Skip to main content

Students’ Self-Awareness of Their Mathematical Thinking: Can Self-Assessment Be Supported Through CAS-Integrated Learning Apps on Smartphones?

  • Chapter
  • First Online:
Technology in Mathematics Teaching

Summary

A range of digital technology to support mathematics learning is freely available on the internet, particularly apps offering immediate access to different representations and calculations. In this article, we analyze some learning apps (available for smartphones) with an integrated computer algebra system (CAS) that offer support when learning how to solve equations. In the context of solving quadratic equations, use of apps in an informal way to learn how to solve not only touches on learning issues in the field of algebra, but also aspects of students’ self-regulation and the use of technology. These different aspects are discussed in the theoretical background and are used to guide our methodological approach to analyze different CAS-integrated learning apps.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Aldon, G., Cusi, A., Morselli, F., Panero, M., & Sabena, C. (2017). Formative assessment and technology: Reflections developed through the collaboration between teachers and researchers. In G. Aldon, F. Hitt, L. Bazzini, & U. Gellert (Eds.), Mathematics and technology: A C.I.E.A.E.M. sourcebook (pp. 551–578). Cham: Springer.

    Google Scholar 

  • Arcavi, A. (2005). Developing and using symbol sense in mathematics. For the Learning of Mathematics,25(2), 42–47.

    Google Scholar 

  • Bandura, A. (1986). Social foundations of thought and action: A social cognitive theory. Englewood Cliffs: Prentice-Hall.

    Google Scholar 

  • Barzel, B. (2007). New technology? New ways of teaching—No time left for that! International Journal for Technology in Mathematics Education,14(2), 77–86.

    Google Scholar 

  • Barzel, B., & Holzäpfel, L. (2017). Gleichungen verstehen. mathematik lehren,169, 2–7.

    Google Scholar 

  • Beal, C., Arroyo, I., Cohen, P., & Woolf, B. (2010). Evaluation of animal watch: An intelligent tutoring system for arithmetic and fractions. Journal of Interactive Online Learning,9(1), 64–77.

    Google Scholar 

  • Bell, B., & Cowie, B. (2001). The characteristics of formative assessment in science education. Science Education,85(5), 536–553.

    Article  Google Scholar 

  • Block, J. (2015). Flexible algebraic action on quadratic equations. In K. Krainer & N. Vondrová (Eds.), Proceedings of the Ninth Congress of the European Society for Research in Mathematics Education (pp. 391–397). Prague: ERME.

    Google Scholar 

  • Brown, A. L., Ellery, S., & Campione, J. (1998). Creating zones of proximal development electronically. In J. Greeno & S. Goldman (Eds.), Thinking practices: A symposium in mathematics and science education (pp. 341–368). Hillsdale: Lawrence Erlbaum.

    Google Scholar 

  • Buchberger, B. (1990). Should students learn integration rules? ACM SIGSAM Bulletin,24(1), 10–17.

    Article  Google Scholar 

  • de Lima, R. N., & Tall, D. (2006). The concept of equations: What have students met before? In J. Novotná, H. Moraová, M. Krátká, & N. Stehlíková (Eds.). Proceedings of the 30th Conference of the International Group for the Psychology of Mathematics Education (Vol. 4, pp. 233–240). Prague: PME.

    Google Scholar 

  • Dehaene, S. (1997). The number sense: How the mind creates mathematics. Oxford: Oxford University Press.

    Google Scholar 

  • Ehret, C. (2017). Mathematisches Schreiben: Modellierung einer fachbezogenen Prozesskompetenz. Wiesbaden: Springer Spektrum.

    Book  Google Scholar 

  • Feierabend, S., Plankenhorn, T., & Rathgeb, T. (2017). JIM-Studie 2017: Jugend, Information, (Multi-) Media – Basisuntersuchung zum Medienumgang 12- bis 19-Jähriger. Stuttgart: Medienpädagogischer Forschungsverbund Südwest.

    Google Scholar 

  • Graesser, A. C., McNamara, D. S., & VanLehn, K. (2005). Scaffolding deep comprehension strategies through Point & Query, AutoTutor and iSTART. Educational Psychologist,40(4), 225–234.

    Article  Google Scholar 

  • Heid, M. K. (1988). Resequencing skills and concepts in applied calculus using the computer as a tool. Journal for Research in Mathematics Education,19, 3–25.

    Article  Google Scholar 

  • Heugl, H., Klinger, W., & Lechner, J. (1996). Mathematikunterricht mit Computeralgebra-Systemen: Ein didaktisches Leherbuch mit Erfahrungen aus dem österreichischen DERIVE-Projekt. Bonn: Addison-Wesley.

    Google Scholar 

  • Hillmayr, D., Reinhold, F., Ziernwald, L., & Reiss, K. (2017). Digitale Medien im mathematisch-naturwissenschaftlichen Unterricht der Sekundarstufe: Einsatzmöglichkeiten, Umsetzung und Wirksamkeit. Münster: Waxmann.

    Google Scholar 

  • Klinger, M. (2019). “Besser als der Lehrer!” – Potenziale CAS-basierter Smartphone-Apps aus didaktischer und Lernenden-Perspektive. In G. Pinkernell, & F. Schacht (Eds.), Digitalisierung fachbezogen gestalten: Herbsttagung vom 28. bis 29. September 2018 an der Universität Duisburg-Essen (pp. 69–85). Hildesheim: Franzbecker.

    Google Scholar 

  • Klinger, M., & Schüler-Meyer, A. (2019). Wenn die App rechnet: Smartphone-basierte Computer-Algebra-Apps brauchen eine geeignete Aufgabenkultur. mathematik lehren, 215.

    Google Scholar 

  • Klinger, M., Thurm, D., Itsios, C., & Peters-Dasdemir, J. (2018). Technology-related beliefs and the mathematics classroom: Development of a measurement instrument for pre-service and in-service teachers. In B. Rott, G. Törner, J. Peters-Dasdemir, A. Möller, & Safrudiannur (Eds.), Views and beliefs in mathematics education: The role of beliefs in the classroom (pp. 233–244). Cham: Springer.

    Google Scholar 

  • Küchemann, D. (1981). Algebra. In K. Hart (Ed.), Children’s understanding of mathematics: 11-16 (pp. 102–119). London: Murray.

    Google Scholar 

  • Leuders, T., & Prediger, S. (2016). Flexibel differenzieren und fokussiert fördern im Mathematikunterricht. Berlin: Cornelsen.

    Google Scholar 

  • Ma, W., Adesope, O., Nesbit, J., & Liu, Q. (2014). Intelligent tutoring systems and learning outcomes: A meta-analysis. Journal of Educational Psychology,106(4), 901–918.

    Article  Google Scholar 

  • Nattland, A., & Kerres, M. (2009). Computerbasierte Methoden im Unterricht. In K.-H. Arnold, U. Sandfuchs, & J. Wiechmann (Eds.), Handbuch Unterricht (pp. 317–324). Bad Heilbrunn: Klinkhardt.

    Google Scholar 

  • Nydegger, A. (2018). Algebraisieren von Sachsituationen: Wechselwirkungen zwischen relationaler und operationaler Denk- und Sichtweise. Wiesbaden: Springer Spektrum.

    Book  Google Scholar 

  • Pane, J. F., Griffin, B. A., McCaffrey, D. F., & Karam, R. (2014). Effectiveness of cognitive tutor algebra I at scale. Educational Evaluation and Policy Analysis,36(2), 127–144.

    Article  Google Scholar 

  • Pierce, R., & Stacey, K. (2002). Algebraic insight: The algebra needed to use computer algebra systems. Mathematics Teacher,95(8), 622–627.

    Google Scholar 

  • Pierce, R., & Stacey, K. (2004). Monitoring progress in algebra in a CAS active context: Symbol sense, algebraic insight and algebraic expectation. International Journal for Technology in Mathematics Education,11(1), 3–12.

    Google Scholar 

  • Ritter, S., Anderson, J. R., Koedinger, K., & Corbett, A. (2007). Cognitive Tutor: Applied research in mathematics education. Psychonomic Bulletin & Review,14(2), 249–255.

    Article  Google Scholar 

  • Rittle-Johnson, B., Schneider, M., & Star, J. R. (2015). Not a one-way street: Bidirectional relations between procedural and conceptual knowledge of mathematics. Educational Psychology Review,27(4), 587–597.

    Article  Google Scholar 

  • Schoenfeld, A. (2014). What makes for powerful classrooms, and how can we support teachers in creating them? A story of research and practice, productively intertwined. Educational Researcher,43(8), 404–412.

    Article  Google Scholar 

  • Stacey, K. (2011). Eine Reise über die Jahrgänge: Vom Rechenausdruck zum Lösen von Gleichungen. mathematik lehren, 169, 6–12.

    Google Scholar 

  • Stacey, K., Steinle, V., Gvozdenko, E., & Price, B. (2013). SMART online formative assessments for teaching mathematics. Curriculum & Leadership Journal, 11(20).

    Google Scholar 

  • Thurm, D., Klinger, M., Barzel, B., & Rögler, P. (2017). Überzeugungen zum Technologieeinsatz im Mathematikunterricht: Entwicklung eines Messinstruments für Lehramtsstudierende und Lehrkräfte. mathematica didactica, 40(1), 19–35.

    Google Scholar 

  • VanLehn, K., Lynch, C., Schulze, K., Shapiro, J. A., Shelby, R., Taylor, L., et al. (2005). The Andes physics tutoring system: Five years of evaluations. In G. McCalla, C. K. Looi, B. Bredeweg, & J. Breuker (Eds.), Artificial intelligence in education (pp. 678–685). Amsterdam: IOS Press.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society: The development of higher psychology processes. Cambridge: Harvard University Press.

    Google Scholar 

  • Walsh, M., Moss, C. M., Johnson, B. G., Holder, D. A., & Madura, J. D. (2002). Quantitative impact of a cognitive modeling intelligent tutoring system on student performance in balancing chemical equations. Chemical Educator,7, 379–383.

    Article  Google Scholar 

  • Webel, C., & Otten, S. (2016). Teaching in a world with Photomath. Mathematics Teacher,109(5), 368–373.

    Article  Google Scholar 

  • Werquin, P. (2007). Moving mountains: Will qualifications systems promote lifelong learning? European Journal of Education,42(4), 459–484.

    Article  Google Scholar 

  • Wiliam, D., & Thompson, M. (2008). Integrating assessment with learning: What will it take to make it work? In C. A. Dwyer (Ed.), The future of assessment: Shaping teaching and learning (pp. 53–82). Mahwah: Lawrence Erlbaum.

    Google Scholar 

  • Winter, H. (1984). Begriff und Bedeutung des Übens im Mathematikunterricht. mathematik lehren, 2, 4–16.

    Google Scholar 

  • Woolf, B. P. (2009). Building intelligent interactive tutors: Student-centered strategies for revolutionizing e-learning. Burlington: Morgan Kaufman.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcel Klinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barzel, B., Ball, L., Klinger, M. (2019). Students’ Self-Awareness of Their Mathematical Thinking: Can Self-Assessment Be Supported Through CAS-Integrated Learning Apps on Smartphones?. In: Aldon, G., Trgalová, J. (eds) Technology in Mathematics Teaching. Mathematics Education in the Digital Era, vol 13. Springer, Cham. https://doi.org/10.1007/978-3-030-19741-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-19741-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-19740-7

  • Online ISBN: 978-3-030-19741-4

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics