Skip to main content

Lignocellulose-Degrading Thermophilic Fungi and Their Prospects in Natural Rubber Extraction from Plants

  • Chapter
  • First Online:
Fungi in Extreme Environments: Ecological Role and Biotechnological Significance

Abstract

Fungi have the ability to grow in diverse habitats and over a wide temperature range. Those that can grow between 45 °C and 55 °C are termed “thermophiles.” Thermophilic fungi were previously discovered in the natural self-heating process of organic debris, and their examples include Mucor pusillus, Thermomyces lanuginosus, Thermoascus aurantiacus, and Thermoidium sulfureum. Thermophilic fungi produce many thermostable enzymes, called thermozymes that are of biotechnological importance, particularly for degradation of lignocellulosic biomass to make value-added biomaterials. These fungi have the ability to grow, at high temperatures, on complex lignocellulosic biomass by secreting different thermozymes like cellulases, xylanases, and pectinases to hydrolyze complex plant polymers. Such extreme fungi naturally adapt to the high temperatures that are needed to degrade plant biomass, as their thermostable proteins are more resistant to proteolysis and chemical denaturation than those of mesophilic fungi. The thermophilic fungus T. lanuginosus STm, and its hydrolytic thermozymes, can efficiently degrade root biomass of the rubber plant (Taraxacum kok-saghyz), enhancing the extraction of natural rubber. Thermophilic fungi, typically lignocellulose degrading, may have industrial potential in applications that require removal or breakdown of lignocellulose to release other value-added secondary products, not just rubber. This chapter reviews the function and utility of thermophilic enzymes, and highlights, for the first time, the potential application of lignocellulose-degrading thermophilic fungi and their thermozymes in the extraction of natural rubber.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams PR, Deploey JJ (1978) Enzymes produced by thermophilic fungi. Mycologia 70:906–910

    Article  CAS  PubMed  Google Scholar 

  • Adrio JL, Demain AL (2014) Microbial enzymes: tools for biotechnological processes. Biomolecules 4:117–139

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Alberghina FA (1973) Growth regulation in Neurospora crassa. Effects of nutrients and of temperature. Arch Microbiol 89:83–94

    CAS  Google Scholar 

  • Allen PJ, Emerson R (1949) Guayule rubber microbiological improvement by shrub retting. Ind Eng Chem 41:346–365

    Article  CAS  Google Scholar 

  • Akhter N, Morshed MA, Uddin A, Begum F, Sultan T, Azad AK (2011) Production of pectinase by Aspergillus niger cultured in solid state media. Int J Biosci 1(1):33–42

    CAS  Google Scholar 

  • Anand L, Krishnamurthy S, Vithayathil PJ (1990) Purification and properties of xylanase from the thermophilic fungus, Humicola lanuginosa (Griffon and Maublanc) Bunce. Arch Biochem Biophys 276:546–553

    Article  CAS  PubMed  Google Scholar 

  • Arima K, Iwasaki S, Tamura G (1967) Milk clotting enzyme from microorganisms. I. Screening test and the identification of the potent fungus. Agric Biol Chem 31:540–545

    Article  CAS  Google Scholar 

  • Bennett NA, Ryan J, Biely P, Vrsanska M, Kremnicky L, Macris BJ, Kekos D, Christakopoulos P, Katapodis P, Claeyssens M, Nerinckx W, Ntauma P, Bhat MK (1998) Biochemical and catalytic properties of an endoxylanase purified from the culture filtrate of Thermomyces lanuginosus ATCC 46882. Carbohydr Res 306:445–455

    Article  CAS  PubMed  Google Scholar 

  • Bhat MK, Bhat S (1997) Cellulose degrading enzymes and their potential industrial applications. Biotechnol Adv 15:583–620

    Article  CAS  PubMed  Google Scholar 

  • Bhat KM, Maheshwari R (1987) Sporotrichum thermophile: growth, cellulose degradation, and cellulase activity. Appl Environ Microbiol 53:2175–2182

    CAS  PubMed  PubMed Central  Google Scholar 

  • Biely P (1985) Microbial xylanolytic systems. Trends Biotechnol 3:286–290

    Article  CAS  Google Scholar 

  • Black L, Hamerstrand G, Nakayama F, Rasnik B (1983) Gravimetric analysis for determining the resin and rubber content of guayule. Rubber Chem Technol 56:367–371

    Article  CAS  Google Scholar 

  • Blumer-Schuette SE, Brown SD, Sander KB, Bayer EA, Kataeva I, Zurawski JV, Conway JM, Adams MW, Kelly RM (2014) Thermophilic lignocellulose deconstruction. FEMS Microbiol Rev 38:393–448

    Article  CAS  PubMed  Google Scholar 

  • Bogin O, Peretz M, Hacham Y, Korkhin Y, Frolow F, Kalb AJ, Burstein Y (1998) Enhanced thermal stability of Clostridium beijerinckii alcohol dehydrogenase after strategic substitution of amino acid residues with prolines from the homologous thermophilic Thermoanaerobacter brockii alcohol dehydrogenase. Protein Sci 7(5):1156–1163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Buranov AU (2009) Process for recovering rubber from rubber-bearing plants with a gristmill. Google Patents

    Google Scholar 

  • Buranov AU, Elmuradov BJ (2009) Extraction and characterization of latex and natural rubber from rubber-bearing plants. J Agric Food Chem 58:734–743

    Article  CAS  Google Scholar 

  • Buranov A, Elmuradov B, Shakhidoyatov K, Anderson F, Lawrence J (2005) Rubber-bearing plants of Central Asia. In: Industrial crops and rural development. Proceedings of 2005 Annual Meeting of the Association for the Advancement of Industrial Crops: International Conference on Industrial Crops and Rural Development 17–21

    Google Scholar 

  • Cataldo F (2000) Guayule rubber: a new possible world scenario for the production of natural rubber. Prog Rubber Plast Technol 16:31–59

    CAS  Google Scholar 

  • Chaudhary G, Singh LK, Ghosh S (2012) Alkaline pretreatment methods followed by acid hydrolysis of Saccharum spontaneum for bioethanol production. Bioresour Technol 124:111–118

    Article  CAS  PubMed  Google Scholar 

  • Cooney DG, Emerson R (1964) Thermophilic fungi: an account of their biology, activities and classification. Freeman, San Francisco, CA, pp 80–88

    Google Scholar 

  • Cornish K, Kopicky SL, McNulty SK, Amstutz N, Chanon AM, Walker S, Kleinhenz MD, Miller AR, Streeter JG (2016) Temporal diversity of Taraxacum kok-saghyz plants reveals high rubber yield phenotypes. Biodiversitas 17:847–856

    Article  Google Scholar 

  • Coutts AD, Smith RE (1976) Factors influencing the production of cellulases by Sporotrichum thermophile. Appl Environ Microbiol 31:819–825

    CAS  PubMed  PubMed Central  Google Scholar 

  • de Oliveira TB, Gomes E, Rodrigues A (2015) Thermophilic fungi in the new age of fungal taxonomy. Extremophiles 19(1):31–37

    Article  PubMed  Google Scholar 

  • Damaso MC, Andrade CM, Pereira N (2000) Use of corncob for endoxylanase production by thermophilic fungus Thermomyces lanuginosus IOC-4145. Appl Biochem Biotechnol 84:821–834

    Article  PubMed  Google Scholar 

  • Eagle F (1981) Guayule. Rubber Chem Technol 54:662–684

    Article  CAS  Google Scholar 

  • Emerson R (1968) Thermophiles. In: Answorth GC, Sussman AS (eds) The fungi: an advanced treatise. Academic Press, London, p 105. 128

    Google Scholar 

  • Eskew RK, Edwards PW 1946. Process for recovering rubber from fleshy plants. Google Patents

    Google Scholar 

  • Eswaramoorthy S, Vithayathil PJ, Viswamitra MA (1994) Crystallization and preliminary X-ray crystallographic studies of thermostable xylanase crystals isolated from Paecilomyces varioti. J Mol Biol 243:806–808

    Article  CAS  PubMed  Google Scholar 

  • Folan MA, Coughlan MP (1978) The cellulase complex in the culture filtrate of the thermophyllic fungus, Talaromyces emersonii. Int J Biochem 9:717–722

