Skip to main content

An Investigation into Prediction + Optimisation for the Knapsack Problem

  • Conference paper
  • First Online:
Book cover Integration of Constraint Programming, Artificial Intelligence, and Operations Research (CPAIOR 2019)

Abstract

We study a prediction + optimisation formulation of the knapsack problem. The goal is to predict the profits of knapsack items based on historical data, and afterwards use these predictions to solve the knapsack. The key is that the item profits are not known beforehand and thus must be estimated, but the quality of the solution is evaluated with respect to the true profits. We formalise the problem, the goal of minimising expected regret and the learning problem, and investigate different machine learning approaches that are suitable for the optimisation problem. Recent methods for linear programs have incorporated the linear relaxation directly into the loss function. In contrast, we consider less intrusive techniques of changing the loss function, such as standard and multi-output regression, and learning-to-rank methods. We empirically compare the approaches on real-life energy price data and synthetic benchmarks, and investigate the merits of the different approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note the different problem where profits are known and the weights are learned is more complicated, since we may need some form of recourse mechanism to repair inconsistent decisions \(X^{f}\).

References

  1. Bessiere, C., Koriche, F., Lazaar, N., O’Sullivan, B.: Constraint acquisition. Artif. Intell. 244, 315–342 (2017). https://doi.org/10.1016/j.artint.2015.08.001, http://www.sciencedirect.com/science/article/pii/S0004370215001162, combining Constraint Solving with Mining and Learning

  2. Borchani, H., Varando, G., Bielza, C., Larrañaga, P.: A survey on multi-output regression. Wiley Interdisc. Rev. Data Min. Knowl. Dis. 5(5), 216–233 (2015)

    Article  Google Scholar 

  3. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Trans. Inform. Theory 13(1), 21–27 (1967)

    Article  Google Scholar 

  4. Di Liberto, G., Kadioglu, S., Leo, K., Malitsky, Y.: Dash: dynamic approach for switching heuristics. Eur. J. Oper. Res. 248(3), 943–953 (2016)

    Article  MathSciNet  Google Scholar 

  5. Donti, P.L., Amos, B., Kolter, J.Z.: Task-based end-to-end model learning in stochastic optimization. In: Proceedings of the 31st Conference on Neural Information Processing Systems (NIPS 2017), pp. 5484–5494 (2017)

    Google Scholar 

  6. Dooren, D.V.D., Sys, T., Toffolo, T.A.M., Wauters, T., Berghe, V.: Multi-machine energy-aware scheduling. EURO J. Comput. Optim. 5(1–2), 285–307 (2017). https://doi.org/10.1007/s13675-016-0072-0

    Article  MathSciNet  MATH  Google Scholar 

  7. Dragone, P., Teso, S., Passerini, A.: Pyconstruct: constraint programming meets structured prediction. In: Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence, IJCAI 2018, pp. 5823–5825. International Joint Conferences on Artificial Intelligence Organization, July 2018

    Google Scholar 

  8. Elmachtoub, A.N., Grigas, P.: Smart “predict, then optimize”. Technical report (2017). https://arxiv.org/pdf/1710.08005.pdf

  9. Gilmore, P., Gomory, R.E.: The theory and computation of knapsack functions. Oper. Res. 14(6), 1045–1074 (1966)

    Article  MathSciNet  Google Scholar 

  10. Grimes, D., Ifrim, G., O’Sullivan, B., Simonis, H.: Analyzing the impact of electricity price forecasting on energy cost-aware scheduling. Sustain. Comput. Inform. Syst. 4(4), 276–291 (2014). https://doi.org/10.1016/j.suscom.2014.08.009,http://www.sciencedirect.com/science/article/pii/S221053791400050X, special Issue on Energy Aware Resource Management and Scheduling (EARMS)

  11. Joachims, T.: Making large-scale svm learning practical. Technical report, SFB 475: Komplexitätsreduktion in Multivariaten Datenstrukturen, Universität Dortmund (1998)

    Google Scholar 

  12. Joachims, T.: Optimizing search engines using click through data. In: Proceedings of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2002, pp. 133–142. ACM, New York (2002). https://doi.org/10.1145/775047.775067, http://doi.acm.org/10.1145/775047.775067

  13. Joachims, T.: Training linear SVMs in linear time. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 217–226. ACM (2006)

    Google Scholar 

  14. Kotthoff, L.: Algorithm selection for combinatorial search problems: a survey. AI Mag. 35(3), 48–60 (2014). http://www.aaai.org/ojs/index.php/aimagazine/article/view/2460

    Article  Google Scholar 

  15. Liu, T.Y., et al.: Learning to rank for information retrieval. Found. Trends Inf. Retrieval 3(3), 225–331 (2009)

    Article  Google Scholar 

  16. Mathaba, T., Xia, X., Zhang, J.: Analysing the economic benefit of electricity price forecast in industrial load scheduling. Electric Power Syst. Res. 116, 158–165 (2014).https://doi.org/10.1016/j.epsr.2014.05.008, http://www.sciencedirect.com/science/article/pii/S0378779614001886

  17. Matthews, G.: On the partition of numbers. Proc. Lond. Math. Soc. 28, 486–490 (1897)

    Google Scholar 

  18. Passerini, A., Tack, G., Guns, T.: Introduction to the special issue on combining constraint solving with mining and learning. Artif. Intell. 244, 1–5 (2017). https://doi.org/10.1016/j.artint.2017.01.002

    Article  MathSciNet  MATH  Google Scholar 

  19. Pedregosa, F., et al.: Scikit-learn: machine learning in Python. J. Mach. Learn. Res. 12, 2825–2830 (2011)

    MathSciNet  MATH  Google Scholar 

  20. Picard-Cantin, É., Bouchard, M., Quimper, C.-G., Sweeney, J.: Learning the parameters of global constraints using branch-and-bound. In: Beck, J.C. (ed.) CP 2017. LNCS, vol. 10416, pp. 512–528. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66158-2_33

    Chapter  Google Scholar 

  21. Spall, J.: Introduction to Stochastic Search and Optimization. Wiley, New York (2003)

    Book  Google Scholar 

  22. Teso, S., Passerini, A., Viappiani, P.: Constructive preference elicitation by setwise max-margin learning. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, IJCAI 2016, New York, NY, USA, 9–15 July 2016, pp. 2067–2073 (2016)

    Google Scholar 

  23. Vapnik, V.: Principles of risk minimization for learning theory. In: Advances in Neural Information Processing Systems, pp. 831–838 (1992)

    Google Scholar 

  24. Wilder, B., Dilkina, B., Tambe, M.: Melding the data-decisions pipeline: Decision-focused learning for combinatorial optimization. In: Proceedings of the Thirty-Third AAAI Conference on Artificial Intelligence (AAAI 2019) (2019, to appear). https://arxiv.org/pdf/1809.05504.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Emir Demirović or Tias Guns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demirović, E. et al. (2019). An Investigation into Prediction + Optimisation for the Knapsack Problem. In: Rousseau, LM., Stergiou, K. (eds) Integration of Constraint Programming, Artificial Intelligence, and Operations Research. CPAIOR 2019. Lecture Notes in Computer Science(), vol 11494. Springer, Cham. https://doi.org/10.1007/978-3-030-19212-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19212-9_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19211-2

  • Online ISBN: 978-3-030-19212-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics