Skip to main content

On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11651))

Included in the following conference series:

Abstract

The k-dimensional Weisfeiler-Leman algorithm (\(k\text {-}\mathrm {WL}\)) is a fruitful approach to the Graph Isomorphism problem. \(2\text {-}\mathrm {WL}\) corresponds to the original algorithm suggested by Weisfeiler and Leman over 50 years ago. \(1\text {-}\mathrm {WL}\) is the classical color refinement routine. Indistinguishability by \(k\text {-}\mathrm {WL}\) is an equivalence relation on graphs that is of fundamental importance for isomorphism testing, descriptive complexity theory, and graph similarity testing which is also of some relevance in artificial intelligence. Focusing on dimensions \(k=1,2\), we investigate subgraph patterns whose counts are \(k\text {-}\mathrm {WL}\) invariant, and whose occurrence is \(k\text {-}\mathrm {WL}\) invariant. We achieve a complete description of all such patterns for dimension \(k=1\) and considerably extend the previous results known for \(k=2\).

O. Verbitsky was supported by DFG grant KO 1053/8–1. He is on leave from the IAPMM, Lviv, Ukraine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The result of [6] is actually stronger and applies even to distance-regular graphs.

References

  1. Anderson, M., Dawar, A., Holm, B.: Solving linear programs without breaking abstractions. J. ACM 62(6), 48:1–48:26 (2015)

    Article  MathSciNet  Google Scholar 

  2. Arvind, V., Fuhlbrück, F., Köbler, J., Verbitsky, O.: On Weisfeiler-Leman invariance: subgraph counts and related graph properties. Technical report (2018). https://arxiv.org/abs/1811.04801

  3. Atserias, A., Bulatov, A.A., Dawar, A.: Affine systems of equations and counting infinitary logic. Theor. Comput. Sci. 410(18), 1666–1683 (2009)

    Article  MathSciNet  Google Scholar 

  4. Babai, L.: Graph isomorphism in quasipolynomial time. In: Proceedings of the 48th Annual ACM Symposium on Theory of Computing (STOC 2016), pp. 684–697 (2016). https://doi.org/10.1145/2897518.2897542

  5. Babai, L., Erdős, P., Selkow, S.M.: Random graph isomorphism. SIAM J. Comput. 9(3), 628–635 (1980)

    Article  MathSciNet  Google Scholar 

  6. Beezer, R.A., Farrell, E.J.: The matching polynomial of a distance-regular graph. Int. J. Math. Math. Sci. 23(2), 89–97 (2000)

    Article  MathSciNet  Google Scholar 

  7. Bollobás, B.: Random Graphs. Cambridge Studies in Advanced Mathematics, vol. 73, 2nd edn. Cambridge University Press, Cambridge (2001)

    Book  Google Scholar 

  8. Bose, R.C., Mesner, D.M.: On linear associative algebras corresponding to association schemes of partially balanced designs. Ann. Math. Statist. 30, 21–38 (1959)

    Article  MathSciNet  Google Scholar 

  9. Cai, J., Fürer, M., Immerman, N.: An optimal lower bound on the number of variables for graph identifications. Combinatorica 12(4), 389–410 (1992). https://doi.org/10.1007/BF01305232

    Article  MathSciNet  MATH  Google Scholar 

  10. Curticapean, R., Dell, H., Marx, D.: Homomorphisms are a good basis for counting small subgraphs. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing (STOC 2017), pp. 210–223. ACM (2017)

    Google Scholar 

  11. Dawar, A.: A restricted second order logic for finite structures. Inf. Comput. 143(2), 154–174 (1998). https://doi.org/10.1006/inco.1998.2703

    Article  MathSciNet  MATH  Google Scholar 

  12. Dawar, A.: The nature and power of fixed-point logic with counting. SIGLOG News 2(1), 8–21 (2015)

    Google Scholar 

  13. Dawar, A., Severini, S., Zapata, O.: Pebble games and cospectral graphs. Electron. Notes Discrete Math. 61, 323–329 (2017)

    Article  Google Scholar 

  14. Dell, H., Grohe, M., Rattan, G.: Lovász meets Weisfeiler and Leman. In: 45th International Colloquium on Automata, Languages, and Programming (ICALP 2018). LIPIcs, vol. 107, pp. 40:1–40:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2018)

    Google Scholar 

  15. Diestel, R.: Graph Theory. Springer, New York (2000)

    MATH  Google Scholar 

  16. Farrell, E.J., Guo, J.M., Constantine, G.M.: On matching coefficients. Discrete Math. 89(2), 203–210 (1991)

    Article  MathSciNet  Google Scholar 

  17. Fürer, M.: On the power of combinatorial and spectral invariants. Linear Algebra Appl. 432(9), 2373–2380 (2010)

    Article  MathSciNet  Google Scholar 

  18. Fürer, M.: On the combinatorial power of the Weisfeiler-Lehman algorithm. In: Fotakis, D., Pagourtzis, A., Paschos, V.T. (eds.) CIAC 2017. LNCS, vol. 10236, pp. 260–271. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-57586-5_22

    Chapter  Google Scholar 

  19. Gao, C., Lafferty, J.: Testing for global network structure using smallsubgraph statistics. Technical report (2017). http://arxiv.org/abs/1710.00862

  20. Grochow, J.A., Kellis, M.: Network motif discovery using subgraph enumeration and symmetry-breaking. In: Speed, T., Huang, H. (eds.) RECOMB 2007. LNCS, vol. 4453, pp. 92–106. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-71681-5_7

    Chapter  Google Scholar 

  21. Grohe, M.: Fixed-point definability and polynomial time on graphs with excluded minors. J. ACM 59(5), 27:1–27:64 (2012). https://doi.org/10.1145/2371656.2371662

    Article  MathSciNet  MATH  Google Scholar 

  22. Hasan, M.A., Dave, V.S.: Triangle counting in large networks: a review. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 8(2), e1226 (2018)

    Article  Google Scholar 

  23. Higman, D.: Finite permutation groups of rank 3. Math. Z. 86, 145–156 (1964)

    Article  MathSciNet  Google Scholar 

  24. Immerman, N.: Descriptive Complexity. Graduate Texts in Computer Science. Springer, New York (1999). https://doi.org/10.1007/978-1-4612-0539-5

    Book  MATH  Google Scholar 

  25. Kreutzer, S., Schweikardt, N.: On Hanf-equivalence and the number of embeddings of small induced subgraphs. In: Joint Meeting of the 23-rd EACSL Annual Conference on Computer Science Logic (CSL) and the 29-th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pp. 60:1–60:10. ACM (2014)

    Google Scholar 

  26. Lovász, L.: Large Networks and Graph Limits, Colloquium Publications, vol. 60. American Mathematical Society (2012)

    Google Scholar 

  27. McKay, B.D., Piperno, A.: Practical graph isomorphism, II. J. Symb. Comput. 60, 94–112 (2014)

    Article  MathSciNet  Google Scholar 

  28. Milo, R., Shen-Orr, S., Itzkovitz, S., Kashtan, N., Chklovskii, D., Alon, U.: Network motifs: simple building blocks of complex networks. Science 298(5594), 824–827 (2002)

    Article  Google Scholar 

  29. Morgan, H.L.: The generation of a unique machine description for chemical structures – a technique developed at chemical abstracts service. J. Chem. Doc. 5(2), 107–113 (1965)

    Article  Google Scholar 

  30. Morris, C., Kersting, K., Mutzel, P.: Glocalized Weisfeiler-Lehman graph kernels: global-local feature maps of graphs. In: 2017 IEEE International Conference on Data Mining (ICDM 2017), pp. 327–336. IEEE Computer Society (2017)

    Google Scholar 

  31. Morris, C., et al.: Weisfeiler and Leman go neural: Higher-order graph neural networks. Technical report (2018). http://arxiv.org/abs/1810.02244

  32. Newman, M.E.J.: The structure and function of complex networks. SIAM Rev. 45(2), 167–256 (2003)

    Article  MathSciNet  Google Scholar 

  33. Pyber, L.: Large connected strongly regular graphs are Hamiltonian. Technical report (2014). http://arxiv.org/abs/1409.3041

  34. Scheinerman, E.R., Ullman, D.H.: Fractional Graph Theory. A Rational Approach to the Theory of Graphs. Wiley, Hoboken (1997)

    MATH  Google Scholar 

  35. Shervashidze, N., Schweitzer, P., van Leeuwen, E.J., Mehlhorn, K., Borgwardt, K.M.: Weisfeiler-Lehman graph kernels. J. Mach. Learn. Res. 12, 2539–2561 (2011)

    MathSciNet  MATH  Google Scholar 

  36. Ugander, J., Backstrom, L., Kleinberg, J.M.: Subgraph frequencies: mapping the empirical and extremal geography of large graph collections. In: 22nd International World Wide Web Conference (WWW 2013), pp. 1307–1318. ACM (2013)

    Google Scholar 

  37. Weisfeiler, B., Leman, A.: The reduction of a graph to canonical form and the algebra which appears therein. NTI Series, vol. 2, no. 9, pp. 12–16 (1968). English translation is available at https://www.iti.zcu.cz/wl2018/pdf/wl_paper_translation.pdf

  38. Wormald, N.: Models of random regular graphs. In: Surveys in Combinatorics, pp. 239–298. Cambridge University Press, Cambridge (1999)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frank Fuhlbrück .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Arvind, V., Fuhlbrück, F., Köbler, J., Verbitsky, O. (2019). On Weisfeiler-Leman Invariance: Subgraph Counts and Related Graph Properties. In: Gąsieniec, L., Jansson, J., Levcopoulos, C. (eds) Fundamentals of Computation Theory. FCT 2019. Lecture Notes in Computer Science(), vol 11651. Springer, Cham. https://doi.org/10.1007/978-3-030-25027-0_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25027-0_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25026-3

  • Online ISBN: 978-3-030-25027-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics