Skip to main content

Garnet Crystal Growth in Non-precious Metal Crucibles

  • Conference paper
  • First Online:
Engineering of Scintillation Materials and Radiation Technologies (ISMART 2018)

Abstract

The work is motivated by the need for cheap garnet-based scintillators for new high energy physics experiments at colliders and medical equipment. During recent years, garnets became among the most studied scintillators due to a drastic enhancement of light yield achieved in (Lu,Y,Gd)3(Al,Ga)5O12:Ce multicomponent systems. Meanwhile, the production process of YAG- and LuAG-based crystals is easier and less expensive compared to the multicomponent garnets. This work addresses the preparation process and the optical and scintillation properties of YAG, YAG:Ce crystals grown in non-precious metal crucibles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. S. Kurosawa, Y. Shoji, Yu. Yokota, K. Kamada V. Chani, A. Yoshikawa, Czochralski growth of Gd3(Al5−xGax)O12 (GAGG) single crystals and their scintillation properties. J. Cryst. Growth 393, 134–137 (2014)

    Google Scholar 

  2. O. Philip, G. Gunow, I. Sjestakova, M. Berheide, E. Durner, Ch. Stoller, N. Cherepy, Scintillation properties of single-crystal and ceramic GGAG(Ce) and ceramic GYGAG(Ce) at temperatures up to 200 °C, in 2015 IEEE Nuclear Science Symposium and Medical Imaging Conference (NSS/MIC), San Diego, CA (2015), pp. 1–7

    Google Scholar 

  3. O. Sidletskiy, Trends in search for bright mixed scintillators. Phys. Status Solidi A 215, 1701034 (2018)

    Article  ADS  Google Scholar 

  4. P. Dorenbos, Directions in scintillation materials research. Nucl. Instrum. Methods Phys. Res. A 486, 191–207 (2002)

    Article  Google Scholar 

  5. E. Villora, S. Arjoca, Single-crystal phosphors for high-brightness white lighting. J. Jpn. Assoc. Cryst. Growth 42, 119–129 (2015)

    Google Scholar 

  6. M. Fasoli, A. Vedda, M. Nikl, C. Jiang, B.P. Uberuaga, D.A. Andersson, K.J. McClellan, C.R. Stanek, Band-gap engineering for removing shallow traps in rare-earth Lu3Al5O12 garnet scintillators using Ga3+ doping. Phys. Rev. B 84, 081102 (2011)

    Article  ADS  Google Scholar 

  7. A. Yoshikawa, Luminescent Detectors and Transformers of Ionizing Radiation, Book of Abstracts (Czech Technical University in Prague, 2018), p. 280

    Google Scholar 

  8. S. Nizhankovsky, A. Danko, V. Puzikov, Yu. Savvin, A. Trushkovsky, S. Krivonosov, Optical and luminescence characteristics of YAG:Ce crystals grown by horizontal directed crystallization in reducing gas medium. Funct. Mater. 15, 546–549 (2008)

    Google Scholar 

  9. M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute light output of scintillators. IEEE Trans. Nucl. Sci. 44, 1052–1061 (1997)

    Article  ADS  Google Scholar 

  10. J. Houžvička, K. Bartoš, Method for the preparation of doped garnet structure single crystals with diameters of up to 500 mm. (CRYTUR, SPOL, SRO), Patent U.S. 9,499,923 B2 (2016)

    Google Scholar 

  11. A. Petrosyan, Crystal growth of laser oxides in the vertical Bridgman configuration. J. Cryst. Growth 139, 372–392 (1994)

    Article  ADS  Google Scholar 

  12. S. Nizhankovsky, A. Danko V.M. Puzikov, Yu.N. Savvin, A.G. Trushkovsky, S.I. Krivonogov, Optical and luminescence characteristics of YAG:Ce crystals grown by horizontal directed crystallization in reducing gas medium. Funct. Mater. 15, 546–549 (2008)

    Google Scholar 

  13. E. Wiberg, A.F. Holleman, Inorganic Chemistry (Elsevier Science, Amsterdam, 2001), p. 1884

    Google Scholar 

  14. E.K. Storms, System Mo-C. Partial composite diagram for C? 58 at.%, in Special Report to the Phase Equilibria Program, American Ceramic Society, Westerville, Ohio (1989)

    Google Scholar 

  15. E. Rudy, J.R. Hoffman, System W-C. (A) T-X diagram; (B) detail around the W2C composition, Planseeber. Pulvermet. 15, 174–178 (1967)

    Google Scholar 

  16. P. Arhipov, S. Tkachenko, S. Vasiukov, K. Hubenko, Ia. Gerasymov, V. Baumer, A. Puzan, P. Mateychenko, K. Lebbou, O. Sidletskiy, Features of YAG crystal growth under Ar + CO reducing atmosphere. J. Cryst. Growth 449, 104–107 (2016)

    Article  ADS  Google Scholar 

  17. S. Nizhankovsky, E. Krivonosov, V. Baranov, A. Budnikov, V. Kanishchev, L. Grin, G. Adonkin, Optical homogeneity of Ti:sapphire crystals grown by horizontal directional solidification. Inorg. Mater. 48, 1111–1114 (2012)

    Article  Google Scholar 

  18. S. Tkachenko P. Arhipov, I. Gerasymov, D. Kurtsev, S. Vasyukov, V. Nesterkina, N. Shiran, P. Mateichenko, O. Sidletskiy, Control of optical properties of YAG crystals by thermal annealing. J. Cryst. Growth. 483, 195–199 (2018)

    Article  ADS  Google Scholar 

  19. M. Kulkarni, K. Muthe, N. Rawat, D. Mishra, M. Kakade, S. Ramanathan, S. Gupta, D. Chatt, J. Yakmi, D. Sharma, Carbon doped yttrium aluminum garnet (YAG:C)—a new phosphor for radiation dosimetry. Radiat. Meas. 43, 492–496 (2008)

    Article  Google Scholar 

  20. X. Yang, J. Xu, The optically stimulated luminescence of carbon doped Y3Al5O12 (YAG) crystal. J. Phys. D Appl. Phys. 42(14), 145411 (2009)

    Article  ADS  Google Scholar 

  21. Ya. Zhydachevskyy, I. Kamińska, M. Glowacki, A. Kilian, S. Ubizskii, P. Bilski, M. Berkowski, K. Fronc, D. Elbaum, A. Suchocki, Photoluminescence and thermoluminescence of the oxygen-deficient YAG, YAP, and YAM phosphors. Acta Physica Polonica A. 133, 977–980 (2018)

    Article  Google Scholar 

  22. D. Kurtsev, O. Sidletskiy, S. Neicheva, V. Bondar, O. Zelenskaya, V. Tarasov, M. Biatov, A. Gektin, LGSO:Ce scintillation crystal optimization by thermal treatment. Mater. Res. Bull. 52, 25–29 (2014)

    Article  Google Scholar 

  23. O. Sidletskiy, P. Arhipov, S. Tkachenko, O. Zelenskaya, S. Vasyukov, F. Moretti, C. Dujardin, Drastic scintillation yield enhancement of YAG:Ce with carbon doping. Phys. Status Solidi A 215, 1800122 (2018)

    Article  ADS  Google Scholar 

  24. P. Arhipov, S. Tkachenko, Ia. Gerasymov, O. Sidletskiy, K. Hubenko, S. Vasyukov, N. Shiran, V. Baumer, P. Mateychenko, A. Fedorchenko, Yu. Zorenko, Y. Zhydachevskii, K. Lebbou, M. Korjik, Growth and characterization of large CeAlO3 perovskite crystals. J. Cryst. Growth 430, 116–121, (2015)

    Article  Google Scholar 

  25. M. Nikl, V. Babin, J.A. Mares, K. Kamada, S. Kurosawa, A. Yoshikawa, J. Tous, J. Houzvicka, K. Blazek, The role of cerium variable charge state in the luminescence and scintillation mechanism in complex oxide scintillators: the effect of air annealing. J. Lumin. 169, 539–543 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

The work was performed in the frame of Crystal Clear Collaboration and is supported by the Marie Skłodowska-Curie Research, Innovation Staff Exchange Project H2020-MSCA-RISE-2014 No. 644260 “INTELUM”. Authors are grateful to COST Action TD1401 “Fast Advanced Scintillator Timing (FAST)” for support of collaboration. Partial support of bilateral mobility project “Scintillation mechanisms in garnet- and perovskite-type crystals fabricated under different conditions” between Academies of Sciences of Ukraine and Czech Republic, and Czech Science Foundation No. 16-15569S project is also acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Sidletskiy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Sidletskiy, O. et al. (2019). Garnet Crystal Growth in Non-precious Metal Crucibles. In: Korzhik, M., Gektin, A. (eds) Engineering of Scintillation Materials and Radiation Technologies. ISMART 2018. Springer Proceedings in Physics, vol 227. Springer, Cham. https://doi.org/10.1007/978-3-030-21970-3_7

Download citation

Publish with us

Policies and ethics