Skip to main content

Engineering Human Gait and the Potential Role of Wearable Sensors to Monitor Falls

  • Chapter
  • First Online:
Falls and Cognition in Older Persons

Abstract

Falls and falls related injuries are the major causes of non-fatal injuries in older adults. With recent advances in mathematics, science and technology, many scientists and engineers are devoting their efforts to prevent falls or to diminish the negative health outcomes after falls. In this chapter, we briefly review major engineering approaches to recover or augment the human gait function pre- and post-falls. Given the proliferation of wearable sensors and the availability of computational resources in the last decade, we focused on the role of wearable sensors to monitor gait instabilities and potentially prevent falls. We reviewed the general framework for gait monitoring using wearables and its utility in real-life settings such as homes or retirement communities. In the last part of the chapter, we focused on recent contributions that have proposed wearable sensors for gait monitoring and fall inferences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    www.gaitup.com

  2. 2.

    www.kinesis.ie

  3. 3.

    These data will be stored as metadata describing and giving information about the IMU sensor data.

  4. 4.

    Usually, the fall will be predefined by a protocol. Development work will involve static falls, that is, fall from a standing position with variations in how the volunteer falls. Additionally, protocols may ask the volunteer to simulate a trip, near fall or fall during a walking task or fall when arising from a chair to mimic a real-world, free-living fall event.

  5. 5.

    Berg Balance Scale

  6. 6.

    http://farseeingresearch.eu/the-farseeing-real-world-fall-repository-a-large-scale-collaborative-database-to-collect-and-share-sensor-signals-from-real-world-falls

  7. 7.

    https://cordis.europa.eu/project/rcn/101785_en.html

  8. 8.

    ProFaNE: www.profane.eu.org

  9. 9.

    E.G. https://activeprotective.com/

  10. 10.

    For gait and falls but extends to all aspects of wearable measurement

References

  1. Montero-Odasso M, Speechley M. Falls in cognitively impaired older adults: Implications for risk assessment and prevention. J Am Geriatr Soc, in print.

    Google Scholar 

  2. World Health Organization. Falls. 2018. [Online]. Available: http://www.who.int/mediacentre/factsheets/fs344/en/.

  3. Sakurai R, Fujiwara Y, Yasunaga M, Suzuki H, Sakuma N, Imanaka K, Montero-Odasso M. Older adults with fear of falling show deficits in motor imagery of gait. J Nutr Health Aging. 2017;21(6):721–6.

    Article  CAS  PubMed  Google Scholar 

  4. Godfrey A, Conway R, Meagher D, OLaighin G. Direct measurement of human movement by accelerometry. Med Eng Phys. 2008;30(10):1364–86.

    Article  CAS  PubMed  Google Scholar 

  5. Ambrose AF, Paul G, Hausdorff JM. Risk factors for falls among older adults: a review of the literature. Maturitas. 2013;75(1):51–61.

    PubMed  Google Scholar 

  6. Rice LA, Ousley C, Sosnoff JJ. A systematic review of risk factors associated with accidental falls, outcome measures and interventions to manage fall risk in non-ambulatory adults. Disabil Rehabil. 2015;37(19):1697–705.

    Article  PubMed  Google Scholar 

  7. Del Din S, Godfrey A, Mazza C, Lord S, Rochester L. Free-living monitoring of Parkinson’s disease: lessons from the field. Mov Disord. 2016;31(9):1293–313.

    Article  PubMed  Google Scholar 

  8. Inouye SK, Studenski S, Tinetti ME, Kuchel GA. Geriatric syndromes: clinical, research and policy implications of a core geriatric concept. J Am Geriatr Soc. 2007;55(5):780–91.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Thurston AJ. Pare and prosthetics: the early history of artificial limbs. ANZ J Surg. 2007;77(12):1114–9.

    Article  PubMed  Google Scholar 

  10. Finch JL, Heath GH, David AR, Kulkarni J. Biomechanical assessment of two artificial big toe restorations from ancient Egypt and their significance to the history of prosthetics. J Prosthet Orthot. 2012;24(4):181–91.

    Article  Google Scholar 

  11. Gerzeli S, Torbica A, Fattore G. Cost utility analysis of knee prosthesis with complete microprocessor control (c-leg) compared with mechanical technology in trans-femoral amputees. Eur J Health Econ. 2009;10(1):47–55.

    Article  PubMed  Google Scholar 

  12. Highsmith MJ, Kahle JT, Bongiorni DR, Sutton BS, Groer S, Kaufman KR. Safety, energy efficiency, and cost efficacy of the c-leg for transfemoral amputees: a review of the literature. Prosthetics Orthot Int. 2010;34(4):362–77.

    Article  Google Scholar 

  13. Richards J, Payne K, Myatt D, Chohan A. Do orthotic walkers affect knee and hip function during gait? Prosthetics Orthot Int. 2016;40(1):137–41.

    Article  Google Scholar 

  14. Choi H-J, Ko C-Y, Kang S, Ryu J, Mun M, Jeon H-S. Effects of balance ability and handgrip height on kinematics of the gait, torso, and pelvis in elderly women using a four-wheeled walker. Geriatr Gerontol Int. 2015;15(2):182–8.. https://doi.org/10.1111/ggi.12246

    Article  PubMed  Google Scholar 

  15. Schülein S, Barth J, Rampp A, Rupprecht R, Eskofier BM, Winkler J, Gaßmann K-G, Klucken J. Instrumented gait analysis: a measure of gait improvement by a wheeled walker in hospitalized geriatric patients. J NeuroEng Rehabil. 2017;14(1):18.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Lim CD, Wang C-M, Cheng C-Y, Chao Y, Tseng S-H, Fu L-C. Sensory cues guided rehabilitation robotic walker realized by depth image-based gait analysis. IEEE Trans Autom Sci Eng. 2016;13(1):171–80.

    Article  Google Scholar 

  17. Tan AM, Fuss FK, Weizman Y, Woudstra Y, Troynikov O. Design of low cost smart insole for real time measurement of plantar pressure. Procedia Technol. 2015;20:117–22.

    Article  Google Scholar 

  18. Wu Y, Xu W, Liu JJ, Huang M-C, Luan S, Lee Y. An energy-efficient adaptive sensing framework for gait monitoring using smart insole. IEEE Sensors J. 2015;15:2335.

    Article  Google Scholar 

  19. Lin F, Wang A, Zhuang Y, Tomita MR, Xu W. Smart insole: a wearable sensor device for unobtrusive gait monitoring in daily life. IEEE Trans Ind Inform. 2016;12(6):2281–91.

    Article  Google Scholar 

  20. Zoss AB, Kazerooni H, Chu A. Biomechanical design of the Berkeley lower extremity exoskeleton (BLEEX). IEEE/ASME Trans Mechatron. 2006;11(2):128–38.

    Article  Google Scholar 

  21. Veneman JF, Kruidhof R, Hekman EEG, Ekkelenkamp R, Asseldonk EHFV, van der Kooij H. Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Trans Neural Syst Rehabil Eng. 2007;15(3):379–86.

    Article  PubMed  Google Scholar 

  22. Bortole M, Venkatakrishnan A, Zhu F, Moreno JC, Francisco GE, Pons JL, Contreras-Vidal JL. The H2 robotic exoskeleton for gait rehabilitation after stroke: early findings from a clinical study. J NeuroEng Rehabil. 2015;12(1):54.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Belda-Lois J-M, Mena-del Horno S, Bermejo-Bosch I, Moreno JC, Pons JL, Farina D, Iosa M, Molinari M, Tamburella F, Ramos A, Caria A, Solis-Escalante T, Brunner C, Rea M. Rehabilitation of gait after stroke: a review towards a top-down approach. J NeuroEng Rehabil. 2011;8(1):66.

    Article  PubMed  PubMed Central  Google Scholar 

  24. del Ama AJ, Gil-Agudo Á, Pons JL, Moreno JC. Hybrid FES-robot cooperative control of ambulatory gait rehabilitation exoskeleton. J NeuroEng Rehabil. 2014;11(1):27.

    Article  Google Scholar 

  25. Ambrosio F, Wolf SL, Delitto A, Fitzgerald GK, Badylak SF, Boninger ML, Russell AJ. The emerging relationship between regenerative medicine and physical therapeutics. Phys Ther. 2010;90(12):1807–14. https://doi.org/10.2522/ptj.20100030.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Willett NJ, Li M-TA, Uhrig BA, Boerckel JD, Huebsch N, Lundgren TS, Warren GL, Guldberg RE. Attenuated human bone morphogenetic protein-2-mediated bone regeneration in a rat model of composite bone and muscle injury. Tissue Eng Part C Methods. 2013;19(4):316–25.

    Article  CAS  PubMed  Google Scholar 

  27. Sejdic E, Millecamps A, Teoli J, Rothfuss MA, Franconi NG, Perera S, Jones AK, Brach JS, Mickle MH. Assessing interactions among multiple physiological systems during walking outside a laboratory: an android based gait monitor. Comput Methods Prog Biomed. 2015;122(3):450–61.

    Article  CAS  Google Scholar 

  28. Godfrey A. Wearables for independent living in older adults: gait and falls. Maturitas. 2017;100:16–26.

    Article  CAS  PubMed  Google Scholar 

  29. Tedesco S, Barton J, O’Flynn B. A review of activity trackers for senior citizens: Research perspectives, commercial landscape and the role of the insurance industry. Sensors. 2017;17(6).

    Google Scholar 

  30. Nyan MN, Tay FEH, Murugasu E. A wearable system for pre-impact fall detection. J Biomech. 2008;41(16):3475–81.

    Article  CAS  PubMed  Google Scholar 

  31. Paoli R, Fernandez-Luque FJ, Domenech G, Martinez F, Zapata J, Ruiz R. A system for ubiquitous fall monitoring at home via a wireless sensor network and a wearable mote. Expert Syst Appl. 2012;39(5):5566–75.

    Article  Google Scholar 

  32. Aziz O, Musngi M, Park EJ, Mori G, Robinovitch SN. A comparison of accuracy of fall detection algorithms (threshold-based vs. machine learning) using waist-mounted tri-axial accelerometer signals from a comprehensive set of falls and non-fall trials. Med Biol Eng Comput. 2017;55(1):45–55.

    Article  PubMed  Google Scholar 

  33. Tamura T, Yoshimura T, Sekine M, Uchida M, Tanaka O. A wearable airbag to prevent fall injuries. IEEE Trans Inf Technol Biomed. 2009;13(6):910–4.

    Article  PubMed  Google Scholar 

  34. Aziz O, Robinovitch SN. An analysis of the accuracy of wearable sensors for classifying the causes of falls in humans. IEEE Trans Neural Syst Rehabil Eng. 2011;19(6):670–6.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Aziz O, Park EJ, Mori G, Robinovitch SN. Distinguishing the causes of falls in humans using an array of wearable tri-axial accelerometers. Gait Posture. 2014;39(1):506–12.

    Article  PubMed  Google Scholar 

  36. Ozdemir AT, Barshan B. Detecting falls with wearable sensors using machine learning techniques. Sensors. 2014;14(6):10691–708.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Pierleoni P, Belli A, Palma L, Pellegrini M, Pernini L, Valenti S. A high reliability wearable device for elderly fall detection. IEEE Sensors J. 2015;15(8):4544–53.

    Article  CAS  Google Scholar 

  38. Mohler M, Wendel C, Taylor-Piliae R, Toosizadeh N, Najafi B. Motor performance and physical activity as predictors of prospective falls in community-dwelling older adults by frailty level: application of wearable technology. Gerontology. 2016;62(6):654–64.

    Article  PubMed  Google Scholar 

  39. Khan SS, Taati B. Detecting unseen falls from wearable devices using channel-wise ensemble of autoencoders. Expert Syst Appl. 2017;87:280–90.

    Article  Google Scholar 

  40. Gia TN, Sarker VK, Tcarenko I, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H. Energy efficient wearable sensor node for IoT-based fall detection systems. Microprocess Microsyst. 2018;56:34–46.

    Article  Google Scholar 

  41. Bianchi F, Redmond SJ, Narayanan MR, Cerutti S, Lovell NH. Barometric pressure and triaxial accelerometry-based falls event detection. IEEE Trans Neural Syst Rehabil Eng. 2010;18(6):619–27.

    Article  PubMed  Google Scholar 

  42. Casilari E, Oviedo-Jimenez MA. Automatic fall detection system based on the combined use of a smartphone and a smartwatch. PLoS One. 2015;10(11):1–11.

    Article  CAS  Google Scholar 

  43. Ozcan K, Velipasalar S. Wearable camera- and accelerometer-based fall detection on portable devices. IEEE Embed Syst Lett. 2016;8(1):6–9.

    Article  Google Scholar 

  44. Patel S, Park H, Bonato P, Chan L, Rodgers M. A review of wearable sensors and systems with application in rehabilitation. J NeuroEng Rehabil. 2012;9(1):21.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Paradiso R, Loriga G, Taccini N. A wearable health care system based on knitted integrated sensors. IEEE Trans Inf Technol Biomed. 2005;9(3):337–44.

    Article  PubMed  Google Scholar 

  46. Sejdic E, Lowry KA, Bellanca J, Redfern MS, Brach JS. A comprehensive assessment of gait accelerometry signals in time, frequency and time-frequency domains. IEEE Trans Neural Syst Rehabil Eng. 2014;22(3):603–12.

    Article  PubMed  Google Scholar 

  47. Millecamps A, Lowry KA, Brach JS, Perera S, Redfern MS, Sejdic E. Understanding the effects of pre-processing on extracted signal features from gait accelerometry signals. Comput Biol Med. 2015;62:164–74.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Lowe SA, OLaighin G. Monitoring human health behaviour in one’s living environment: a technological review. Med Eng Phys. 2014;36(2):147–68.

    Article  PubMed  Google Scholar 

  49. Godfrey A, Lara J, Del Din S, Hickey A, Munro CA, Wiuff C, Chowdhury SA, Mathers JC, Rochester L. Icap: instrumented assessment of physical capability. Maturitas. 2015;82(1):116–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Lucivero F, Prainsack B. The lifestylisation of healthcare? ‘Consumer genomics’ and mobile health as technologies for healthy lifestyle. Appl Trans Genom. 2015;4:44–9.

    Google Scholar 

  51. Kekade S, Hseieh C-H, Islam MM, Atique S, Mohammed Khalfan A, Li Y-C, Abdul SS. The usefulness and actual use of wearable devices among the elderly population. Comput Methods Prog Biomed. 2018;153:137–59.

    Article  Google Scholar 

  52. Hu B, Dixon PC, Jacobs JV, Dennerlein JT, Schiffman JM. Machine learning algorithms based on signals from a single wearable inertial sensor can detect surface- and age-related differences in walking. J Biomech. 2018;71:37.

    Article  CAS  PubMed  Google Scholar 

  53. Crenshaw JR, Bernhardt KA, Achenbach SJ, Atkinson EJ, Khosla S, Kaufman KR, Amin S. The circumstances, orientations, and impact locations of falls in community-dwelling older women. Arch Gerontol Geriatr. 2017;73:240–7.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Lapierre N, Neubauer N, Miguel-Cruz A, Rios Rincon A, Liu L, Rousseau J. The state of knowledge on technologies and their use for fall detection: a scoping review. Int J Med Inform. 2018;111:58–71.

    Article  CAS  PubMed  Google Scholar 

  55. Bourke AK, O’Brien JV, Lyons GM. Evaluation of a threshold-based tri-axial accelerometer fall detection algorithm. Gait Posture. 2007;26(2):194–9.

    Article  CAS  PubMed  Google Scholar 

  56. Kangas M, Konttila A, Winblad I, Jamsa T. “Determination of simple thresholds for accelerometry-based parameters for fall detection,” 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBS 2007); 2007. p. 1367–70.

    Google Scholar 

  57. Bourke AK, Lyons GM. A threshold-based fall-detection algorithm using a bi-axial gyroscope sensor. Med Eng Phys. 2008;30(1):84–90.

    Article  CAS  PubMed  Google Scholar 

  58. Wang CC, Chiang CY, Lin PY, Chou YC, Kuo IT, Huang CN, Chan CT. Development of a fall detecting system for the elderly residents. In: 2008 2nd International Conference on Bioinformatics and Biomedical Engineering: Conference Proceedings; 2008. p. 1359–62.

    Google Scholar 

  59. Li Q, Stankovic JA, Hanson MA, Barth AT, Lach J, Zhou G. Accurate, fast fall detection using gyroscopes and accelerometer-derived posture information. In: 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks: Conference Proceedings; 2009. p. 138–43.

    Google Scholar 

  60. Khan SS, Karg ME, Kulic D, Hoey J. Detecting falls with X-factor hidden Markov models. Appl Soft Comput. 2017;55:168–77.

    Article  Google Scholar 

  61. Quinn JA, Williams CKI, McIntosh N. Factorial switching linear dynamical systems applied to physiological condition monitoring. IEEE Trans Pattern Anal Mach Intell. 2009;31(9):1537–51.

    Article  PubMed  Google Scholar 

  62. Hakim A, Huq MS, Shanta S, Ibrahim BSKK. Smartphone based data mining for fall detection: analysis and design. Procedia Comput Sci. 2017;105:46–51.

    Article  Google Scholar 

  63. Noury N, Fleury A, Rumeau P, Bourke AK, Laighin GO, Rialle V, Lundy JE. Fall detection - principles and methods. In: 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society: Conference Proceedings; 2007. p. 1663–6.

    Google Scholar 

  64. Lord S, Galna B, Verghese J, Coleman S, Burn D, Rochester L. Independent domains of gait in older adults and associated motor and nonmotor attributes: validation of a factor analysis approach. J Gerontol Series A. 2013;68(7):820–7.

    Article  Google Scholar 

  65. Verghese J, Robbins M, Holtzer R, Zimmerman M, Wang C, Xue X, Lipton RB. Gait dysfunction in mild cognitive impairment syndromes. J Am Geriatr Soc. 2008;56(7):1244–51.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Verghese J, Wang C, Lipton RB, Holtzer R, Xue X. Quantitative gait dysfunction and risk of cognitive decline and dementia. J Neurol Neurosurg Psychiatry. 2007;78(9):929–35.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Godfrey A, Bourke A, Din SD, Morris R, Hickey A, Helbostad JL, Rochester L. Towards holistic free-living assessment in Parkinson’s disease: Unification of gait and fall algorithms with a single accelerometer. In: Proceeding of the 38th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). Orlando, FL, USA; 2016. p. 651–4.

    Google Scholar 

  68. King RC, Villeneuve E, White RJ, Sherratt RS, Holderbaum W, Harwin WS. Application of data fusion techniques and technologies for wearable health monitoring. Med Eng Phys. 2017;42:1–12.

    Article  PubMed  Google Scholar 

  69. Del Din S, Godfrey A, Galna B, Lord S, Rochester L. Free-living gait characteristics in ageing and Parkinson’s disease: impact of environment and ambulatory bout length. J NeuroEng Rehabil. 2016;13(1):46.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Howcroft J, Kofman J, Lemaire ED. Prospective fall-risk prediction models for older adults based on wearable sensors. IEEE Trans Neural Syst Rehabil Eng. 2017;25(10):1812–20.

    Article  PubMed  Google Scholar 

  71. Weiss A, Brozgol M, Dorfman M, Herman T, Shema S, Giladi N, Hausdorff JM. Does the evaluation of gait quality during daily life provide insight into fall risk? A novel approach using 3-day accelerometer recordings. Neurorehabil Neural Repair. 2013;27(8):742–52.

    Article  PubMed  Google Scholar 

  72. van Schooten KS, Pijnappels M, Rispens SM, Elders PJ, Lips P, van Dieen JH. Ambulatory fall-risk assessment: amount and quality of daily-life gait predict falls in older adults. J Gerontol A Biol Sci Med Sci. 2015;70(5):608–15.

    Article  PubMed  CAS  Google Scholar 

  73. Mancini M, Salarian A, Carlson-Kuhta P, Zampieri C, King L, Chiari L, Horak FB. Isway: a sensitive, valid and reliable measure of postural control. J Neuroeng Rehabil. 2012;9:59.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Rine RM, Schubert MC, Whitney SL, Roberts D, Redfern MS, Musolino MC, Roche JL, Steed DP, Corbin B, Lin CC, Marchetti GF, Beaumont J, Carey JP, Shepard NP, Jacobson GP, Wrisley DM, Hoffman HJ, Furman G, Slotkin J. Vestibular function assessment using the NIH toolbox. Neurology. 2013;80(11 Suppl 3):S25–31.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shahzad A, Ko S, Lee S, Lee JA, Kim K. Quantitative assessment of balance impairment for fall-risk estimation using wearable triaxial accelerometer. IEEE Sensors J. 2017;17(20):6743–51.

    Article  Google Scholar 

  76. Mahoney JR, Oh-Park M, Ayers E, Verghese J. Quantitative trunk sway and prediction of incident falls in older adults. Gait Posture. 2017;58:183–7.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Peebles AT, Bruetsch AP, Lynch SG, Huisinga JM. Dynamic balance in persons with multiple sclerosis who have a falls history is altered compared to non-fallers and to healthy controls. J Biomech. 2017;63:158–63.

    Article  PubMed  Google Scholar 

  78. Lord S, Galna B, Rochester L. Moving forward on gait measurement: toward a more refined approach. Mov Disord. 2013;28(11):1534–43.

    Article  PubMed  Google Scholar 

  79. Gillespie LD, Robertson MC, Gillespie WJ, Sherrington C, Gates S, Clemson LM, Lamb SE. Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev. 2012;9(11).

    Google Scholar 

  80. Pang I, Okubo Y, Sturnieks D, Lord SR, Brodie MA. Detection of near falls using wearable devices: a systematic review. J Geriatr Phys Ther. 2018, in press.

    Google Scholar 

  81. Kubota KJ, Chen JA, Little MA. Machine learning for large-scale wearable sensor data in Parkinson’s disease: concepts, promises, pitfalls, and futures. Mov Disord. 2016;31(9):1314–26.

    Article  PubMed  Google Scholar 

  82. Espay AJ, Bonato P, Nahab FB, Maetzler W, Dean JM, Klucken J, Eskofier BM, Merola A, Horak F, Lang AE, Reilmann R, Giuffrida J, Nieuwboer A, Horne M, Little MA, Litvan I, Simuni T, Dorsey ER, Burack MA, Kubota K, Kamondi A, Godinho C, Daneault J-F, Mitsi G, Krinke L, Hausdorff JM, Bloem BR, Papapetropoulos S, T. on behalf of the Movement Disorders Society Task Force on. Technology in Parkinson’s disease: Challenges and opportunities. Mov Disord. 2016;31(9):1272–82.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Sanchez-Ferro A, Elshehabi M, Godinho C, Salkovic D, Hobert MA, Domingos J, van Uem JMT, Ferreira JJ, Maetzler W. New methods for the assessment of Parkinson’s disease (2005 to 2015): a systematic review. Mov Disord. 2016;31(9):1283–92.

    Article  PubMed  Google Scholar 

  84. Godinho C, Domingos J, Cunha G, Santos AT, Fernandes RM, Abreu D, Goncalves N, Matthews H, Isaacs T, Duffen J. A systematic review of the characteristics and validity of monitoring technologies to assess Parkinson’s disease. J Neuroeng Rehabil. 2016;13(1):24.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Fasano A, Canning CG, Hausdorff JM, Lord S, Rochester L. Falls in Parkinson’s disease: a complex and evolving picture. Mov Disord. 2017;32(11):1524–36.

    Article  PubMed  Google Scholar 

  86. Hunter H, Rochester L, Morris R, Lord S. Longitudinal falls data in Parkinson’s disease: feasibility of fall diaries and effect of attrition. Disabil Rehabil. 2017:1–6.

    Google Scholar 

  87. Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368–76.

    Article  CAS  PubMed  Google Scholar 

  88. Camps J, Sama A, Martin M, Rodriguez-Martin D, Perez-Lopez C, Arostegui JMM, Cabestany J, Catala A, Alcaine S, Mestre B, Prats A, Crespo-Maraver MC, Counihan TJ, Browne P, Quinlan LR, Laighin GO, Sweeney D, Lewy H, Vainstein G, Costa A, Annicchiarico R, Bayes A, Rodriguez-Molinero A. Deep learning for freezing of gait detection in Parkinson’s disease patients in their homes using a waist-worn inertial measurement unit. Knowl-Based Syst. 2018;139:119–31.

    Article  Google Scholar 

  89. LeMoyne R, Mastroianni T, Cozza M, Coroian C, Grundfest W. Implementation of an iPhone for characterizing Parkinson’s disease tremor through a wireless accelerometer application. In: Proceeding of the 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Buenos Aires, Argentina: IEEE, Conference Proceedings; 2010. p. 4954–8.

    Chapter  Google Scholar 

  90. Lin Z, Dai H, Xiong Y, Xia X, Horng SJ. Quantification assessment of bradykinesia in Parkinson’s disease based on a wearable device. In: 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC): Conference Proceedings; 2017. p. 803–6.

    Google Scholar 

  91. Cai G, Huang Y, Luo S, Lin Z, Dai H, Ye Q. Continuous quantitative monitoring of physical activity in Parkinson’s disease patients by using wearable devices: a case-control study. Neurol Sci. 2017;38(9):1657–63.

    Article  PubMed  Google Scholar 

  92. Dontje ML, de Greef MH, Speelman AD, van Nimwegen M, Krijnen WP, Stolk RP, Kamsma YP, Bloem BR, Munneke M, van der Schans CP. Quantifying daily physical activity and determinants in sedentary patients with Parkinson’s disease. Parkinsonism Relat Disord. 2013;19(10):878–82.

    Article  CAS  PubMed  Google Scholar 

  93. Curzon-Jones BT, Hollands MA. Route previewing results in altered gaze behaviour, increased self-confidence and improved stepping safety in both young and older adults during adaptive locomotion. Exp Brain Res. 2018:1–13.

    Google Scholar 

  94. Stuart S, Lord S, Hill E, Rochester L. Gait in Parkinson’s disease: a visuo-cognitive challenge. Neurosci Biobehav Rev. 2016;62:76–88.

    Article  PubMed  Google Scholar 

  95. Stuart S, Alcock L, Galna B, Lord S, Rochester L. The measurement of visual sampling during real-world activity in Parkinson’s disease and healthy controls: a structured literature review. J Neurosci Methods. 2014;222:175–88.