    Article  CAS  PubMed  Google Scholar 

  • Ganju RK, Murthy SK, Vithayathil PJ (1989) Purification and characterization of two cellobiohydrolases from Chaetomium thermophile var. coprophile. Biochim Biophys Acta 993:266–274

    Article  CAS  PubMed  Google Scholar 

  • Gomes J, Gomes I, Kreiner W, Esterbauer H, Sinner M, Steiner W (1993a) Production of high level of cellulase-free and thermostable xylanase by a wild strain of Thermomyces lanuginosus using beechwood xylan. J Biotechnol 30:283–297

    Article  CAS  Google Scholar 

  • Gomes J, Purkarthofer H, Hayn M, Kapplmüller J, Sinner M, Steiner W (1993b) Production of a high level of cellulase-free xylanase by the thermophilic fungus Thermomyces lanuginosus in laboratory and pilot scales using lignocellulosic materials. Appl Microbiol Biotechnol 39:700–707

    Article  CAS  Google Scholar 

  • Guerriero G, Hausman JF, Strauss J, Ertan H, Siddiqui KS (2015) Destructuring plant biomass: focus on fungal and extremophilic cell wall hydrolases. Plant Sci 234:180–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gunde-Cimerman N, Zalar P (2014) Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Tech Biotechnol 52:170–179

    Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. Biomed Res Int 2013:329121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hamerstrand G, Montgomery R (1984) Pilot-scale guayule processing using countercurrent solvent extraction equipment. Rubber Chem Technol 57:344–350

    Article  CAS  Google Scholar 

  • Hayashida S, Yoshioka H (1980) Production and purification of thermostable cellulases from Humicola insolens YH-8. Agric Biol Chem 44:1721–1728

    CAS  Google Scholar 

  • Howard R, Abotsi E, Van Rensburg EJ, Howard S (2003) Lignocellulose biotechnology: issues of bioconversion and enzyme production. Afr J Biotechnol 2:602–619

    Article  CAS  Google Scholar 

  • Inamdar A (1987) Polygalacturonase from Thermoascus aurantiacus: isolation and functional characteristics. Ph.D thesis. Indian Institute of Science, Bangalore

    Google Scholar 

  • Jensen B, Olsen J, Allermann K (1987) Effect of media composition on the production of extracellular amylase from the thermophilic fungus Thermomyces lanuginosus. Biotechnol Lett 9:313–316

    Article  CAS  Google Scholar 

  • Jørgensen H, Vibe-Pedersen J, Larsen J, Felby C (2007) Liquefaction of lignocellulose at high-solids concentrations. Biotechnol Bioeng 96:862–870

    Article  PubMed  CAS  Google Scholar 

  • Karmakar M, Ray RR (2011) Current trends in research and application of microbial cellulases. Res J Microbiol 6:41–53

    Article  CAS  Google Scholar 

  • Kawamori M, Takayama K-I, Takasawa S (1987) Production of cellulases by a thermophilic fungus Thermoascus aurantiacus A-131. Agric Biol Chem 51:647–654

    CAS  Google Scholar 

  • Khandke KM, Vithayathil PJ, Murthy SK (1989a) Degradation of larchwood xylan by enzymes of a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274:501–510

    Article  CAS  PubMed  Google Scholar 

  • Khandke KM, Vithayathil PJ, Murthy SK (1989b) Purification of xylanase, β-glucosidase, endocellulase, and exocellulase from a thermophilic fungus, Thermoascus aurantiacus. Arch Biochem Biophys 274:491–500

    Article  CAS  PubMed  Google Scholar 

  • Krause MS, De Ceuster TJJ, Tiquia SM, Michel FC Jr, Madden LV, Hoitink HAJ (2003) Isolation and characterization of Rhizobacteria from composts that suppress the severity of bacterial leaf spot of radish. Phytopathology 93(10):1292–1300

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy S (1989) Purification and properties of xylanases and β-glucosidases elaborated by the thermophilic fungus Paecilomyces varioti Bainier. Ph.D. thesis. Indian Institute of Science, Bangalore

    Google Scholar 

  • Kumakura M, Kasai N, Tamada M. and Kaetsu I (1988). Method of pretreatment in saccharification and fermentation of waste cellulose resource. Google Patents

