., Kompatsiaris, I.: Deep learning advances in computer vision with 3D data. ACM Comput. Surv. 50, 1–38 (2017). https://doi.org/10.1145/3042064

    Article  Google Scholar 

  65. Devries, T., Taylor, G.W.: Dataset augmentation in feature space. arXiv Prepr arXiv:1702.05538v1 (2017)

  66. Dvornik, N., Mairal, J., Schmid, C.: Modeling visual context is key to augmenting object detection datasets

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Niall O’Mahony .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

O’Mahony, N. et al. (2020). Deep Learning vs. Traditional Computer Vision. In: Arai, K., Kapoor, S. (eds) Advances in Computer Vision. CVC 2019. Advances in Intelligent Systems and Computing, vol 943. Springer, Cham. https://doi.org/10.1007/978-3-030-17795-9_10

Download citation

Publish with us

Policies and ethics