Skip to main content

Mathematical Practices Can Be Metaphysically Laden

  • Living reference work entry
  • First Online:

Abstract

In this chapter I explore the reciprocal relationship between the metaphysical views mathematicians hold and their mathematical activity. I focus on the set-theoretic pluralism debate, in which set theorists disagree about the implications of their formal mathematical work. As a first case study, I discuss how Woodin’s monist argument for an Ultimate-L feeds on and is fed by mathematical results and metaphysical beliefs. In a second case study, I present Hamkins’ pluralist proposal and the mathematical research projects it endows with relevance. These case studies support three claims: (1) the metaphysical views of mathematicians can shape what counts as relevant research; (2) mathematical results can shape the metaphysical beliefs of mathematicians; (3) metaphysical thought and mathematical activity develop in tandem in mathematical practices. This makes metaphysical thought an integral part of mathematical practices.

This is a preview of subscription content, log in via an institution.

References

  • Antos C, Friedman SD, Honzik R, Ternullo C (2015) Multiverse conceptions in set theory. Synthese 192(8):2463–2488

    Article  MathSciNet  MATH  Google Scholar 

  • Baldwin J (2018) Model theory and the philosophy of mathematical practice. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Barton N (2019) Forcing and the universe of sets: must we lose insight? J Philos Log. online first

    Google Scholar 

  • Blackburn P, de Rijke M, Venema Y (2001) Modal logic. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Block AC, Löwe B (2015) Modal logic and multiverses. RIMS Kokyuroku 1949:5–23

    Google Scholar 

  • Bos H (2001) Redefining geometrical exactness. Springer, New York

    Book  MATH  Google Scholar 

  • Centrone S, Kant D, Sarikaya D (2019) Reflections on the foundations of mathematics. Springer, Cham

    Book  Google Scholar 

  • Chang H (2008) Contingent transcendental arguments for metaphysical principles. In: Massimi M (ed) Kant and the philosophy of science today. Cambridge University Press, Cambridge, pp 113–133

    Google Scholar 

  • Chemla K (2012) The History of Mathematical Proof in Ancient Traditions, Cambridge University Press, Cambridge

    Google Scholar 

  • Cutolo R (2019) The cofinality of the least Berkeley cardinal and the extent of dependent choice. Math Log Q 65(1):121–126

    Article  MathSciNet  MATH  Google Scholar 

  • Davis J (2016) Universal graphs at $\aleph_ {\omega_1+ 1} $ and set-theoretic geology. arXiv preprint:1605.08811

    Google Scholar 

  • Doxiadis A, Mazur B (2012) Circles disturbed: the interplay of mathematics and narrative. Princeton University Press, Princeton

    Book  MATH  Google Scholar 

  • Džamonja M, Kant D (2019) Interview with a set theorist. In: Centrone S, Kant D, Sarikaya D (eds) Reflections on the foundations of mathematics. Springer, Cham, pp 3–26

    Chapter  Google Scholar 

  • Friedman SD, Fuchino S, Sakai H (2018) On the set-generic multiverse. In: The Hyperuniverse Project and Maximality (pp 109–124). Birkhüuser, Cham

    Google Scholar 

  • Friedman M (2018) On the history of folding in mathematics: a mathematization of the margins. Birkhäuser, Basel

    Book  MATH  Google Scholar 

  • Friedman M, Rittberg CJ (2019) On the material reasoning of folding paper. Synthese. online first

    Google Scholar 

  • Friend M (2014) Pluralism in mathematics: a new position in philosophy of mathematics. Springer, Dordrecht

    Book  MATH  Google Scholar 

  • Fuchs G, Hamkins JD, Reitz J (2015) Set-theoretic geology. Annals of Pure and Applied Logic 166(4):464–501

    Google Scholar 

  • Gitman V, Johnstone TA (2014) On ground model definability. In: Infinity, computability, and metamathematics: Festschrift in honour of the 60th birthdays of Peter Koepke and Philip Welch. College Publications, Milton Keynes

    Google Scholar 

  • Gödel K (1947) What is Cantor’s continuum problem? Am Math Monthly 54:515–525. reprinted in: Benacerraf P, Putnam H (1983) Philosophy of mathematics, 2nd edn. Press Syndicate of the University of Cambridge, Cambridge

    Google Scholar 

  • Gödel K (1995) Kurt Gödel, Collected Works Vol III, Feferman, S., Dawson Jr, J. W., Goldfarb, W., Parsons, C., Solovay, R. N. (eds), Oxford University Press

    Google Scholar 

  • Golshani M, Mitchell W (2016) On a question of Hamkins and Löwe on the modal logic of collapse forcing. Pre-print. Available at: http://math.ipm.ac.ir/~golshani/Papers/On%20a%20question%20of%20Hamkins%20and%20Lowe%20on%20the%20modal%20logic%20of%20collapse%20forcing.pdf

  • Gowers WT (2000) The two cultures of mathematics. In: Arnold V et al (eds) Mathematics: frontiers and perspectives. American Mathematical Society, Providence, pp 65–78

    MATH  Google Scholar 

  • Habič ME, Hamkins JD, Klausner LD, Verner J, Williams KJ (2019) Set-theoretic blockchains. Arch Math Logic 58(7–8):965–997

    Google Scholar 

  • Hacking I (2014) Why is there philosophy of mathematics at all? Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Hamkins JD, (2003) A simple maximality principle. J Symb Logic 68(2):527–550

    Google Scholar 

  • Hamkins JD (2009) Second order set theory. In: Ramanujam R, Sarukkai S (eds) Logic and its applications, Third Indian Conference, ICLA, Chennai, India, Proceedings. Springer, Berlin

    Google Scholar 

  • Hamkins JD (2012) The set-theoretic multiverse. Rev Symb Logic 5(3):416–449

    Article  MathSciNet  MATH  Google Scholar 

  • Hamkins JD (2014) A multiverse perspective on the axiom of constructiblity. In: Chong C, Feng Q, Slaman TA, Woodin WH (eds) Infinity and truth. Lecture note series, Institute for Mathematical Sciences, National University of Singapore. World Scientific, Singapore

    Google Scholar 

  • Hamkins JD (2015) Is the dream solution of the continuum hypothesis attainable? Notre Dame J Form Log 56(1):135–145

    Article  MathSciNet  MATH  Google Scholar 

  • Hamkins JD, Lowe B (2008) The modal logic of forcing. Transactions of the American Mathematical Society 360:1793–1817

    Google Scholar 

  • Hamkins JD, Löwe B (2013) Moving up and down in the generic multiverse. In: Lodaya K (ed) Logic and its applications. Springer, Berlin, pp 139–147

    Chapter  MATH  Google Scholar 

  • Hamkins JD, Woodin WH (2005) The necessary maximality principle for c.c.c.-forcing is equiconsistent with a weakly compact cardinal. Math Log Q 51(5):493–498

    Article  MathSciNet  MATH  Google Scholar 

  • Hamkins JD, Woodin WH (2017) The universal finite set. ArXiv e-prints (currently under review)

    Google Scholar 

  • Hamkins JD, Reitz J, Woodin WH (2008) The ground axiom is consistent with V ≠HOD. Proc Am Math Soc 136(8):2943–2949

    Article  MathSciNet  MATH  Google Scholar 

  • Hamkins JD, Leibman G, Löwe B (2015) Structural connections between a forcing class and its modal logic. Israel J Math 207:617–651

    Article  MathSciNet  MATH  Google Scholar 

  • Inamdar TC (2013) On the Modal Logics of some Set Theoretic Constructions, MSc Thesis

    Google Scholar 

  • Inamdar T, Löwe B (2016) The modal logic of inner models. J Symb Log 81(1):225–236

    Article  MathSciNet  MATH  Google Scholar 

  • Jech T (2006) Set theory. 4th printing. Springer, New York

    Google Scholar 

  • Johansen MW, Misfeldt M (2016) An empirical approach to the mathematical values of problem choice and argumentation. In: Larvor B (ed) Mathematical cultures, the London meetings. Birkhäuser, Basel, pp 259–270

    Google Scholar 

  • Kanamori A (2009) The higher infinite, 2nd edn. Springer, Berlin

    MATH  Google Scholar 

  • Kennedy J (2014) Interpreting Gödel. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Kennedy J, Kossak R (2011) Set theory, arithmetic, and the foundations of mathematics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Koellner P (2006) On the question of absolute undecidability. Philos Math 14:153–188

    Article  MathSciNet  MATH  Google Scholar 

  • Koellner P (2011) Independence and large cardinals. The Stanford Encyclopaedia of Philosophy. Available at https://plato.stanford.edu/entries/independence-large-cardinals/

  • Koellner P (2013) Hamkins on the multiverse. Available at: http://logic.harvard.edu/EFI_Hamkins_Comments.pdf

  • Koellner P, Woodin H (2009) Incompatible Ω-complete theories. J Symb Log 74(4):1155–1170

    Article  MathSciNet  MATH  Google Scholar 

  • Koellner P, Woodin H (2010) Large cardinals from determinacy. In: Foreman M, Kanamori A (eds) Handbook of set theory. Springer, New York, pp 1951–2120

    Chapter  Google Scholar 

  • Kümmerle H (2019) Die Institutionalisierung der Mathematik als Wissenschaft im Japan der Meiji- und Taishō-Zeit. PhD thesis

    Google Scholar 

  • Laver R (2007) Certain very large cardinals are not created in small forcing extensions. Ann Pure Appl Log 149(1–3):1–6

    Article  MathSciNet  MATH  Google Scholar 

  • Maddy P (1988) Believing the axioms I & II. J Symb Log 53(2):481–511 & 53(3):736–764

    Google Scholar 

  • Maddy P (1997) Naturalism in mathematics. Claredon Press, Oxford

    MATH  Google Scholar 

  • Maddy P (2011) Defending the axioms: on the philosophical foundations of set theory. Oxford University Press, Oxford

    Book  MATH  Google Scholar 

  • Magidor M (2012) Some set theories are more equal. Pre-print. Available at: http://logic.harvard.edu/EFI_Magidor.pdf

  • Mander K (2008) The Euclidean diagram. In: Mancosu P (ed) The philosophy of mathematical practice. Oxford University Press, Oxford

    Google Scholar 

  • Martin D, Steel J, (1987) A proof of projective determinacy. J Am Math Soc 2(1):71–125

    Google Scholar 

  • Mitchel W, Steel J (1994) Fine structure and iteration trees. Lecture notes in logic, vol. 3, Springer

    Google Scholar 

  • Netz R (1999) Shaping of deduction in Greek mathematics. Cambridge University Press, Cambridge

    Book  MATH  Google Scholar 

  • Netz R (2017) Mathematical concepts? A view from ancient history. In: de Freitas E, Sinclair N, Coles A (eds) What is a mathematical concept? Cambridge University Press, Cambridge

    Google Scholar 

  • Parsons C (2008) Mathematical thought and its objects. Cambridge University Press, Cambridge

    MATH  Google Scholar 

  • Plutarch (1961) Moralia, vol 9. Loeb classical library (trans: Minar Jr EL, Sandbach FH, Helmbold WC). Heinemann, London

    Google Scholar 

  • Reitz J (2006) The Ground Axiom. PhD Thesis

    Google Scholar 

  • Reitz J (2007) The Ground Axiom. Journal of Symbolic Logic 72(4):1299–1317

    Google Scholar 

  • Rittberg CJ (2010) The modal logic of forcing. Diploma thesis. Available at: https://www.uni-muenster.de/imperia/md/content/logik/c.rittberg_the_modal_logic_of_forcing.pdf

  • Rittberg CJ (2015) How Woodin changed his mind: new thoughts on the continuum hypothesis. Archive for History of Exact Sciences 69(2):125–151

    Google Scholar 

  • Rittberg CJ (2016a) Mathematical pull. In: Larvor B (ed) Mathematical cultures, the London meetings. Birkhäuser, Basel, pp 287–302

    Chapter  Google Scholar 

  • Rittberg CJ (2016b) Methods, goals and metaphysics in contemporary set theory. PhD thesis. Available at: https://uhra.herts.ac.uk/bitstream/handle/2299/17218/13036561%20Rittberg%20Colin%20-%20Final%20submission.pdf?sequence=1

  • Rittberg CJ, Van Kerkhove B (2019) Studying mathematical practices: the dilemma of case studies. ZDM Math Educ 51(5):857–868

    Article  Google Scholar 

  • Rouse J (1996) Engaging science: how to understand its practices philosophically. Cornell University Press, Ithaca

    Book  Google Scholar 

  • Scott D (1961) Measurable cardinals and constructible sets. Reprinted in: Sacks G (ed) Mathematical logic in the 20th century. Singapore University Press. Singapore. pp 411–426

    Google Scholar 

  • Shelah S (2003) Logical dreams. Bull Am Math Soc 40(2):203–228

    Article  MathSciNet  MATH  Google Scholar 

  • Shelah S (2014) Reflecting on logical dreams. In: Kennedy J (ed) Interpreting Gödel. Cambridge University Press, Cambridge, pp 242–255

    Chapter  Google Scholar 

  • Steel J (2014) Gödel’s program. In: Kennedy J (ed) Interpreting Gödel. Cambridge University Press, Cambridge, pp 153–179

    Chapter  Google Scholar 

  • Tanswell FS (2018) Conceptual engineering for mathematical concepts. Inquiry 61(8):881–913

    Article  Google Scholar 

  • Tao T (2018) There’s more to mathematics than rigour and proofs. Available at: https://terrytao.wordpress.com/career-advice/theres-more-to-mathematics-than-rigour-and-proofs/. Accessed May 2020

  • Ternullo C (2019) Maddy on the multiverse. In: Centrone S, Kant D, Sarikaya D (eds) Reflections on the foundations of mathematics. Springer, Cham, pp 43–78

    Chapter  Google Scholar 

  • Usuba T (2017) The downward directed grounds hypothesis and very large cardinals. J Math Log 17(2):1750009

    Article  MathSciNet  MATH  Google Scholar 

  • Väänänen J (2014) Multiverse set theory and absolutely undecidable propositions. In: Kennedy J (ed) Interpreting Gödel. Cambridge University Press, Cambridge, pp 180–208

    Chapter  Google Scholar 

  • Van Heijenoort J (1967) From Frege to Gödel: a source book in mathematical logic. Harvard University Press, Cambridge, MA

    MATH  Google Scholar 

  • von Neumann J (1925) Eine Axiomatisierung der Mengenlehre. Journal für die reine und angewandte Mathematik 154:219–240

    MathSciNet  MATH  Google Scholar 

  • Woodin WH (2004) Recent development’s on Cantor’s continuum hypothesis. In: Proceedings of the continuum in philosophy and mathematics. Carlsberg Academy, Copenhagen

    Google Scholar 

  • Woodin WH (2010a) Strong axioms of infinity and the search for V. In: Proceedings of the international congress of mathematicians, Hyderabad

    Google Scholar 

  • Woodin WH (2010b) Suitable extender models. I. J Math Log 10:101–339

    Google Scholar 

  • Woodin WH (2010c) Ultimate L, talk given at the University of Pennsylvania. Available at: http://philosophy.sas.upenn.edu/WSTPM/Woodin

  • Woodin WH (2011a) Suitable extender models II. J Math Log 11(2):115–436

    Article  MathSciNet  MATH  Google Scholar 

  • Woodin WH (2011b) The realm of the infinite. In: Heller M, Woodin WH (eds) Infinity. New research frontiers. Cambridge University Press, Cambridge, pp 89–118

    Chapter  Google Scholar 

  • Woodin WH (2011c) The transfinite universe. In: Baaz M, Papadimitriou CH, Putnam HW, Scott DS, Harper CL Jr (eds) Kurt Gödel and the foundations of mathematics. Cambridge University Press, Cambridge, pp 449–474

    Chapter  Google Scholar 

  • Woodin WH (2011d) The continuum hypothesis, the generic multiverse of sets, and the Ω-conjecture. In: Kennedy J, Kossak R (eds) Set theory, arithmetic, and the foundations of mathematics. Cambridge University Press, Cambridge, pp 13–42

    Chapter  Google Scholar 

Download references

Acknowledgments

I would like to thank Carolin Antos, Neil Barton, Deborah Kant, Juliette Kennedy, Daniel Kuby, Benedikt Löwe, and Deniz Sarikaya for helpful remarks on draft versions of this paper. Research for this paper has been funded by the Centre for Mathematical Cognition at Loughborough University and the Research Foundation - Flanders (FWO), project G056716N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Colin Jakob Rittberg .

Editor information

Editors and Affiliations

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Rittberg, C.J. (2020). Mathematical Practices Can Be Metaphysically Laden. In: Sriraman, B. (eds) Handbook of the History and Philosophy of Mathematical Practice. Springer, Cham. https://doi.org/10.1007/978-3-030-19071-2_22-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19071-2_22-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19071-2

  • Online ISBN: 978-3-030-19071-2

  • eBook Packages: Springer Reference MathematicsReference Module Computer Science and Engineering

Publish with us

Policies and ethics