    Google Scholar 

  • Li DC, Yang YJ, Shen CY (1997) Protease production by the thermophilic fungus Thermomyces lanuginosus. Mycol Res 101:18–22

    Article  CAS  Google Scholar 

  • Lindt W (1886) Mitteilungen über einige neue pathogene Shimmelpilze. Arch Exp Pathol Pharmakol 21:269–298

    Google Scholar 

  • Liu W-H, Beppu T, Arima K (1973) Physical and chemical properties of the lipase of thermophilic fungus Humicola lanuginosa S-38. Agric Biol Chem 37:2493–2499

    Article  CAS  Google Scholar 

  • Magan N, Aldred D (2008) Environmental fluxes and fungal interactions: maintaining a competitive edge. In: British mycological society symposia series. Academic Press, Vol. 27, pp. 19–35

    Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Malcolm AA, Shepherd MG (1972) Purification and properties of Penicillium glucose-6-phosphate dehydrogenase. Biochem J 128:817–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mandels M (1975) Microbial sources of cellulase. Biotechnol Bioeng Symp 5:81–105

    CAS  Google Scholar 

  • Mandels M, Sternberg D (1976) Recent advances in cellulase technology. J Ferment Technol 54:267–286

    CAS  Google Scholar 

  • Martin N, de Souza SR, da Silva R, Gomes E (2004) Pectinase production by fungal strains in solid-state fermentation using agro-industrial bioproduct. Braz Arch Biol Technol 47(5):813–819

    Article  CAS  Google Scholar 

  • Martin N, Guez MAU, Sette LD, Da Silva R, Gomes E (2010) Pectinase production by a Brazilian thermophilic fungus Thermomucor indicae-seudaticae N31 in solid-state and submerged fermentation. Microbiology 79(3):306–313

    Article  CAS  Google Scholar 

  • Martinez M, Poirrier P, Chamy R, Prüfer D, Schulze-Gronover C, Jorquera L, Ruiz G (2015) Taraxacum officinale and related species—an ethnopharmacological review and its potential as a commercial medicinal plant. J Ethnopharmacol 169:244–262

    Article  CAS  PubMed  Google Scholar 

  • McHale A, Coughlan MP (1981) The cellulolytic system of Talaromyces emersonii. Identification of the various components produced during growth on cellulosic media. Biochim Biophys Acta 662:145–151

    Article  CAS  Google Scholar 

  • Miehe H (1907) Die Sel bsterhitzung des Heus Eine biologische Studie. Gustav Fischer Verlag, Jena, Germany

    Google Scholar 

  • Miehe H (1930) Die Wärmebildung von Reinkulturen im Hinblick auf die Ätiologie der Selbsterhitzung pflanzlicher Stoffe. Arch Mikrobiol 1:78–118

    Article  Google Scholar 

  • Mouchacca J (1997) Thermophilic fungi biodiversity and taxonomic status. Cryptogamie Mycol 18:19–69

    Google Scholar 

  • Mussatto SI, Teixeira J (2010) Lignocellulose as raw material in fermentation processes. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology, vol 2. Formatex Research Center, pp 897–907

    Google Scholar 

  • Nguyen S, Ala F, Cardwell C, Cai D, McKindles KM, Lotvola A, Hodges S, Deng Y, Tiquia-Arashiro SM (2013) Isolation and screening of carboxydotrophs isolated from composts and their potential for butanol synthesis. Environ Technol 34:1995–2007

    Article  CAS  PubMed  Google Scholar 

  • Noack K (1920) Der Betriebstoffwechsel der thermophilen Pilze. Jahrb Wiss Bot 59:593–648

    Google Scholar 

  • Oberson J, Binz T, Fracheboud D, Canevascini G (1992) Comparative investigation of cellulose-degrading enzyme systems produced by different strains of Myceliophthora thermophila (Apinis) v. Oorschot. Enzyme Microb Technol 14:303–312

    Article  CAS  Google Scholar 

  • Ong PS, Gaucher GM (1973) Protease production by thermophilic fungi. Can J Microbiol 19:129–133

    Article  CAS  PubMed  Google Scholar 

  • Ong PS, Gaucher GM (1976) Production, purification and characterization of thermomycolase, the extracellular serine protease of the thermophilic fungus Malbranchea pulchella var. sulfurea. Can J Microbiol 22:165–176

    Article  CAS  PubMed  Google Scholar 

  • Ottesen M, Rickert W (1970) The isolation and partial characterization of an acid protease produced by Mucor miehei. C R Trav Lab Carlsberg 37:301–325

    CAS  PubMed  Google Scholar 

  • Plecha S, Hall D, Tiquia-Arashiro SM (2013) Screening and characterization of soil microbes capable of degrading cellulose from Switchgrass (Panicum virgatum L.). Environ Technol 34:1895–1904

    Article  CAS  PubMed  Google Scholar 

  • Pomaranski E, Tiquia-Arashiro SM (2016) Butanol tolerance of carboxydotrophic bacteria isolated from manure composts. Environ Technol 37(15):1970–1982

    Article  CAS  PubMed  Google Scholar 

  • Prabhu KA, Maheshwari R (1999) Biochemical properties of xylanases from a thermophilic fungus, Melanocarpus albomyces, and their action on plant cell walls. J Biosci 24:461–470

    Article  CAS  Google Scholar 

  • Puchart VR, Katapodis P, Biely P, Kremnický LR, Christakopoulos P, Vršanská M, Kekos D, Macris BJ, Bhat MK (1999) Production of xylanases, mannanases, and pectinases by the thermophilic fungus Thermomyces lanuginosus. Enzyme Microb Technol 24:355–361

    Article  CAS  Google Scholar 

  • Raddadi N, Cherif A, Daffonchio D, Mohamed N, Fava F (2015) Biotechnological applications of extremophiles, extremozymes and extremolytes. Appl Microbiol Biotechnol 99:7907–7913

    Article  CAS  PubMed  Google Scholar 

  • Rajasekaran AK, Maheshwari R (1993) Thermophilic fungi: an assessment of their potential for growth in soil. J Biosci 18(3):345

    Article  Google Scholar 

  • Ramirez-Cadavid DA, Cornish K, Michel FC Jr (2017) Taraxacum kok-saghyz (TK): Compositional analysis of a feedstock for natural rubber and other bioproducts. Ind Crop Prod 107:624–640

    Article  CAS  Google Scholar 

  • Ramirez-Cadavid DA, Valles-Ramirez S, Cornish K, Michel FC Jr (2018) Simultaneous quantification of rubber, inulin, and resins in Taraxacum kok-saghyz (TK) roots by sequential solvent extraction. Ind Crop Prod 122:647–656

    Article  CAS  Google Scholar 

  • Renosto F, Seubert PA, Knudson P, Segel IH (1985) APS kinase from Penicillium chrysogenum. Dissociation and reassociation of subunits as the basis of the reversible heat inactivation. J Biol Chem 260(3):1535–1544

    CAS  PubMed  Google Scholar 

  • Romanelli RA, Houston CW, Barnett SM (1975) Studies on thermophilic cellulolytic fungi. Appl Microbiol 30:276–281

    CAS  PubMed  PubMed Central  Google Scholar 

  • Russell RB, Sternberg MJ (1997) Two new examples of protein structural similarities within the structure-function twilight zone. Protein Eng 10(4):333–338

    Article  CAS  PubMed  Google Scholar 

  • Russell RJ, Hough DW, Danson MJ, Taylor GL (1994) The crystal structure of citrate synthase from the thermophilic archaeon, Thermoplasma acidophilum. Structure 2(12):1157–1167

    Article  CAS  PubMed  Google Scholar 

  • Schloman WW, Carlson DW, Hilton AS (1988) Guayule extractables: influence of extraction conditions on yield and composition. Biomass 17:239–249

    Article  CAS  Google Scholar 

  • Sikandar S, Ujor VC, Ezeji TC, Rossington JL, Michel FC, McMahan CM, Cornish K (2017) Thermomyces lanuginosus STm: A source of thermostable hydrolytic enzymes for novel application in extraction of high-quality natural rubber from Taraxacum kok-saghyz (Rubber dandelion). Ind Crop Prod 103:161–168

    Article  CAS  Google Scholar 

  • Singh S, Madlala AM, Prior BA (2003) Thermomyces lanuginosus: properties of strains and their hemicellulases. FEMS Microbiol Rev 27:3–16

    Article  CAS  PubMed  Google Scholar 

  • Sundaram TK (1986) Physiology and growth of thermophilic bacteria. In: Brock D (ed) Thermophiles: general, molecular, and applied microbiology. John Wiley & Sons, Inc., New York, N.Y, pp 75–106

    Google Scholar 

  • Sunna A, Bergquist PL (2003) A gene encoding a novel extremely thermostable 1,4-beta-xylanase isolated directly from an environmental DNA sample. Extremophiles 7:63–70

    Article  CAS  PubMed  Google Scholar 

  • Timling I, Taylor DL (2012) Peeking through a frosty window molecular insights into the ecology of Arctic soil fungi. Fungal Ecol 5:419–429

    Article  Google Scholar 

  • Tiquia SM (2005) Microbial community dynamics in manure composts based on 16S and 18S rDNA T-RFLP profiles. Environ Technol 26(10):1104–1114

    Article  Google Scholar 

  • Tiquia-Arashiro SM (2014) Thermophilic carboxydotrophs and their biotechnological applications. Springerbriefs in microbiology: extremophilic microorganisms. Springer International Publishing, p. 131

    Google Scholar 

  • Tiquia-Arashiro SM, Mormile M (2013) Sustainable technologies: Bioenergy and biofuel from biowaste and biomass. Environ Technol 34(13):1637–1805

    Article  CAS  PubMed  Google Scholar 

  • Ujor V, Bharathidasan AK, Michel FC Jr, Ezeji TC, Cornish K (2015) Butanol production from inulin-rich chicory and Taraxacum kok-saghyz extracts: determination of sugar utilization profile of Clostridium saccharobutylicum P262. Ind Crop Prod 76:739–748

    Article  CAS  Google Scholar 

  • van den Brink J, de Vries RP (2011) Fungal enzyme sets for plant polysaccharide degradation. Appl Microbiol Biotechnol 91(6):1477–1492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Beilen JB, Poirier Y (2007) Guayule and Russian dandelion as alternative sources of natural rubber. Crit Rev Biotechnol 27:217–231

    Article  PubMed  CAS  Google Scholar 

  • Vogt G, Woell S, Argos P (1997) Protein thermal stability, hydrogen bonds, and ion pairs. J Mol Biol 269(4):631–643

    Article  CAS  PubMed  Google Scholar 

  • Voordouw G, Gaucher GM, Roche RS (1974) Physicochemical properties of thermomycolase, the thermostable, extracellular, serine protease of the fungus Malbranchea pulchella. Can J Biochem 52:981–990

    Article  CAS  PubMed  Google Scholar 

  • Wright CH, Kafkewitz DA, Somberg EW (1983) Eucaryote thermophily: role of lipids in the growth of Talaromyces thermophilus. J Bacteriol 156(2):493–497

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie S, Syrenne R, Sun S, Yuan JS (2014) Exploration of natural biomass utilization systems (NBUS) for advanced biofuel—from systems biology to synthetic design. Curr Opin Biotechnol 27:195–203

    Article  CAS  PubMed  Google Scholar 

  • Yoshioka H, Nagato N, Chavanich S, Nilubol N, Hayashida S (1981) Purification and properties of thermostable xylanase from Talaromyces byssochlamydoides YH-50. Agric Biol Chem 45:2425–2432

    CAS  Google Scholar 

  • Znameroski EA, Glass NL (2013) Using a model filamentous fungus to unravel mechanisms of lignocellulose deconstruction. Biotechnol Biofuels 6:6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sikandar, S., Afzal, I., Ali, N., Cornish, K. (2019). Lignocellulose-Degrading Thermophilic Fungi and Their Prospects in Natural Rubber Extraction from Plants. In: Tiquia-Arashiro, S., Grube, M. (eds) Fungi in Extreme Environments: Ecological Role and Biotechnological Significance. Springer, Cham. https://doi.org/10.1007/978-3-030-19030-9_23

Download citation

Publish with us

Policies and ethics