Skip to main content

Unions of Orthogonal Arrays and Their Aberrations via Hilbert Bases

  • Conference paper
  • First Online:
New Statistical Developments in Data Science (SIS 2017)

Part of the book series: Springer Proceedings in Mathematics & Statistics ((PROMS,volume 288))

Included in the following conference series:

Abstract

We generate all the Orthogonal Arrays (OAs) of a given size n and strength t as the union of a collection of OAs which belong to an inclusion-minimal set of OAs. We derive a formula for computing the (Generalized) Word Length Pattern of a union of OAs that makes use of their polynomial counting functions. The best OAs according to the Generalized Minimum Aberration criterion can thereby be found simply by exploring a relatively small set of counting functions. The classes of OAs with 5 binary factors, strength 2, and sizes 16 and 20 are fully described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruns, W., Ichim, B., Römer, T., Sieg, R., Söger, C.: Normaliz algorithms for rational cones and affine monoids. https://www.normaliz.uni-osnabrueck.de

  2. Carlini, E., Pistone, G.: Hilbert bases for orthogonal arrays. J. Stat. Theory Pract. 1(3–4), 299–309 (2007)

    Article  MathSciNet  Google Scholar 

  3. Cheng, S.W., Ye, K.Q.: Geometric isomorphism and minimum aberration for factorial designs with quantitative factors. Ann. Stat. 32(5), 2168–2185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  4. Dey, A., Mukerjee, R.: Fractional Factorial Plans. Wiley, New York (2009)

    MATH  Google Scholar 

  5. Fontana, R.: Counting vectors for orthogonal fractional factorial design generation. AIP Conf. Proc. 1368(1), 327–330 (2011)

    Article  Google Scholar 

  6. Fontana, R.: Algebraic generation of minimum size orthogonal fractional factorial designs: an approach based on integer linear programming. Comput. Stat. 28(1), 241–253 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Fontana, R.: Generalized minimum aberration mixed-level orthogonal arrays: A general approach based on sequential integer quadratically constrained quadratic programming. Commun. Stat. Theory Methods 46(9), 4275–4284 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fontana, R., Pistone, G., Rogantin, M.P.: Classification of two-level factorial fractions. J. Stat. Plann. Inference 87(1), 149–172 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fontana, R., Rapallo, F., Rogantin, M.P.: Aberration in qualitative multilevel designs. J. Stat. Plann. Inference 174, 1–10 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fries, A., Hunter, W.G.: Minimum aberration \(2^{k-p}\) designs. Technometrics 22(4), 601–608 (1980)

    MathSciNet  MATH  Google Scholar 

  11. Grömping, U., Xu, H.: Generalized resolution for orthogonal arrays. Ann. Stat. 42(3), 918–939 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Hedayat, A.S., Sloane, N.J.A., Stufken, J.: Orthogonal Arrays: Theory and Applications. Springer, New York (2012)

    MATH  Google Scholar 

  13. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra. Springer, New York (2006)

    MATH  Google Scholar 

  14. Mukerjee, R., Wu, C.F.J.: A Modern Theory of Factorial Design. Springer, New York (2007)

    Google Scholar 

  15. Pistone, G., Rogantin, M.P.: Indicator function and complex coding for mixed fractional factorial designs. J. Stat. Plann. Inference 138(3), 787–802 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  16. Xu, H., Wu, C.F.J.: Generalized minimum aberration for asymmetrical fractional factorial designs. Ann. Stat. 29(4), 1066–1077 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  17. 4ti2 team: 4ti2—a software package for algebraic, geometric and combinatorial problems on linear spaces. www.4ti2.de

Download references

Acknowledgements

Both authors are partially supported by a INdAM GNAMPA 2017 project. RF acknowledges that the present research has been partially supported by MIUR grant Dipartimenti di Eccellenza 2018-2022 (E11G18000350001)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabio Rapallo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fontana, R., Rapallo, F. (2019). Unions of Orthogonal Arrays and Their Aberrations via Hilbert Bases. In: Petrucci, A., Racioppi, F., Verde, R. (eds) New Statistical Developments in Data Science. SIS 2017. Springer Proceedings in Mathematics & Statistics, vol 288. Springer, Cham. https://doi.org/10.1007/978-3-030-21158-5_31

Download citation

Publish with us

Policies and ethics