    Article  PubMed  Google Scholar 

  96. Schwickert L, Klenk J, Zijlstra W, Forst-Gill M, Sczuka K, Helbostad JL, Chiari L, Aminian K, Todd C, Becker C. Reading from the black box: what sensors tell us about resting and recovery after real-world falls. Gerontology. 2018;64(1):90–5.

    Article  PubMed  Google Scholar 

  97. Boulton E, Hawley-Hague H, Vereijken B, Clifford A, Guldemond N, Pfeiffer K, Hall A, Chesani F, Mellone S, Bourke A, Todd C. Developing the FARSEEING taxonomy of technologies: classification and description of technology use (including ICT) in falls prevention studies. J Biomed Inform. 2016;61:132–40.

    Article  PubMed  Google Scholar 

  98. Mirelman A, Rochester L, Reelick M, Nieuwhof F, Pelosin E, Abbruzzese G, Dockx K, Nieuwboer A, Hausdorff JM. V-TIME: a treadmill training program augmented by virtual reality to decrease fall risk in older adults: study design of a randomized controlled trial. BMC Neurol. 2013;13:15.

    Article  PubMed  PubMed Central  Google Scholar 

  99. Mirelman A, Rochester L, Maidan I, Del Din S, Alcock L, Nieuwhof F, Rikkert MO, Bloem BR, Pelosin E, Avanzino L, Abbruzzese G, Dockx K, Bekkers E, Giladi N, Nieuwboer A, Hausdorff JM. Addition of a non-immersive virtual reality component to treadmill training to reduce fall risk in older adults (V-TIME): a randomised controlled trial. Lancet. 2016;388(10050):1170–82.

    Article  PubMed  Google Scholar 

  100. Nguyen Gia T, Sarker VK, Tcarenko I, Rahmani AM, Westerlund T, Liljeberg P, Tenhunen H. Energy efficient wearable sensor node for IoT-based fall detection systems. Microprocess Microsyst. 2018;56:34–46.

    Article  Google Scholar 

  101. Rathi N, Kakani M, El-Sharkawy M, Rizkalla M. Wearable low power pre-fall detection system with IoT and bluetooth capabilities. In: 2017 IEEE National Aerospace and Electronics Conference (NAECON): Conference Proceedings; 2017. p. 241–4.

    Google Scholar 

  102. Buus-Frank M. Nurse versus machine: slaves or masters of technology? J Obstet Gynecol Neonatal Nurs. 1999;28(4):433–41.

    Article  CAS  PubMed  Google Scholar 

  103. Bellazzi R. Big data and biomedical informatics: a challenging opportunity. Yearb Med Inform. 2014;9:8–13.

    CAS  PubMed  PubMed Central  Google Scholar 

  104. Redmond SJ, Lovell NH, Yang GZ, Horsch A, Lukowicz P, Murrugarra L, Marschollek M. What does big data mean for wearable sensor systems?: contribution of the IMIA wearable sensors in healthcare WG. Yearb Med Inform. 2014;9(1):135–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  105. Palumbo P, Palmerini L, Bandinelli S, Chiari L. Fall risk assessment tools for elderly living in the community: Can we do better? PLoS One. 2015;10(12):e0146247.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Sun R, Sosnoff JJ. Novel sensing technology in fall risk assessment in older adults: a systematic review. BMC Geriatr. 2018;18(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  107. Khan SS, Hoey J. Review of fall detection techniques: a data availability perspective. Med Eng Phys. 2017;39:12–22.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ervin Sejdić .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sejdić, E., Godfrey, A., McIlroy, W., Montero-Odasso, M. (2020). Engineering Human Gait and the Potential Role of Wearable Sensors to Monitor Falls. In: Montero-Odasso, M., Camicioli, R. (eds) Falls and Cognition in Older Persons. Springer, Cham. https://doi.org/10.1007/978-3-030-24233-6_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-24233-6_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-24232-9

  • Online ISBN: 978-3-030-24233-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics