Skip to main content

Abstract

High-resolution converters with high efficiency are dominated by noise-shaping and oversampling architectures. In applications, where true Nyquist-rate conversion is needed, neither oversampling nor noise shaping can though be used. This is because of exactly those concepts, which allow them to combine efficiency with high-performance, bring memory into the system, and consequently prevent the sample-to-sample operation. This chapter reviews several approaches to circumvent this, i.e., to combine Nyquist-rate conversion with high power efficiency by innovative architectural and circuit design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. B. Murmann, ADC performance survey 1997–2018, http://web.stanford.edu/~murmann/adcsurvey.html

    Google Scholar 

  2. K. Obata, K. Matsukawa, T. Miki, Y. Tsukamoto, K. Sushihara, A 97.99 dB SNDR, 2 kHz BW, 37.1 μW noise-shaping SAR ADC with dynamic element matching and modulation dither effect, in 2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits) (IEEE, Piscataway, 2016), pp. 1–2

    Google Scholar 

  3. Y.-S. Shu, L.-T. Kuo, T.-Y. Lo, An oversampling SAR ADC with DAC mismatch error shaping achieving 105 dB SFDR and 101 dB SNDR over 1 kHz BW in 55 nm CMOS. IEEE J. Solid-State Circuits 51(12), 2928–2940 (2016)

    Article  Google Scholar 

  4. S. Hsieh, C. Hsieh, A 0.44-fJ/conversion-step 11-bit 600-kS/s SAR ADC with semi-resting DAC. IEEE J. Solid-State Circuits 53(9), 2595–2603 (2018)

    Article  Google Scholar 

  5. C.-C. Liu, S.-J. Chang, G.-Y. Huang, Y.-Z. Lin, A 10-bit 50-MS/s SAR ADC with a monotonic capacitor switching procedure. IEEE J. Solid-State Circuits 45(4), 731–740 (2010)

    Article  Google Scholar 

  6. S. Hsieh, C. Hsieh, A 0.4V 13b 270kS/S SAR-ISDM ADC with an opamp-less time-domain integrator, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC) (2018), pp. 240–242

    Google Scholar 

  7. A. AlMarashli, J. Anders, J. Becker, M. Ortmanns, A Nyquist rate SAR ADC employing incremental sigma delta DAC achieving peak SFDR= 107 dB at 80 kS/s. IEEE J. Solid-State Circuits 53(5), 1493–1507 (2018)

    Article  Google Scholar 

  8. J.A. Fredenburg, M.P. Flynn, A 90-MS/s 11-MHz-bandwidth 62-dB SNDR noise-shaping SAR ADC. IEEE J. Solid-State Circuits 47(12), 2898–2904 (2012)

    Article  Google Scholar 

  9. C.-C. Liu, M.-C. Huang, A 0.46 mW 5MHz-BW 79.7 dB-SNDR noise-shaping SAR ADC with dynamic-amplifier-based FIR-IIR filter, in 2017 IEEE International Solid-State Circuits Conference (ISSCC) (IEEE, Piscataway, 2017), pp. 466–467

    Google Scholar 

  10. P. Harpe, E. Cantatore, A. van Roermund, A 2.2/2.7 fJ/conversion-step 10/12b 40kS/s SAR ADC with data-driven noise reduction, in 2013 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2013), pp. 270–271

    Google Scholar 

  11. K. Yoshioka, H. Ishikuro, A 13b SAR ADC with eye-opening VCO based comparator, in European Solid State Circuits Conference (ESSCIRC), ESSCIRC 2014-40th (IEEE, Piscataway, 2014), pp. 411–414

    Book  Google Scholar 

  12. H. Tai, Y. Hu, H. Chen, H. Chen, A 0.85fJ/conversion-step 10b 200kS/s subranging SAR ADC in 40nm CMOS, in 2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers (ISSCC) (IEEE, Piscataway, 2014), pp. 196–197

    Google Scholar 

  13. A. AlMarashli, J. Anders, J. Becker, M. Ortmanns, A 107 dB SFDR, 80 kS/s Nyquist-rate SAR ADC using a hybrid capacitive and incremental Σ Δ DAC, in 2017 Symposium on VLSI Circuits (IEEE, Piscataway, 2017), pp. C240–C241

    Google Scholar 

  14. A. Bannon, C.P. Hurrell, D. Hummerston, C. Lyden, An 18 b 5 MS/s SAR ADC with 100.2 dB dynamic range, in 2014 Symposium on VLSI Circuits Digest of Technical Papers (IEEE, Piscataway, 2014), pp. 1–2

    Google Scholar 

  15. H. Li, M. Maddox, M.C. Coin, W. Buckley, D. Hummerston, N. Naeem, A signal-independent background-calibrating 20b 1MS/S SAR ADC with 0.3 ppm INL, in 2018 IEEE International Solid-State Circuits Conference-(ISSCC) (IEEE, Piscataway, 2018), pp. 242–244

    Google Scholar 

  16. S. Tao, A. Rusu, A power-efficient continuous-time incremental sigma-delta ADC for neural recording systems. IEEE Trans. Circuits Syst. I Reg. Papers 62(6), 1489–1498 (2015)

    Article  MathSciNet  Google Scholar 

  17. Y. Chae, K. Souri, K.A.A. Makinwa, A 6.3 μW 20 bit incremental zoom-ADC with 6 ppm INL and 1 μV offset. IEEE J. Solid-State Circuits 48(12), 3019–3027 (2013)

    Article  Google Scholar 

  18. J. Wagner, P. Vogelmann, M. Ortmanns, On the signal filtering property of CT incremental sigma-delta ADCs, in IEEE Transactions on Circuits and Systems II: Express Briefs (2019), p. 1

    Google Scholar 

  19. C. Chen, Y. Zhang, T. He, P.Y. Chiang, G.C. Temes, A micro-power two-step incremental analog-to-digital converter. IEEE J. Solid-State Circuits 50(8), 1796–1808 (2015)

    Article  Google Scholar 

  20. P. Vogelmann, M. Haas, M. Ortmanns, A 1.1mW 200kS/s incremental Δ Σ ADC with a DR of 91.5dB using integrator slicing for dynamic power reduction, in 2018 IEEE International Solid - State Circuits Conference - (ISSCC) (IEEE, Piscataway, 2018), pp. 236–238

    Google Scholar 

  21. B. Wang, S. Sin, U. Seng-Pan, F. Maloberti, R.P. Martins, A 550-μ W 20-kHz BW 100.8-dB SNDR linear-exponential multi-bit incremental Σ Δ ADC with 256 clock cycles in 65-nm CMOS, in IEEE Journal of Solid-State Circuits (IEEE, Piscataway, 2019), pp. 1–12

    Google Scholar 

  22. Y. Liu, E. Bonizzoni, F. Maloberti, High-order multi-bit incremental converter with smart-DEM algorithm, in 2013 IEEE International Symposium on Circuits and Systems (ISCAS 2013) (IEEE, Piscataway, 2013), pp. 157–160

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Ortmanns .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vogelmann, P., Luo, Y., Mokhtar, M.A., Ortmanns, M. (2020). Efficient High-Resolution Nyquist ADCs. In: Baschirotto, A., Harpe, P., Makinwa, K. (eds) Next-Generation ADCs, High-Performance Power Management, and Technology Considerations for Advanced Integrated Circuits. Springer, Cham. https://doi.org/10.1007/978-3-030-25267-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-25267-0_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-25266-3

  • Online ISBN: 978-3-030-25267-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics