Skip to main content

Copper-Based Nanoparticles, Their Chemistry and Antibacterial Properties: A Review

  • Conference paper
  • First Online:
Chemistry for a Clean and Healthy Planet (ICPAC 2018)

Included in the following conference series:

Abstract

Copper nanoparticles (CuNPs) have different structural properties and effective biological activities. One of the major proven applications of CuNPs is antimicrobial activity. The advantage of CuNPs is the control over particle size and compositions to provide additional applications. The synthesis of CuNPs through green synthesis, chemical, physical and biological methods is possible. The toxicity and stability of CuNPs are important for its use as antimicrobial agent. This work reviews the behavior of CuNPs and copper-based NPs as antimicrobial agents in different media under various conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Pelgrift RY, Friedman AJ (2013) Nanotechnology as a therapeutic tool to combat microbial resistance. Adv Drug Deliv Rev 65:1803–1815

    Article  CAS  PubMed  Google Scholar 

  2. Dizaj SM, Lotfipour F, Barzegar-Jalali M, Zarrintan MH, Adibkia K (2014) Antimicrobial activity of the metals and metal oxide nanoparticles. Mater Sci Eng, C 44:278–284

    Article  CAS  Google Scholar 

  3. Ingle AP, Duran N, Rai M (2014) Bioactivity, mechanism of action, and cytotoxicity of copper-based nanoparticles: a review. Appl Microbiol Biotechnol 98:1001–1009

    Article  CAS  PubMed  Google Scholar 

  4. Slavin YN, Asnis J, Häfeli UO, Bach H (2017) Metal nanoparticles: understanding the mechanisms behind antibacterial activity. J Nanobiotechnol 15:1–20

    Article  CAS  Google Scholar 

  5. Hoseinzadeh E, Makhdoumi P, Taha P, Hossini H, Stelling J, Kamal MA et al (2017) A review on nano-antimicrobials: metal nanoparticles, methods and mechanisms. Curr Drug Metab 18:120–128

    Article  CAS  PubMed  Google Scholar 

  6. Hemeg HA (2017) Nanomaterials for alternative antibacterial therapy. Int J Nanomed 12:8211–8225

    Article  CAS  Google Scholar 

  7. Panariti A, Miserocchi G, Rivolta I (2012) The effect of nanoparticle uptake on cellular behavior: disrupting or enabling functions? Nanotechnol Sci Appl 5:87–100

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Cioffi N, Torsi L, Ditaranto N, Tantillo G, Ghibelli L, Sabbatini L et al (2005) Copper nanoparticle/polymer composites with antifungal and bacteriostatic properties. Chem Mater 17:5255–5262

    Article  CAS  Google Scholar 

  9. Usman MS, El Zowalaty ME, Shameli K, Zainuddin N, Salama M, Ibrahim NA (2013) Synthesis, characterization, and antimicrobial properties of copper nanoparticles. Int J Nanomed 8:4467–4479

    Google Scholar 

  10. Cady NC, Behnke JL, Strickland AD (2011) Copper-based nanostructured coatings on natural cellulose: nanocomposites exhibiting rapid and efficient inhibition of a multi-drug resistant wound pathogen, A. baumannii, and mammalian cell biocompatibility in vitro. Adv Funct Mater 21:2506–2514

    Article  CAS  Google Scholar 

  11. Din MI, Rehan R (2017) Synthesis, characterization, and applications of copper nanoparticles. Anal Lett 50:50–62

    Article  CAS  Google Scholar 

  12. Khodashenas B, Ghorbani HR (2014) Synthesis of copper nanoparticles: an overview of the various methods. Korean J Chem Eng 31:1105–1109

    Article  CAS  Google Scholar 

  13. Keller AA, Adeleye AS, Conway JR, Garner KL, Zhao L, Cherr GN et al (2017) Comparative environmental fate and toxicity of copper nanomaterials. Nano Impact 7:28–40

    Google Scholar 

  14. Karlsson HL, Cronholm P, Gustafsson J, Möller L (2008) Copper oxide nanoparticles are highly toxic: a comparison between metal oxide nanoparticles and carbon nanotubes. Chem Res Toxicol 21:1726–1732

    Article  CAS  PubMed  Google Scholar 

  15. Hatamie A, Zargar B, Jalali A (2014) Copper nanoparticles: a new colorimetric probe for quick, naked-eye detection of sulfide ions in water samples. Talanta 121:234–238

    Article  CAS  Google Scholar 

  16. Kim DK, Yoo SM, Park TJ, Yoshikawa H, Tamiya E, Park JY et al (2011) Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal Chem 83:6215–6222

    Article  CAS  PubMed  Google Scholar 

  17. Ojha NK, Zyryanov GV, Majee A, Charushin VN, Chupakhin ON, Santra S (2017) Copper nanoparticles as inexpensive and efficient catalyst: a valuable contribution in organic synthesis. Coord Chem Rev 353:1–57

    Article  CAS  Google Scholar 

  18. Shankar S, Rhim JW (2014) Effect of copper salts and reducing agents on characteristics and antimicrobial activity of copper nanoparticles. Mater Lett 132:307–311

    Article  CAS  Google Scholar 

  19. Rubilar O, Rai M, Tortella G, Diez MC, Seabra AB, Durán N (2013) Biogenic nanoparticles: copper, copper oxides, copper sulphides, complex copper nanostructures and their applications. Biotechnol Lett 35:1365–1375

    Article  CAS  PubMed  Google Scholar 

  20. Tiwari M, Jain P, Chandrashekhar Hariharapura R, Narayanan K, Bhat KU, Udupa N et al (2016) Biosynthesis of copper nanoparticles using copper-resistant Bacillus cereus, a soil isolate. Process Biochem 51:1348–1356

    Article  CAS  Google Scholar 

  21. Varshney R, Bhadauria S, Gaur MS, Pasricha R (2010) Characterization of copper nanoparticles synthesized by a novel microbiological method. JOM 62:102–104

    Article  CAS  Google Scholar 

  22. Jang GG, Jacobs CB, Gresback RG, Ivanov IN, Meyer HM, Kidder M et al (2015) Size tunable elemental copper nanoparticles: extracellular synthesis by thermoanaerobic bacteria and capping molecules. J Mater Chem C 3:644–650

    Article  CAS  Google Scholar 

  23. Prabhu YT, Venkateswara Rao K, Sesha Sai V, Pavani T (2017) A facile biosynthesis of copper nanoparticles: a micro-structural and antibacterial activity investigation. J Saudi Chem Soc 21:180–185

    Article  CAS  Google Scholar 

  24. Nasrollahzadeh M, Momeni SS, Sajadi SM (2017) Green synthesis of copper nanoparticles using Plantago asiatica leaf extract and their application for the cyanation of aldehydes using K4Fe(CN)6. J Colloid Interface Sci 506:471–477

    Article  CAS  PubMed  Google Scholar 

  25. Nagajyothi PC, Muthuraman P, Sreekanth TVM, Kim DH, Shim J (2017) Green synthesis: in-vitro anticancer activity of copper oxide nanoparticles against human cervical carcinoma cells. Arab J Chem 10:215–225

    Article  CAS  Google Scholar 

  26. Nasrollahzadeh M, Sajadi SM, Rostami-Vartooni A, Hussin SM (2016) Green synthesis of CuO nanoparticles using aqueous extract of Thymus vulgaris L. leaves and their catalytic performance for N-arylation of indoles and amines. J Colloid Interface Sci 466:113–119

    Article  CAS  PubMed  Google Scholar 

  27. Suárez-Cerda J, Espinoza-Gómez H, Alonso-Núñez G, Rivero IA, Gochi-Ponce Y, Flores-López LZ (2017) A green synthesis of copper nanoparticles using native cyclodextrins as stabilizing agents. J Saudi Chem Soc 21:341–348

    Article  CAS  Google Scholar 

  28. Ren G, Hu D, Cheng EWC, Vargas-Reus MA, Reip P, Allaker RP (2009) Characterization of copper oxide nanoparticles for antimicrobial applications. Int J Antimicrob Agents 33:587–590

    Article  CAS  PubMed  Google Scholar 

  29. Tamayo L, Azócar M, Kogan M, Riveros A, Páez M (2016) Copper-polymer nanocomposites: an excellent and cost-effective biocide for use on antibacterial surfaces. Mater Sci Eng, C 69:1391–1409

    Article  CAS  Google Scholar 

  30. Valodkar M, Rathore PS, Jadeja RN, Thounaojam M, Devkar RV, Thakore S (2012) Cytotoxicity evaluation and antimicrobial studies of starch capped water soluble copper nanoparticles. J Hazard Mater 201–202:244–249

    Article  PubMed  CAS  Google Scholar 

  31. Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloid Surf B 96:50–55

    Article  CAS  Google Scholar 

  32. Kim YH, Lee DK, Cha HG, Kim CW, Kang YC, Kang YS (2006) Preparation and characterization of the antibacterial Cu nanoparticle formed on the surface of SiO2 nanoparticles. J Phys Chem B 110:24923–24928

    Article  CAS  PubMed  Google Scholar 

  33. Chang Y-N, Zhang M, Xia L, Zhang J, Xing G (2012) The toxic effects and mechanisms of CuO and ZnO nanoparticles. Materials (Basel) 5:2850–2871

    Article  CAS  Google Scholar 

  34. Meghana S, Kabra P, Chakraborty S, Padmavathy N (2015) Understanding the pathway of antibacterial activity of copper oxide nanoparticles. RSC Adv 5:12293–12299

    Article  CAS  Google Scholar 

  35. Ruparelia JP, Chatterjee AK, Duttagupta SP, Mukherji S (2008) Strain specificity in antimicrobial activity of silver and copper nanoparticles. Acta Biomater 4:707–716

    Article  CAS  PubMed  Google Scholar 

  36. Schrand AM, Rahman MF, Hussain SM, Schlager JJ, Smith DA, Syed AF (2010) Metal-based nanoparticles and their toxicity assessment. Interdisc Rev Nanomed Nanobiotechnol 2:544–568

    Article  CAS  Google Scholar 

  37. Zain NM, Stapley AGF, Shama G (2014) Green synthesis of silver and copper nanoparticles using ascorbic acid and chitosan for antimicrobial applications. Carbohydr Polym 112:195–202

    Article  CAS  PubMed  Google Scholar 

  38. Rakhmetova AA, Alekseeva TP, Bogoslovskaya OA, Leipunskii IO, Olkhovskaya IP, Zhigach AN et al (2010) Wound-healing properties of copper nanoparticles as a function of physicochemical parameters. Nanotechnol Russ 5:271–276

    Article  Google Scholar 

  39. Raffi M, Mehrwan S, Bhatti TM, Akhter JI, Hameed A, Yawar W et al (2010) Investigations into the antibacterial behavior of copper nanoparticles against Escherichia coli. Ann Microbiol 60:75–80

    Article  CAS  Google Scholar 

  40. Ramyadevi J, Jeyasubramanian K, Marikani A, Rajakumar G, Rahuman AA (2012) Synthesis and antimicrobial activity of copper nanoparticles. Mater Lett 71:114–116

    Article  CAS  Google Scholar 

  41. Galletti AMR, Antonetti C, Marracci M, Piccinelli F, Tellini B (2013) Novel microwave-synthesis of Cu nanoparticles in the absence of any stabilizing agent and their antibacterial and antistatic applications. Appl Surf Sci 280:610–618

    Article  CAS  Google Scholar 

  42. Lewis Oscar F, MubarakAli D, Nithya C, Priyanka R, Gopinath V, Alharbi NS et al (2015) One pot synthesis and anti-biofilm potential of copper nanoparticles (CuNPs) against clinical strains of Pseudomonas aeruginosa. Biofouling 31:379–391

    Article  CAS  Google Scholar 

  43. Zakharova OV, Godymchuk AY, Gusev AA, Gulchenko SI, Vasyukova IA, Kuznetsov DV (2015) Considerable variation of antibacterial activity of Cu nanoparticles suspensions depending on the storage time, dispersive medium, and particle sizes. Biomed Res 2015:412530

    Google Scholar 

  44. Godymchuk A, Frolov G, Gusev A, Zakharova O, Yunda E, Kuznetsov D et al (2015) Antibacterial properties of copper nanoparticle dispersions: influence of synthesis conditions and physicochemical characteristics. IOP Conf Ser Mater Sci Eng 98:012033

    Article  Google Scholar 

  45. Lee HJ, Song JY, Kim BS (2013) Biological synthesis of copper nanoparticles using Magnolia kobus leaf extract and their antibacterial activity. J Chem Technol Biotechnol 88:1971–1977

    CAS  Google Scholar 

  46. Shende S, Ingle AP, Gade A, Rai M (2015) Green synthesis of copper nanoparticles by Citrus medica Linn. (Idilimbu) juice and its antimicrobial activity. World J Microbiol Biotechnol 31:865–873

    Article  CAS  PubMed  Google Scholar 

  47. Jadhav S, Gaikwad S, Nimse M, Rajbhoj A (2011) Copper oxide nanoparticles: synthesis, characterization and their antibacterial activity. J Clust Sci 22:121–129

    Article  CAS  Google Scholar 

  48. Azam A, Ahmed AS, Oves M, Khan MS, Memic A (2012) Size-dependent antimicrobial properties of CuO nanoparticles against gram-positive and -negative bacterial strains. Int J Nanomed 7:3527–3535

    Article  CAS  Google Scholar 

  49. Agarwala M, Choudhury B, Yadav RNS (2014) Comparative study of antibiofilm activity of copper oxide and iron oxide nanoparticles against multidrug resistant biofilm forming uropathogens. Indian J Microbiol 54:365–368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ahamed M, Alhadlaq HA, Khan MAM, Karuppiah P, Al-Dhabi NA (2014) Synthesis, characterization, and antimicrobial activity of copper oxide nanoparticles. J Nanomater (Article ID 637858)

    Google Scholar 

  51. Ananth A, Dharaneedharan S, Heo MS, Mok YS (2015) Copper oxide nanomaterials: synthesis, characterization and structure-specific antibacterial performance. Chem Eng J 262:179–188

    Article  CAS  Google Scholar 

  52. El-Nahhal IM, Zourab SM, Kodeh FS, Selmane M, Genois I, Babonneau F (2012) Nanostructured copper oxide-cotton fibers: synthesis, characterization, and applications. Int Nano Lett 2:1–5

    Article  Google Scholar 

  53. Das D, Nath BC, Phukon P, Dolui SK (2013) Synthesis and evaluation of antioxidant and antibacterial behavior of CuO nanoparticles. Colloid Surf B 101:430–433

    Article  CAS  Google Scholar 

  54. Padil VVT, Černík M (2013) Green synthesis of copper oxide nanoparticles using gum karaya as a biotemplate and their antibacterial application. Int J Nanomed 8:889–898

    Google Scholar 

  55. Sutradhar P, Saha M, Maiti D (2014) Microwave synthesis of copper oxide nanoparticles using tea leaf and coffee powder extracts and its antibacterial activity. J Nanostructure Chem 4:86

    Article  Google Scholar 

  56. Sivaraj R, Rahman PKSM, Rajiv P, Salam HA, Venckatesh R (2014) Biogenic copper oxide nanoparticles synthesis using Tabernaemontana divaricate leaf extract and its antibacterial activity against urinary tract pathogen. Spectrochim Acta A Mol Biomol Spectrosc 133:178–181

    Article  CAS  PubMed  Google Scholar 

  57. Hassan MS, Amna T, Yang OB, El-Newehy MH, Al-Deyab SS, Khil MS (2012) Smart copper oxide nanocrystals: synthesis, characterization, electrochemical and potent antibacterial activity. Colloid Surface B 97:201–206

    Article  CAS  Google Scholar 

  58. Laha D, Pramanik A, Laskar A, Jana M, Pramanik P, Karmakar P (2014) Shape-dependent bactericidal activity of copper oxide nanoparticle mediated by DNA and membrane damage. Mater Res Bull 59:185–191

    Article  CAS  Google Scholar 

  59. Sabatini C, Mennito AS, Wolf BJ, Pashley DH, Renn WG (2015) Incorporation of bactericidal poly-acrylic acid modified copper iodide particles into adhesive resins. J Dent 43:546–555

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Renné WG, Lindner A, Mennito AS, Agee KA, Pashley DH, Willett D et al (2017) Antibacterial properties of copper iodide-doped glass ionomer-based materials and effect of copper iodide nanoparticles on collagen degradation. Clin Oral Investig 21:369–379

    Article  PubMed  Google Scholar 

  61. Ayaz Ahmed KB, Anbazhagan V (2017) Synthesis of copper sulfide nanoparticles and evaluation of in vitro antibacterial activity and in vivo therapeutic effect in bacteria-infected zebrafish. RSC Adv 7:36644–36652

    Article  CAS  Google Scholar 

  62. Malarkodi C, Rajeshkumar S (2017) In vitro bactericidal activity of biosynthesized CuS nanoparticles against UTI-causing pathogens. Inorg Nano-Metal Chem 47:1290–1297

    Article  CAS  Google Scholar 

  63. Palza H (2015) Antimicrobial polymers with metal nanoparticles. Int J Mol Sci 16:2099–2116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Jia B, Mei Y, Cheng L, Zhou J, Zhang L (2012) Preparation of copper nanoparticles coated cellulose films with antibacterial properties through one-step reduction. ACS Appl Mater Interfaces 4:2897–2902

    Article  CAS  PubMed  Google Scholar 

  65. Shao W, Wang S, Wu J, Huang M, Liu H, Min H (2016) Synthesis and antimicrobial activity of copper nanoparticle loaded regenerated bacterial cellulose membranes. RSC Adv 6:65879–65884

    Article  CAS  Google Scholar 

  66. Pinto RJB, Daina S, Sadocco P, Neto CP, Trindade T (2013) Antibacterial activity of nanocomposites of copper and cellulose. Bio Med Res Int 2013:280512

    Google Scholar 

  67. Zhong T, Oporto GS, Jaczynski J, Jiang C (2015) Nanofibrillated cellulose and copper nanoparticles embedded in polyvinyl alcohol films for antimicrobial applications. Biomed Res Int 2015:456834

    PubMed  PubMed Central  Google Scholar 

  68. Eivazihollagh A, Bäckström J, Dahlström C, Carlsson F, Ibrahem I, Lindman B, Edlund H, Norgren M (2017) One-pot synthesis of cellulose-templated copper nanoparticles with antibacterial properties. Mater Lett 187:170–172

    Article  CAS  Google Scholar 

  69. Muthulakshmi L, Rajini N, Nellaiah H, Kathiresan T, Jawaid M, Rajulu AV (2017) Preparation and properties of cellulose nanocomposite films with in situ generated copper nanoparticles using Terminalia catappa leaf extract. Int J Biol Macromol 95:1064–1071

    Article  CAS  PubMed  Google Scholar 

  70. Sadanand V, Rajini N, Varada Rajulu A, Satyanarayana B (2016) Preparation of cellulose composites with in situ generated copper nanoparticles using leaf extract and their properties. Carbohydr Polym 150:32–39

    Article  CAS  PubMed  Google Scholar 

  71. Marković D, Deeks C, Nunney T, Radovanović Ž, Radoičić M, Šaponjić Z, Radetić M (2018) Antibacterial activity of Cu-based nanoparticles synthesized on the cotton fabrics modified with polycarboxylic acids. Carbohydr Polym 200:173–182

    Article  PubMed  CAS  Google Scholar 

  72. Holubnycha V, Pogorielov M, Korniienko V, Kalinkevych O, Ivashchenko O, Peplinska B, Jarek M(2017) Antibacterial activity of the new copper nanoparticles and Cu NPs/ chitosan solution. In: IEEE 7th international conference on Nanomaterials: Applications and Properties (NAP) 201:2–5

    Google Scholar 

  73. Cárdenas G, Díaz VJ, Meléndrez MF, Cruzat CC, García Cancino A (2009) Colloidal Cu nanoparticles/chitosan composite film obtained by microwave heating for food package applications. Polym Bull 62:511–524

    Article  CAS  Google Scholar 

  74. Ancona A, Sportelli MC, Trapani A, Picca RA, Palazzo C, Bonerba E et al (2014) Synthesis and characterization of hybrid copper-chitosan nano-antimicrobials by femtosecond laser-ablation in liquids. Mater Lett 136:397–400

    Article  CAS  Google Scholar 

  75. Mallick S, Sharma S, Banerjee M, Ghosh SS, Chattopadhyay A, Paul A (2012) Iodine-stabilized Cu nanoparticle chitosan composite for antibacterial applications. ACS Appl Mater Interfaces 4:1313–1323

    Article  CAS  PubMed  Google Scholar 

  76. Tamayo LA, Zapata PA, Vejar ND, Azócar MI, Gulppi MA, Zhou X et al (2014) Release of silver and copper nanoparticles from polyethylene nanocomposites and their penetration into Listeria monocytogenes. Mater Sci Eng, C 40:24–31

    Article  CAS  Google Scholar 

  77. Tamayo LA, Zapata PA, Rabagliati FM et al (2015) Antibacterial and non-cytotoxic effect of nanocomposites based in polyethylene and copper nanoparticles. J Mater Sci Mater Med 26:129

    Article  CAS  PubMed  Google Scholar 

  78. Díaz-Visurraga J, Daza C, Pozo C, Becerra A, von Plessing C, García A (2012) Study on antibacterial alginate-stabilized copper nanoparticles by FT-IR and 2D-IR correlation spectroscopy. Int J Nanomed 7:3597–3612

    Article  CAS  Google Scholar 

  79. Bajpai SK, Bajpai M, Sharma L (2012) Copper nanoparticles loaded alginate-impregnated cotton fabric with antibacterial properties. J App Pol Sci 126:E319–E326

    Article  CAS  Google Scholar 

  80. Chaturvedi A, Bajpai AK, Bajpai J, Sharma A (2015) Antimicrobial poly(vinyl alcohol) cryogel-copper nanocomposites for possible applications in biomedical fields. Des Monomers Polym 18:385–400

    Article  CAS  Google Scholar 

  81. Bogdanović U, Vodnik V, Mitrić M, Dimitrijević S, Škapin SD, Žunič V et al (2015) Nanomaterial with high antimicrobial efficacy copper/polyaniline nanocomposite. ACS Appl Mater Interfaces 7:1955–1966

    Article  PubMed  CAS  Google Scholar 

  82. Cárdenas-Triviño G, Ruiz-Parra M, Vergara-González L, Ojeda-Oyarzún J, Solorzano G (2017) Synthesis and bactericidal properties of hyaluronic acid doped with metal nanoparticles. J Nanomater 2017 (Article ID 9573869)

    Article  CAS  Google Scholar 

  83. Savelyev Y, Gonchar A, Movchan B, Gornostay A, Vozianov S, Rudenko A et al (2017) Antibacterial polyurethane materials with silver and copper nanoparticles. Mater Today Proc 4:87–94

    Article  Google Scholar 

  84. Delgado K, Quijada R, Palma R, Palza H (2011) Polypropylene with embedded copper metal or copper oxide nanoparticles as a novel plastic antimicrobial agent. Lett Appl Microbiol 53:50–54

    Article  CAS  PubMed  Google Scholar 

  85. Zhang N, Yu X, Hu J (2014) Synthesis of copper nanoparticle-coated poly(styrene-co-sulfonic acid) hybrid materials and its antibacterial properties. Mater Lett 125:120–123

    Article  CAS  Google Scholar 

  86. Longano D, Ditaranto N, Cioffi N, NisoF Di, Sibillano T, Ancona A et al (2012) Analytical characterization of laser-generated copper nanoparticles for antibacterial composite food packaging. Anal Bioanal Chem 403:1179–1186

    Article  CAS  PubMed  Google Scholar 

  87. Banik M, Patra M, Dutta D, Mukherjee R, Basu T (2018) A simple robust method of synthesis of copper-silver core shell nano-particle: evaluation of its structural and chemical properties with anticancer potency. Nanotechnol 29:325102

    Article  CAS  Google Scholar 

  88. Paszkiewicz M, Go A, Rajski A, KowalE, Sajdak A, Zaleska-Medynska A (2016) The antibacterial and antifungal textile properties functionalized by bimetallic nanoparticles of Ag/Cu with different structures. J Nanomat 2016 (Article ID6056980)

    Google Scholar 

  89. Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and anti-bacterial activity of Cu, Ag and Cu-Ag alloy nanoparticles: a green approach. Mater Res Bull 46:384–389

    Article  CAS  Google Scholar 

  90. Taner M, Sayar N, Yulug IG, Suzer S (2011) Synthesis, characterization and antibacterial investigation of silver-copper nanoalloys. J Mater Chem 21:13150–13154

    Article  CAS  Google Scholar 

  91. Fakhri A, Pourmand M, Khakpour R, Behrouz S (2015) Structural, optical, photoluminescence and antibacterial properties of copper-doped silver sulfide nanoparticles. J Photochem Photobiol B 149:78–83

    Article  CAS  PubMed  Google Scholar 

  92. Chaliha C, Nath BK, Verma PK, Kalita E (2016) Synthesis of functionalized Cu:ZnS nanosystems and its antibacterial potential. Arab J Chem (article in press)

    Google Scholar 

  93. Singhal SK, Lal M, Lata Kabi SR, Mathur RB (2012) Synthesis of Cu/CNTs nanocomposites for antimicrobial activity. Adv Nat Sci Nano Sci Nanotechnol 3:045011

    Article  CAS  Google Scholar 

  94. Mohan R, Shanmugharaj AM, Sung Hun R (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96:119–126

    Article  CAS  Google Scholar 

  95. Perdikaki A, Galeou A, Pilatos G, Karatasios I, Kanellopoulos NK, Prombona A et al (2016) Ag and Cu monometallic and Ag/Cu bimetallic nanoparticle-graphene composites with enhanced antibacterial performance. ACS Appl Mater Interfaces 8:27498–27510

    Article  CAS  PubMed  Google Scholar 

  96. Li Y, Yang D, Cui J (2017) Graphene oxide loaded with copper oxide nanoparticles as an antibacterial agent against: Pseudomonas syringae pv. tomato. RSC Adv 7:38853–38860

    Article  CAS  Google Scholar 

  97. Khare P, Sharma A, Verma N (2014) Synthesis of phenolic precursor-based porous carbon beads in situ dispersed with copper-silver bimetal nanoparticles for antibacterial applications. J Colloid Interface Sci 418:216–224

    Article  CAS  PubMed  Google Scholar 

  98. Zhang N, Gao Y, Zhang H, Feng X, Cai H, Liu Y (2010) Preparation and characterization of core-shell structure of SiO2@Cu antibacterial agent. Colloid Surface B 81:537–543

    Article  CAS  Google Scholar 

  99. Maniprasad P, Santra S (2012) Novel copper (Cu) loaded core-shell silica nanoparticles with improved Cu bioavailability: synthesis, characterization and study of antibacterial properties. J Biomed Nanotechnol 8:558–566

    Article  CAS  PubMed  Google Scholar 

  100. Villanueva ME, Diez AMDR, González JA, Pérez CJ, Orrego M, Piehl L et al (2016) Antimicrobial activity of starch hydrogel incorporated with copper nanoparticles. ACS Appl Mater Interfaces 8:16280–16288

    Article  CAS  PubMed  Google Scholar 

  101. Rastogi L, Arunachalam J (2013) Synthesis and characterization of bovine serum albumin-copper nanocomposites for antibacterial applications. Colloid Surf B 108:134–141

    Article  CAS  Google Scholar 

  102. Dealba-Montero I, Guajardo-Pacheco J, Morales-Sánchez E, Araujo-Martínez R, Loredo-Becerra GM, Martínez-Castañón GA et al (2017) Antimicrobial properties of copper nanoparticles and amino acid chelated copper nanoparticles produced by using a soya extract. Bioinorg Chem Appl (Article ID 1064918)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the Deanship of Graduate Studies and Research, Ajman University, Ajman, United Arab Emirates (Ref. No. IRG-2018-A-PH-02). We thank Ajman University for support and financial provision.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zehra Edis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Edis, Z., Haj Bloukh, S., Ashames, A., Ibrahim, M. (2019). Copper-Based Nanoparticles, Their Chemistry and Antibacterial Properties: A Review. In: Ramasami, P., Gupta Bhowon, M., Jhaumeer Laulloo, S., Li Kam Wah, H. (eds) Chemistry for a Clean and Healthy Planet. ICPAC 2018. Springer, Cham. https://doi.org/10.1007/978-3-030-20283-5_24

Download citation

Publish with us

Policies and ethics