Skip to main content

GANomaly: Semi-supervised Anomaly Detection via Adversarial Training

  • Conference paper
  • First Online:
Computer Vision – ACCV 2018 (ACCV 2018)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11363))

Included in the following conference series:

Abstract

Anomaly detection is a classical problem in computer vision, namely the determination of the normal from the abnormal when datasets are highly biased towards one class (normal) due to the insufficient sample size of the other class (abnormal). While this can be addressed as a supervised learning problem, a significantly more challenging problem is that of detecting the unknown/unseen anomaly case that takes us instead into the space of a one-class, semi-supervised learning paradigm. We introduce such a novel anomaly detection model, by using a conditional generative adversarial network that jointly learns the generation of high-dimensional image space and the inference of latent space. Employing encoder-decoder-encoder sub-networks in the generator network enables the model to map the input image to a lower dimension vector, which is then used to reconstruct the generated output image. The use of the additional encoder network maps this generated image to its latent representation. Minimizing the distance between these images and the latent vectors during training aids in learning the data distribution for the normal samples. As a result, a larger distance metric from this learned data distribution at inference time is indicative of an outlier from that distribution—an anomaly. Experimentation over several benchmark datasets, from varying domains, shows the model efficacy and superiority over previous state-of-the-art approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The code is available on https://github.com/samet-akcay/ganomaly.

References

  1. OSCT Borders X-ray Image Library: UK Home Office Centre for Applied Science and Technology (CAST). Publication Number: 146/16 (2016)

    Google Scholar 

  2. Abdallah, A., Maarof, M.A., Zainal, A.: Fraud detection system: a survey. J. Netw. Comput. Appl. 68, 90–113 (2016). https://doi.org/10.1016/J.JNCA.2016.04.007. https://www.sciencedirect.com/science/article/pii/S1084804516300571

    Article  Google Scholar 

  3. Ahmed, M., Mahmood, A.N., Islam, M.R.: A survey of anomaly detection techniques in financial domain. Future Gener. Comput. Syst. 55, 278–288 (2016). https://doi.org/10.1016/J.FUTURE.2015.01.001. https://www.sciencedirect.com/science/article/pii/S0167739X15000023

    Article  Google Scholar 

  4. Ahmed, M., Naser Mahmood, A., Hu, J.: A survey of network anomaly detection techniques. J. Netw. Comput. Appl. 60, 19–31 (2016). https://doi.org/10.1016/J.JNCA.2015.11.016. https://www.sciencedirect.com/science/article/pii/S1084804515002891

    Article  Google Scholar 

  5. Akcay, S., Kundegorski, M.E., Willcocks, C.G., Breckon, T.P.: Using deep convolutional neural network architectures for object classification and detection within X-ray baggage security imagery. IEEE Trans. Inf. Forensics Secur. 13(9), 2203–2215 (2018). https://doi.org/10.1109/TIFS.2018.2812196

    Article  Google Scholar 

  6. An, J., Cho, S.: Variational autoencoder based anomaly detection using reconstruction probability. Spec. Lect. IE 2, 1–18 (2015)

    Google Scholar 

  7. Arjovsky, M., Bottou, L.: Towards principled methods for training generative adversarial networks. In: 2017 ICLR, April 2017. http://arxiv.org/abs/1701.04862

  8. Arjovsky, M., Chintala, S., Bottou, L.: Wasserstein generative adversarial networks. In: Proceedings of the 34th International Conference on Machine Learning, pp. 214–223, Sydney, Australia, 06–11 August 2017. http://proceedings.mlr.press/v70/arjovsky17a.html

  9. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection. ACM Comput. Surv. 41(3), 1–58 (2009). https://doi.org/10.1145/1541880.1541882

    Article  Google Scholar 

  10. Chen, X., et al.: InfoGAN: interpretable representation learning by information maximizing generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2172–2180 (2016)

    Google Scholar 

  11. Creswell, A., Bharath, A.A.: Inverting the generator of a generative adversarial network (II). arXiv preprint arXiv:1802.05701 (2018)

  12. Creswell, A., White, T., Dumoulin, V., Arulkumaran, K., Sengupta, B., Bharath, A.A.: Generative adversarial networks: an overview. IEEE Signal Process. Mag. 35(1), 53–65 (2018)

    Article  Google Scholar 

  13. Dimokranitou, A.: Adversarial autoencoders for anomalous event detection in images. Ph.D. thesis, Purdue University (2017)

    Google Scholar 

  14. Donahue, J., Krähenbühl, P., Darrell, T.: Adversarial feature learning. In: International Conference on Learning Representations (ICLR), Toulon, France, April 2017. http://arxiv.org/abs/1605.09782

  15. Dumoulin, V., et al.: Adversarially learned inference. In: ICLR (2017)

    Google Scholar 

  16. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  17. Gulrajani, I., Ahmed, F., Arjovsky, M., Dumoulin, V., Courville, A.C.: Improved training of Wasserstein GANs. In: Advances in Neural Information Processing Systems, pp. 5767–5777 (2017)

    Google Scholar 

  18. Hasan, M., Choi, J., Neumann, J., Roy-Chowdhury, A.K., Davis, L.S.: Learning temporal regularity in video sequences. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 733–742 (2016)

    Google Scholar 

  19. Hodge, V., Austin, J.: A survey of outlier detection methodologies. Artif. Intell. Rev. 22(2), 85–126 (2004). https://doi.org/10.1023/B:AIRE.0000045502.10941.a9

    Article  MATH  Google Scholar 

  20. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456, Lille, France, 07–09 July 2015. http://proceedings.mlr.press/v37/ioffe15.html

  21. Isola, P., Zhu, J., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 5967–5976, July 2017. https://doi.org/10.1109/CVPR.2017.632

  22. Kinga, D., Adam, J.B.: Adam: a method for stochastic optimization. In: International Conference on Learning Representations (ICLR), vol. 5 (2015)

    Google Scholar 

  23. Kiran, B.R., Thomas, D.M., Parakkal, R.: An overview of deep learning based methods for unsupervised and semi-supervised anomaly detection in videos. J. Imaging 4(2), 36 (2018)

    Article  Google Scholar 

  24. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images. Technical report, Citeseer (2009)

    Google Scholar 

  25. LeCun, Y., Cortes, C.: MNIST handwritten digit database (2010). http://yann.lecun.com/exdb/mnist/

  26. Lipton, Z.C., Tripathi, S.: Precise recovery of latent vectors from generative adversarial networks. In: ICLR Workshop (2017)

    Google Scholar 

  27. Makhzani, A., Shlens, J., Jaitly, N., Goodfellow, I., Frey, B.: Adversarial autoencoders. In: ICLR (2016)

    Google Scholar 

  28. Markou, M., Singh, S.: Novelty detection: a review-part 1: statistical approaches. Signal Process. 83(12), 2481–2497 (2003). https://doi.org/10.1016/J.SIGPRO.2003.07.018. https://www.sciencedirect.com/science/article/pii/S0165168403002020

    Article  MATH  Google Scholar 

  29. Markou, M., Singh, S.: Novelty detection: a review-part 2: neural network based approaches. Signal Process. 83(12), 2499–2521 (2003). https://doi.org/10.1016/J.SIGPRO.2003.07.019. https://www.sciencedirect.com/science/article/pii/S0165168403002032

    Article  MATH  Google Scholar 

  30. Medel, J.R., Savakis, A.: Anomaly detection in video using predictive convolutional long short-term memory networks. CoRR abs/1612.0 (2016)

    Google Scholar 

  31. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  32. Paszke, A., et al.: Automatic differentiation in PyTorch (2017)

    Google Scholar 

  33. Pimentel, M.A., Clifton, D.A., Clifton, L., Tarassenko, L.: A review of novelty detection. Signal Process. 99, 215–249 (2014)

    Article  Google Scholar 

  34. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. In: ICLR (2016)

    Google Scholar 

  35. Ravanbakhsh, M., Sangineto, E., Nabi, M., Sebe, N.: Training adversarial discriminators for cross-channel abnormal event detection in crowds. CoRR abs/1706.0 (2017). http://arxiv.org/abs/1706.07680

  36. Rogers, T.W., Jaccard, N., Morton, E.J., Griffin, L.D.: Automated X-ray image analysis for cargo security: critical review and future promise. J. X-Ray Sci. Technol. (Prepr.) 25, 1–24 (2016)

    Google Scholar 

  37. Sabokrou, M., Fathy, M., Hoseini, M., Klette, R.: Real-time anomaly detection and localization in crowded scenes. In: 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), pp. 56–62 (2015). https://doi.org/10.1109/CVPRW.2015.7301284, http://ieeexplore.ieee.org/document/7301284/

  38. Salimans, T., Goodfellow, I., Zaremba, W., Cheung, V., Radford, A., Chen, X.: Improved techniques for training GANs. In: Advances in Neural Information Processing Systems, pp. 2234–2242 (2016)

    Google Scholar 

  39. Schlegl, T., Seeböck, P., Waldstein, S.M., Schmidt-Erfurth, U., Langs, G.: Unsupervised anomaly detection with generative adversarial networks to guide marker discovery. In: Niethammer, M., et al. (eds.) IPMI 2017. LNCS, vol. 10265, pp. 146–157. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-59050-9_12

    Chapter  Google Scholar 

  40. Zenati, H., Foo, C.S., Lecouat, B., Manek, G., Chandrasekhar, V.R.: Efficient GAN-based anomaly detection. arXiv preprint arXiv:1802.06222 (2018)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samet Akcay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Akcay, S., Atapour-Abarghouei, A., Breckon, T.P. (2019). GANomaly: Semi-supervised Anomaly Detection via Adversarial Training. In: Jawahar, C., Li, H., Mori, G., Schindler, K. (eds) Computer Vision – ACCV 2018. ACCV 2018. Lecture Notes in Computer Science(), vol 11363. Springer, Cham. https://doi.org/10.1007/978-3-030-20893-6_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-20893-6_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-20892-9

  • Online ISBN: 978-3-030-20893-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics