Skip to main content

Constraint Satisfaction Through GBP-Guided Deliberate Bit Flipping

  • Conference paper
  • First Online:
Book cover Algebraic Informatics (CAI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11545))

Included in the following conference series:

Abstract

In this paper, we consider the problem of transmitting binary messages over data-dependent two-dimensional channels. We propose a deliberate bit flipping coding scheme that removes channel harmful configurations prior to transmission. In this method, user messages are encoded with an error correction code, and therefore the number of bit flips should be kept small not to overburden the decoder. We formulate the problem of minimizing the number of bit flips as a binary constraint satisfaction problem, and devise a generalized belief propagation guided method to find approximate solutions. Applied to a data-dependent binary channel with the set of 2-D isolated bit configurations as its harmful configurations, we evaluated the performance of our proposed method in terms of uncorrectable bit-error rate.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jordan, M.: Learning in Graphical Models. MIT Press, Cambridge (1999)

    Google Scholar 

  2. Kschischang, F., Frey, B., Loeliger, H.-A.: Factor graphs and the sum-product algorithm. IEEE Trans. Inf. Theory 47(2), 498–519 (2001)

    Article  MathSciNet  Google Scholar 

  3. Wainwright, M.J., Jordan, M.I.: Graphical models, exponential families, and variational inference. Found. Trends Mach. Learn. 1, 1–305 (2008)

    Article  Google Scholar 

  4. Pearl, J.: Probablisitic Reasoning in Intelligent Systems. Kaufmann, San Francisco (1988)

    Google Scholar 

  5. Gallager, R.G.: Low density parity check codes. Ph.D. dissertation, Cambridge (1963)

    Book  Google Scholar 

  6. Frey, B.J.: Graphical Models for Machine Learning and Digital Communication. MIT Press, Cambridge (1998)

    Book  Google Scholar 

  7. Yedidia, J.S., Freeman, W.T., Weiss, Y.: Constructing free energy approximations and generalized belief propagation algorithms. IEEE Trans. Inform. Theory 51, 2282–2312 (2005)

    Article  MathSciNet  Google Scholar 

  8. Kikuchi, R.: A theory of cooperative phenomena. Phys. Rev. Online Arch. (PROLA) 81(6), 988 (1951)

    MathSciNet  MATH  Google Scholar 

  9. Morita, T.: Foundations and applications of cluster variation method and path probability method. Publication Office, Progress of Theoretical Physics (1994)

    Google Scholar 

  10. Shamai, S., Ozarow, L.H., Wyner, A.D.: Information rates for a discrete-time gaussian channel with intersymbol interference and stationary inputs. IEEE Trans. Inf. Theory 37(6), 1527–1539 (1991)

    Article  MathSciNet  Google Scholar 

  11. Sabato, G., Molkaraie, M.: Generalized belief propagation for the noiseless capacity and information rates of run-length limited constraints. IEEE Trans. Commun. 60(3), 669–675 (2012)

    Article  Google Scholar 

  12. Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27, 379–423 (1948)

    Article  MathSciNet  Google Scholar 

  13. Wood, R., Williams, M., Kavcic, A., Miles, J.: The feasibility of magnetic recording at 10 terabits per square inch on conventional media. IEEE Trans. Magn. 45(2), 917–923 (2009)

    Article  Google Scholar 

  14. Garani, S.S., Dolecek, L., Barry, J., Sala, F., Vasić, B.: Signal processing and coding techniques for 2-D magnetic recording: an overview. Proc. IEEE 106(2), 286–318 (2018)

    Article  Google Scholar 

  15. Immink, K.A.S.: A survey of codes for optical disk recording. IEEE J. Sel. Areas Commun. 19(4), 756–764 (2001)

    Article  Google Scholar 

  16. Dolecek, L., Cassuto, Y.: Channel coding for nonvolatile memory technologies: theoretical advances and practical considerations. Proc. IEEE 105(9), 1705–1724 (2017)

    Article  Google Scholar 

  17. Halevy, S., Chen, J., Roth, R.M., Siegel, P.H., Wolf, J.K.: Improved bit-stuffing bounds on two-dimensional constraints. IEEE Trans. Inf. Theory 50(5), 824–838 (2004)

    Article  MathSciNet  Google Scholar 

  18. Roth, R.M., Siegel, P.H., Wolf, J.K.: Efficient coding schemes for the hard-square model. IEEE Trans. Inf. Theory 47(3), 1166–1176 (2001)

    Article  MathSciNet  Google Scholar 

  19. Forchhammer, S., Laursen, T.V.: Entropy of bit-stuffing-induced measures for two-dimensional checkerboard constraints. IEEE Trans. Inf. Theory 53(4), 1537–1546 (2007)

    Article  MathSciNet  Google Scholar 

  20. Tal, I., Roth, R.M.: Bounds on the rate of 2-D bit-stuffing encoders. IEEE Trans. Inf. Theory 56(6), 2561–2567 (2010)

    Article  MathSciNet  Google Scholar 

  21. Sharov, A., Roth, R.M.: Two dimensional constrained coding based on tiling. IEEE Trans. Inf. Theory 56(4), 1800–1807 (2010)

    Article  MathSciNet  Google Scholar 

  22. Krishnan, A.R., Vasić, B.: Lozenge tiling constrained codes. Facta Univ. Ser. Electron. Energ. 4, 1–9 (2014)

    Google Scholar 

  23. Mushkin, M., Bar-David, I.: Capacity and coding for the Gilbert-Elliott channels. IEEE Trans. Inf. Theory 35(6), 1277–1290 (1989)

    Article  Google Scholar 

  24. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and reversals. Soviet Phys. Dokl. 10(8), 707–710 (1966)

    MathSciNet  Google Scholar 

  25. Pakzad, P., Anantharam, V.: Kikuchi approximation method for joint decoding of LDPC codes and partial-response channels. IEEE Trans. Commun. 54(7), 1149–1153 (2006)

    Article  Google Scholar 

  26. Bahrami, M., Vasić, B.: A deliberate bit flipping coding scheme for data-dependent two-dimensional channels. IEEE Trans. Commun. (2019, under review)

    Google Scholar 

Download references

Acknowledgment

This work is funded by the NSF under grants ECCS-1500170 and SaTC-1813401. A comprehensive version of this paper has been submitted to IEEE Transactions on Communications [26].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bane Vasić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bahrami, M., Vasić, B. (2019). Constraint Satisfaction Through GBP-Guided Deliberate Bit Flipping. In: Ćirić, M., Droste, M., Pin, JÉ. (eds) Algebraic Informatics. CAI 2019. Lecture Notes in Computer Science(), vol 11545. Springer, Cham. https://doi.org/10.1007/978-3-030-21363-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-21363-3_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-21362-6

  • Online ISBN: 978-3-030-21363-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics