Skip to main content

Fabrication and Characterization of GaN/AlN Resonant Tunneling Diodes

  • Chapter
  • First Online:
High-Frequency GaN Electronic Devices

Abstract

This chapter reviews our recent efforts on growth, fabrication, and characterization of GaN/AlN resonant tunneling diodes (RTDs). Working GaN/AlN RTDs were successfully demonstrated, and they could function well under the flux of very high current densities (e.g., ∼431 kA/cm2) without thermal breakdown. The high-speed nature of these devices was confirmed through switching experiments, achieving a 10–90% switching time of ≈55 ps. A f max calculation shows a small-signal oscillation with frequency up to 164 GHz is possible. Unlike InGaAs/AlAs RTDs, the peak-to-valley current ratios (PVCRs) of GaN/AlN RTDs remain ∼1.5. Through computer modeling, temperature measurements, and material diagnosis, we reveal that there could be stronger inelastic scattering processes contributing to the valley current other than the coherent tunneling in the GaN/AlN RTDs. The possible inelastic mechanisms include optical phonons, interface roughness, and dislocations. Thus, the growth of high-quality GaN/AlN heterostructures and the evolution of bulk GaN substrates are critical for getting better performance devices. Finally, unipolar electroluminescence, without the presence of p-type doping, was observed in GaN/AlN RTDs. The interband tunneling process, which generates holes for the optical recombination, is likely due to the strong electric fields originating from the polarization effects native to wurtzite heterostructures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Tsu, L. Esaki, Appl. Phys. Lett. 22, 562 (1973)

    Google Scholar 

  2. L.L. Chang, L. Esaki, R. Tsu, Appl. Phys. Lett. 24, 593 (1974)

    Google Scholar 

  3. E.R. Brown, J.R. Soderstrom, C.D. Parker, L.J. Mahoney, K.M. Molvar, T.C. McGill, Appl. Phys. Lett. 58, 2291 (1991)

    Article  Google Scholar 

  4. M. Feiginov, C. Sydlo, O. Cojocari, P. Meissner, Appl. Phys. Lett. 99, 233506 (2011)

    Article  Google Scholar 

  5. M. Feiginov, H. Kanaya, S. Suzuki, M. Asada, Appl. Phys. Lett. 104(1–4), 243509 (2014)

    Article  Google Scholar 

  6. T. Maekawa, H. Kanaya, S. Suzuki, M. Asada, Electron. Lett. 50(17), 1214–1216 (2014)

    Article  Google Scholar 

  7. S. Kitagawa, S. Suzuki, M. Asada, IEEE Electron Dev Lett 35, 1215–1217 (2014)

    Article  Google Scholar 

  8. T.A. Growden, D.F. Storm, W. Zhang, E.R. Brown, D.J. Meyer, P. Fakhimi, P.R. Berger, Appl. Phys. Lett. 109, 083504 (2016)

    Article  Google Scholar 

  9. T.A. Growden, Ph.D. Dissertation (The Ohio State University, 2016)

    Google Scholar 

  10. T.A. Growden, W.-D. Zhang, E.R. Brown, D.F. Storm, K. Hansen, P. Fakhimi, D.J. Meyer, P.R. Berger, Appl Phys Lett 112, 033508 (2018)

    Article  Google Scholar 

  11. D.F. Storm, T.A. Growden, W. Zhang, E.R. Brown, N. Nepal, D.S. Katzer, M.T. Hardy, P.R. Berger, D.J. Meyer, J Vac Sci Tech B 35(2), 02B110 (2017)

    Article  Google Scholar 

  12. A. Kikuchi, R. Bannai, K. Kishino, C.M. Lee, J.I. Chyi, Appl. Phys. Lett. 81, 1729 (2002)

    Article  Google Scholar 

  13. K. Kishino, A. Kikuchi, Phys. Status Solidi 190(a), 23 (2002)

    Article  Google Scholar 

  14. S.N. Grinyaev, A.N. Razzhuvalov, Semiconductors 37, 450 (2003)

    Google Scholar 

  15. C.T. Foxon, S.V. Novikov, A.E. Belyaev, L.X. Zhao, O. Makarovsky, D.J. Walker, L. Eaves, R.I. Dykeman, S.V. Danylyuk, S.A. Vitusevich, M.J. Kappers, J.S. Barnard, C.J. Humphreys, Phys. Status Solidi a 7, 2389 (2003)

    Article  Google Scholar 

  16. M. Hermann, E. Monroy, A. Helman, B. Baur, M. Albrecht, B. Daudin, O. Ambacher, M. Stutzmann, M. Eickhoff, Phys Stat Sol 8, 2210 (2004)

    Google Scholar 

  17. S. Golka, C. Pflugl, W. Schrenk, G. Strasser, Appl. Phys. Lett. 88, 172106 (2006)

    Article  Google Scholar 

  18. C. Bayram, Z. Vashaei, M. Razeghi, Appl. Phys. Lett. 96, 042103 (2010)

    Article  Google Scholar 

  19. Z. Vashaei, C. Bayram, M. Razeghi, Appl. Phys. Lett. 107, 0835053 (2010)

    Google Scholar 

  20. L. Yang, H. He, W. Mao, Y. Hao, Appl. Phys. Lett. 99, 153501 (2011)

    Article  Google Scholar 

  21. T. A. Growden, S. Krishnamoorthy, D.N. Nath, A. Ramesh, S. Rajan, and P.R. Berger, in Proceedings of Device Research Conference (University Park, 2012), pp. 163–164

    Google Scholar 

  22. D. Li, L. Tang, C. Edmunds, J. Shao, G. Gardner, M.J. Manfra, O. Malis, Appl. Phys. Lett. 100, 252105 (2012)

    Article  Google Scholar 

  23. D. Li, J. Shao, L. Tang, C. Edmunds, G. Gardner, M.J. Manfra, O. Malis, Semicon Sci Tech 28, 074024 (2013)

    Article  Google Scholar 

  24. A. Grier, A. Valavanis, C. Edmunds, J. Shao, J.D. Cooper, G. Gardner, M.J. Manfra, O. Malis, D. Indjin, Z. Ikonic, P. Harrison, Appl. Phys. Lett. 118, 224308 (2015)

    Google Scholar 

  25. T.A. Growden, E.R. Brown, W.-D. Zhang, R. Droopad, P.R. Berger, Appl. Phys. Lett. 107, 153506 (2015)

    Article  Google Scholar 

  26. T.A. Growden, W. Zhang, E.R. Brown, D.F. Storm, D.J. Meyer, P.R. Berger, N. Light, Sci Appl 7, 17150 (2018)

    Google Scholar 

  27. E. R. Brown, W-D. Zhang, T. A. Growden, D. F. Storm, D. J. Meyer, and P. R. Berger, Noise Measurements of High-Speed, Light-Emitting GaN Resonant-Tunneling Diodes, (2018). https://arxiv.org/pdf/1806.09270.pdf

    Google Scholar 

  28. E. R. Brown, W-D. Zhang, T. A. Growden, P. R. Berger, R. Droopad, (2018)., https://arxiv.org/abs/1804.07666

  29. D.F. Storm, D.A. Deen, D.S. Katzer, D.J. Meyer, S.C. Binari, T. Gougousi, T. Paskova, E.A. Preble, K.R. Evans, D.J. Smith, J. Cryst. Growth 380, 14–17 (2013)

    Article  Google Scholar 

  30. Silvaco ATLAS. (2016). www.silvaco.com

  31. B.K. Ridley, B.E. Foutz, L.F. Eastman, Phys. Rev. B 61, 16862 (2000)

    Article  Google Scholar 

  32. T.P.E. Broekaert, W. Lee, C.G. Fonstad, Pseudomorphic In0.53Ga0.47As/AlAs/InAs resonant tunneling diodes with peak-to-valley current ratios of 30 at room temperature. Appl. Phys. Lett. 53, 1545 (1988)

    Article  Google Scholar 

  33. D. Zanato, S. Gokden, N. Balkan, B.K. Ridley, W.J. Schaff, Semicond. Sci. Technol. 19, 427–432 (2004)

    Article  Google Scholar 

  34. T. Inata, S. Muto, Y. Nakata, S. Sasa, T. Fujii, S.A. Hiyamizu, Jpn. J. Appl. Phys. 26, L1332–L1334 (1987)

    Article  Google Scholar 

  35. E. Ozbay, D.M. Bloom, D.H. Chow, J.N. Schulman, IEEE Electron Dev. Lett. 14, 400 (1993)

    Article  Google Scholar 

  36. J.F. Whitaker, G.A. Mourou, T.C.L.G. Sollner, W.D. Goodhue, Appl.Phys. Lett. 53, 385 (1988)

    Article  Google Scholar 

  37. Digital and Mixed Signal Oscilloscopes, MSO/DPO70000 Series Datasheet, (Tektronix, U.S., 2015) p. 17

    Google Scholar 

  38. E.R. Brown, C.D. Parker, T.C.L.G. Sollner, A.R. Calawa, M.J. Manfra, C.L. Chen, S.W. Pang, K.M. Molvar, High-speed resonant-tunneling diodes made from the In0.53Ga0.47As/AlAs system. SPIE Proc High Speed Elec Device Scaling 1288, 122 (1990)

    Article  Google Scholar 

  39. E.R. Brown, High-speed resonant-tunneling diodes, in Heterostructure and Quantum Devices, ed. by N. G. Einspruch, W. R. Frensley, (Academic, Orlando, 1994), pp. 306–347

    Google Scholar 

  40. Keysight, https://literature.cdn.keysight.com/litweb/pdf/5991-3904EN.pdf?id=2447379

  41. W.-D. Zhang, E.R. Brown, T.A. Growden, P.R. Berger, R. Droopad, IEEE Trans Electron Devices 63, 4993–4997 (2016)

    Article  Google Scholar 

  42. D. F. Storm, T. A. Growden, W-D. Zhang, D. S. Katzer, M. T. Hardy, D. J. Meyer, E. R. Brown and P. R. Berger, RF-MBE growth of AlN/GaN/AlN resonant tunneling diodes on freestanding GaN and GaN templates, in Proceedings of 34th North American Molecular Beam Epitaxy Conference (Alberta, 2018)

    Google Scholar 

  43. E.R. Brown, W.D. Goodhue, T.C.G. Sollner, J. Appl. Phys. 64, 1519–1529 (1988)

    Article  Google Scholar 

  44. E.R. Brown, O.B. McMahon, L.J. Mahoney, K.M. Molvar, Electron. Lett. 32, 938–940 (1996)

    Article  Google Scholar 

  45. S.P. DenBaars, D. Feezell, K. Kelchner, S. Pimputkar, C.C. Pan, S. C-C Yen, Y. Tanaka, N. Zhao, N. Pfaff, R. Farrell, M. Iza, S. Keller, U. Mishra, J.S. Speck, S. Nakamura, Acta Mater. 61, 945–995 (2013)

    Article  Google Scholar 

  46. M.A. Zimmler, J. Bao, I. Shalish, W. Yi, V. Narayanamurti, F. Capasso, Nanotechnology 18, 395201 (2007)

    Article  Google Scholar 

  47. Y.P. Varshni, Physica 34, 149–154 (1967)

    Article  Google Scholar 

  48. S.M. Sze, Physics of Semiconductor Devices, 2nd edn. (John Wiley and Sons, New York, 1981)

    Google Scholar 

  49. O. Ambacher, B. Foutz, J. Smart, J.R. Shealy, N.G. Weimann, K. Chu, M. Murphy, A.J. Sierakowski, W.J. Schaff, L.F. Eastman, R. Dimitrov, A. Mitchell, M. Stutzmann, J. Appl. Phys. 87, 334–344 (2000)

    Article  Google Scholar 

  50. D. Carvalho, K. Müller-Caspary, M. Schowalter, T. Grieb, T. Mehrtens, A. Rosenauer, T. Ben, R. García1, A.R. Cubero, K. Lorenz, B. Daudin, F.M. Morales, Sci. Rep. (2016). https://doi.org/10.1038/srep28459

  51. E.O. Kane, J. Phys. Chem. Solids 12, 181–188 (1959)

    Article  Google Scholar 

  52. G. Martin, A. Botchkarev, A. Rockett, H. Morkoc, Appl. Phys. Lett. 68, 2541–2543 (1996)

    Article  Google Scholar 

  53. W. Vandenberghe, B. Soree, W. Magnus, F. Groeseneken, J. Appl. Phys. 107, 054520 (2010)

    Article  Google Scholar 

  54. I. Vurgaftman, J.R. Meyer, L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001)

    Article  Google Scholar 

  55. K.F. Berggren, B.E. Sernelius, Phys. Rev. B 24, 3240 (1984)

    Google Scholar 

  56. E. Burstein, Phys. Rev. 93, 632 (1954)

    Article  Google Scholar 

  57. T.S. Moss, Proc Phys Soc B 67, 775 (1954)

    Article  Google Scholar 

  58. M. Bouzidi, Z. Benzarti, I. Halidou, S. Soltani, Z. Chine, B. El Jani, Mat Sci Semicon Processing 42, 273 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

All these works were performed under the sponsorship of a Multi-University Research Initiative (MURI), “Devices and Architectures for THz Electronics (DATE),” managed by Dr. Paul Maki, and the NRL Base program, and have been either published in the literature, dissertations, or under preparation for near-term publications. We also acknowledge the National Science Foundation (Dr. Dimitris Pavlidis) for support under Grants #1711733 & #1711738, and we thank Dr. Ravi Droopad for providing the InGaAs/AlAs RTD structures used as a benchmark for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. R. Brown .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, W.D., Growden, T.A., Brown, E.R., Berger, P.R., Storm, D.F., Meyer, D.J. (2020). Fabrication and Characterization of GaN/AlN Resonant Tunneling Diodes. In: Fay, P., Jena, D., Maki, P. (eds) High-Frequency GaN Electronic Devices. Springer, Cham. https://doi.org/10.1007/978-3-030-20208-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20208-8_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20207-1

  • Online ISBN: 978-3-030-20208-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics