Skip to main content

Calciotropic Hormones and Osteosarcopenia

  • Chapter
  • First Online:
  • 487 Accesses

Abstract

Increase in life expectancy and decrease in mortality associated with a decrease in physical activity leads to population aging and the development of certain age-related pathologies such as osteoporosis and sarcopenia. These two conditions are very often linked and denominated under the same term: osteosarcopenia. There is an interconnection between muscle and bone permitted by hormonal mediators. Involvement of hormones and calciotropic proteins in osteosarcopenia involves especially vitamin D, parathyroid hormone, osteocalcin, leptin, and gonadal steroid causing changes in bone and muscle structure and function. Osteosarcopenia is a particularly deleterious condition in older persons, increasing the risk of serious health events and reducing life expectancy. Calciotropic hormonal changes would identify people at risk and influence the evolution of health status of these people.

This Chapter presents an inventory of current knowledge concerning the involvement of main calciotropic hormones in muscular and bone health of osteosarcopenic or at-risk patients.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Abboud M, Rybchyn MS, Liu J, Ning Y, Gordon-Thomson C, Brennan-Speranza TC, Cole L, Greenfield H, Fraser DR, Mason RS (2017) The effect of parathyroid hormone on the uptake and retention of 25-hydroxyvitamin D in skeletal muscle cells. J Steroid Biochem Mol Biol 173:173–179

    Article  CAS  PubMed  Google Scholar 

  • Adams JS, Hewison M (2010) Update in vitamin D. J Clin Endocrinol Metab 95:471–478

    Article  PubMed  PubMed Central  Google Scholar 

  • Allison SJ, Baldock PA, Herzog H (2007) The control of bone remodeling by neuropeptide Y receptors. Peptides 28:320–325

    Article  CAS  PubMed  Google Scholar 

  • Annweiler C, Beauchet O (2009) Relationship between bone, fracture, and exercise: the key role of vitamin D. Arch Intern Med 169:163–168

    Article  Google Scholar 

  • Annweiler C, Schott AM, Berrut G, Fantino B, Beauchet O (2009) Vitamin D-related changes in physical performance: a systematic review. J Nutr Health Aging 13:893–898

    Article  CAS  PubMed  Google Scholar 

  • Annweiler C, Souberbielle JC, Schott AM, de Decker L, Berrut G, Beauchet O (2011) Vitamine D chez la personne âgée: les 5 points à retenir. Ger Psychol Neuropsychiatr Vieil 9:259–267

    Google Scholar 

  • Aonuma H, Miyakoshi N, Hongo M, Kasukawa Y, Shimada Y (2009) Low serum levels of undercarboxylated osteocalcin in postmenopausal osteoporotic women receiving an inhibitor of bone resorption. Tohoku J Exp Med 218:201–205

    Article  CAS  PubMed  Google Scholar 

  • Astudillo P, Rios S, Pastenes L, Pino AM, Rodriguez JP (2008) Increased adipogenesis of osteoporotic human-mesenchymal stem cells (MSCs) characterizes by impaired leptin action. J Cell Biochem 103:1054–1065

    Article  CAS  PubMed  Google Scholar 

  • Atalay S, Elci A, Kayadibi H, Onder CB, Aka N (2012) Diagnostic utility of osteocalcin, Undercarboxylated osteocalcin, and alkaline phosphatase for osteoporosis in premenopausal and postmenopausal women. Ann Lab Med 32:23–30

    Article  CAS  PubMed  Google Scholar 

  • Baczynski R, Massry SG, Magott M, el-Belbessi S, Kohan R, Brautbar N (1985) Effect of parathyroid hormone on energy metabolism of skeletal muscle. Kidney Int 28:722–727

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, Sainsbury A, Couzens M, Enriquez RF, Thomas GP, Gardiner EM, Herzog H (2002) Hypothalamic Y2 receptors regulate bone formation. J Clin Investig 109:915–921

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baldock PA, Allison S, McDonald MM, Sainsbury A, Enriquez RF, Little DG, Eisman JA, Gardiner EM, Herzog H (2006) Hypothalamic regulation of cortical bone mass: opposing activity of Y2 receptor and leptin pathways. J Bone Miner Res 21:1600–1607

    Article  CAS  PubMed  Google Scholar 

  • Baldock PA, Lee NJ, Driessler F, Lin S, Allison S, Stehrer B, Lin EJ, Zhang L, Enriquez RF, Wong IP, McDonald MM, During M, Pierroz DD, Slack K, Shi YC, Yulyaningsih E, Aljanova A, Little DG, Ferrari SL, Sainsbury A, Eisman JA, Herzog H (2009) Neuropeptide Y knockout mice reveal a central role of NPY in the coordination of bone mass to body weight. PLoS One 4:e8415

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bandeira F, Cassibba S (2015) Hyperparathyroidism and bone health. Rheumatol Rep 17:48

    Article  CAS  Google Scholar 

  • Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ (1988) Regulation of adenylyl cyclase-coupled beta-adrenergic receptors. Annu Rev Cell Biol 4:405–428

    Article  CAS  PubMed  Google Scholar 

  • Bhan A, Rao AD, Rao DS (2010) Osteomalacia as a result of vitamin D deficiency. Endocrinol Metab Clin N Am 39:321–331

    Article  CAS  Google Scholar 

  • Binkley N, Buehring B (2009) Beyond FRAX: it’s time to consider sarco-osteopenia. J Clin Densitom 12:413–416

    Article  PubMed  Google Scholar 

  • Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stähelin HB, Dick W (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24

    Article  CAS  PubMed  Google Scholar 

  • Bischoff-Ferrari HA, Willett WC, Wong JB, Giovannucci E, Dietrich T, Dawson-Hughes B (2005) Fracture prevention with vitamin D supplementation: a meta-analysis of randomized controlled trials. JAMA 293:2257–2264

    Article  CAS  PubMed  Google Scholar 

  • Bischoff-Ferrari HA, Willett WC, Wong JB, Stuck AE, Staehelin HB, Orav EJ, Thoma A, Kiel DP, Henschkowski J (2009) Prevention of nonvertebral fractures with oral vitamin D and dose dependency: a meta-analysis of randomized controlled trials. Arch Intern Med 169:551–561

    Article  CAS  PubMed  Google Scholar 

  • Boland R, Norman A, Ritz E, Hasselbach W (1985) Presence of a 1,25-dihydroxy-vitamin D3 receptor in chick skeletal muscle myoblasts. Biochem Biophys Res Commun 128:305–311

    Article  CAS  PubMed  Google Scholar 

  • Bolland MJ, Grey A, Reid IR (2015) Should we prescribe calcium or vitamin D supplements to treat or prevent osteoporosis? Climacteric 18(Suppl 2):22–31

    Article  PubMed  Google Scholar 

  • Brighton PJ, Szekeres PG, Willars GB (2004) Neuromedin U and its receptors: structure, function, and physiological roles. Pharmacol Rev 56:231–248

    Article  CAS  PubMed  Google Scholar 

  • Bügel S (2003) Vitamin K and bone health. Proc Nutr Soc 62:839–843

    Article  PubMed  CAS  Google Scholar 

  • Buitrago CG, Arango NS, Boland RL (2012) 1α,25(OH)2D3-dependant modulation of Akt in proliferating and differentiating C2C12 skeletal muscle cells. J Cell Biochem 113:1170–1181

    Article  CAS  PubMed  Google Scholar 

  • Buitrago C, Pardo VG, Boland R (2013) Role of VDR in 1α,25-dihydroxyvitamin D3-dependant non genomic activation of MAPKs, Src and Akt in skeletal muscle cells. J Steroid Biochem Mol Biol 136:125–130

    Article  CAS  PubMed  Google Scholar 

  • Burguera B, Hofbauer LC, Thomas T, Gori F, Evans GL, Khosla S, Riggs BL, Turner RT (2001) Leptin reduces ovariectomy- induced bone loss in rats. Endocrinology 142:3546–3553

    Article  CAS  PubMed  Google Scholar 

  • Cammisotto PG, Bukowiecki LJ (2004) Role of calcium in the secretion of leptin from white adipocytes. Am J Phys Regul Integr Comp Phys 287:R1380–R1386

    CAS  Google Scholar 

  • Cangussu LM, Nahas-Neto J, Orsatti CL, Bueloni-Dias FN, Nahas EA (2015) Effect of vitamin D supplementation alone on muscle function in postmenopausal women: a randomized, double-blind, placebo-controlled clinical trial. Osteoporos Int 26:2413–2421

    Article  CAS  PubMed  Google Scholar 

  • Capiati D, Benassati S, Boland RL (2002) 1,25(OH)2-vitamin D3 induces translocation of the vitamin D receptor (VDR) to the plasma membrane in skeletal muscle cells. J Cell Biochem 86:128–135

    Article  CAS  PubMed  Google Scholar 

  • Cauley JS, Greendale GA, Ruppert K et al (2015) Serum 25 hydroxyvitamin D bone mineral density amd fracture risk across the menopause. J Clin Endocrinol Metab 100:2046–2054

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceglia L (2009) Vitamin D and its role in skeletal muscle. Curr Opin Clin Nutr Metab Care 12:628–633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ceglia L, Niramitmahapanya S, da Silva MM, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B (2013) A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98:E1927–E1935

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen XX, Yang T (2015) Roles of leptin in bone metabolism and bone diseases. J Bone Miner Metab 33:474–485

    Article  CAS  PubMed  Google Scholar 

  • Christodoulou S, Goula T, Ververidis A, Drosos G (2013) Vitamin D and bone disease. Biomed Res Int 2013:396541

    Article  CAS  PubMed  Google Scholar 

  • Cirmanova V, Bayer M, Starka L, Zajickova K (2008) The effect of leptin on bone: an evolving concept of action. Physiol Res 57(Suppl 1):S143–S151

    CAS  PubMed  Google Scholar 

  • Cornish J, Callon KE, Bava U, Lin C, Naot D, Hill BL, Grey AB, Broom N, Myers DE, Nicholson GC, Reid IR (2002) Leptin directly regulates bone cell function in vitro and reduces bone fragility in vivo. J Endocrinol 175:405–415

    Article  CAS  PubMed  Google Scholar 

  • Crepaldi G, Maggi S (2005) Sarcopenia and osteoporosis: ahazardous duet. J Endocrinol Investig 28:66e68

    Google Scholar 

  • De Laet C, Kanis JA, Odén A, Johanson H, Johnell O, Delmas P, Eisman JA, Kroger H, Fujiwara S, Garnero P, McCloskey EV, Mellstrom D, Melton LJ 3rd, Meunier PJ, Pols HA, Reeve J, Silman A, Tenenhouse A (2005) Body mass index as a predictor of fracture risk: a meta-analysis. Osteoporos Int 16:1330–1338

    Article  PubMed  Google Scholar 

  • de Souza Genaro P, de Medeiros PM, Szejnfeld VL, Martini LA (2015) Secondary hyperparathyroidism and its relationship with sarcopenia in elderly women. Arch Gerontol Geriatr 60:349–353

    Article  PubMed  CAS  Google Scholar 

  • De Spiegeleer A, Beckwée D, Bautmans I, Petrovic M, Sarcopenia Guidelines Development group of the Belgian Society of Gerontology and Geriatrics (BSGG) (2018) Pharmacological interventions to improve muscle mass, muscle strength and physical performance in older people: an umbrella review of systematic reviews and Meta-analyses. Drugs Aging 35:719–734

    Article  PubMed  CAS  Google Scholar 

  • Drey M, Sieber CC, Bertsch T, Bauer JM, Schmidmaier R, FiAT intervention group (2016) Osteosarcopenia is more than sarcopenia and osteopenia alone. Aging Clin Exp Res 28:895–899

    Article  PubMed  Google Scholar 

  • Ducy P, Amling M, Takeda S, Priemel M, Schilling AF, Beil FT, Shen J, Vinson C, Rueger JM, Karsenty G (2000) Leptin inhibits bone formation through a hypothalamic relay: a central control of bone mass. Cell 100:197–207

    Article  CAS  PubMed  Google Scholar 

  • Dupuy C, Lauwers-Cances V, van Kan GA, Gillette S, Schott AM, Beauchet O, Annweiler C, Vellas B, Rolland Y (2013) Dietary vitamin D intake and muscle mass in older women. Results from a cross-sectional analysis of the EPIDOS study. J Nutr Health Aging 17:119–124

    Article  CAS  PubMed  Google Scholar 

  • Duque G, Daly RM, Sanders K, Kiel DP (2017) Vitamin D, bones and muscle: myth versus reality. Australas J Ageing 36:8–13

    Article  PubMed  Google Scholar 

  • Elefteriou F, Ahn JD, Takeda S, Starbuck M, Yang X, Liu X, Kondo H, Richards WG, Bannon TW, Noda M, Clement K, Vaisse C, Karsenty G (2005) Leptin regulation of bone resorp- tion by the sympathetic nervous system and CART. Nature 434:514–520

    Article  CAS  PubMed  Google Scholar 

  • Faggioni R, Feingold KR, Grunfeld C (2001) Leptin regulation of the immune response and the immunodeficiency of malnutrition. FASEB J 15:2565–2571

    Article  CAS  PubMed  Google Scholar 

  • Ferron M, Wei J, Yoshizawa T, Del Fattore A, DePinho RA, Teti A, Ducy P, Karsenty G (2010) Insulin signaling in osteoblasts integrates bone remodeling and energy metabolism. Cell 142:296–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Figenschau Y, Knutsen G, Shahazeydi S, Johansen O, Svein- bjornsson B (2001) Human articular chondrocytes express functional leptin receptors. Biochem Biophys Res Commun 287:190–197

    Article  CAS  PubMed  Google Scholar 

  • Flier JS (1997) Leptin expression and action: new experimental paradigms. Proc Natl Acad Sci U S A 94:4242–4245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frederich RC, Löllmann B, Hamann A, Napolitano-Rosen A, Kahn BB, Lowell BB, Flier JS (1995) Expression of Ob mRNA and its encoded protein in rodents. Impact of nutrition and obesity. J Clin Invest 96:1658–1663

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu L, Patel MS, Bradley A, Wagner EF, Karsenty G (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  CAS  PubMed  Google Scholar 

  • Garber AJ (1983) Effects of parathyroid hormone on skeletal muscle protein and amino acid metabolism in the rat. J Clin Invest 71:1806–1821

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grigorie D, Neacsu E, Marinescu M, Popa O (2003) Circulating osteoprotegerin and leptin levels in postmenopausal women with and without osteoporosis. Roman J Int Med 41:409–415

    CAS  Google Scholar 

  • Gumieiro DN, Murino Rafacho BP, Buzati Pereira BL, Cavallari KA, Tanni SE, Azevedo PS, Polegato BF, Mamede Zornoff LA, Dinhane DI, Innocenti Dinhane KG, Cação Pereira GJ, de Paiva SA, Minicucci MF (2015) Vitamin D serum levels are associated with handgrip strength but not with muscle mass or length of hospital stay after hip fracture. Nutrition 31:931–934

    Article  CAS  PubMed  Google Scholar 

  • Gundberg CM, Lian JB, Gallop PM, Steinberg JJ (1983) Urinary gamma-carboxyglutamic acid and serum osteocalcin as bone markers: studies in osteoporosis and Paget’s disease. J Clin Endocrinol Metab 57:1221–1225

    Article  CAS  PubMed  Google Scholar 

  • Hadji P, Bock K, Gotschalk M, Hars O, Backhus J, Emons G, Schulz KD (2003) The influence of serum leptin concentration on bone mass assessed by quantitative ultrasonometry in pre and postmenopausal women. Maturitas 44:141–148

    Article  CAS  PubMed  Google Scholar 

  • Halaas JL, Gajiwala KS, Maffei M, Cohen SL, Chait BT, Rabinowitz D, Lallone RL, Burley SK, Friedman JM (1995) Weight-reducing effects of the plasma protein encoded by the obese gene. Science 269:543–546

    Article  CAS  PubMed  Google Scholar 

  • Hamrick MW (2017) Role of the cytokine-like hormone leptin in muscle-bone crosstalk with aging. J Bone Metab 24:1–8

    Article  PubMed  PubMed Central  Google Scholar 

  • Hamrick MW, Della-Fera MA, Choi YH, Pennington C, Hart-zell D, Baile CA (2005) Leptin treatment induces loss of bone marrow adipocytes and increases bone formation in leptin- deficient ob/ob mice. J Bone Miner Res 20:994–1001

    Article  CAS  PubMed  Google Scholar 

  • Hanada R, Teranishi H, Pearson JT, Kurokawa M, Hosoda H, Fukushima N, Fukue Y, Serino R, Fujihara H, Ueta Y, Ikawa M, Okabe M, Murakami N, Shirai M, Yoshimatsu H, Kangawa K, Kojima M (2004) Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nat Med 10:1067–1073

    Article  CAS  PubMed  Google Scholar 

  • Hassan EB, Duque G (2017) Osteosarcopenia: a new geriatric syndrome. Aust Fam Physician nov 46:849–853

    Google Scholar 

  • Hipmair G, Bohler N, Maschek W, Soriguer F, Rojo-Martinez G, Schimetta W, Pichler R (2010) Serum leptin is correlated to high turnover in osteoporosis. Neuro Endocrinol Lett 31:155–160

    CAS  PubMed  Google Scholar 

  • Hirschfeld HP, Kinsella R, Duque G (2017) Osteosarcopenia: where bone, muscle, and fat collide. Osteoporos Int 28:2781–2790

    Article  CAS  PubMed  Google Scholar 

  • Holick MF (2007) Vitamin D deficiency. N Engl J Med 357:266–281

    Article  CAS  PubMed  Google Scholar 

  • Holloway WR, Collier FM, Aitken CJ, Myers DE, Hodge JM, Malakellis M, Gough TJ, Collier GR, Nicholson GC (2002) Leptin inhibits osteoclast generation. J Bone Miner Res 17:200–209

    Article  CAS  PubMed  Google Scholar 

  • Holvik K, Ahmed LA, Forsmo S et al (2013) Low serum levels of 25-hydroxyvitamin D predict hip fracture in the elderly: a NOREPOS study. J Clin Endocrinol Metab 98:3341–3350

    Article  CAS  PubMed  Google Scholar 

  • Huang JC, Sakata T, Pfleger LL, Bencsik M, Halloran BP, Bikle DD et al (2004) PTH differentially regulates expression of RANKL and OPG. J Bone Miner Res févr 19(2):235–244

    Article  CAS  Google Scholar 

  • Hubbard RE, O'Mahony MS, Calver BL, Woodhouse KW (2008) Nutrition, inflammation, and leptin levels in aging and frailty. J Am Geriatr Soc 56:279–284

    Article  PubMed  Google Scholar 

  • Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Gunawardene P, Demontiero O, Duque G (2015a) Comprehensive nutritional status in sarco-osteoporotic older adults. J Nutr Health Aging 19:474–480

    Article  CAS  PubMed  Google Scholar 

  • Huo YR, Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Muir SW, Montero-Odasso M, Gunawardene P, Demontiero O, Duque G (2015b) Phenotype of osteosarcopenia in older individuals with a history of falling. J Am Med Dir Assoc 16:290–295

    Article  PubMed  Google Scholar 

  • Ilich JZ, Kelly OJ, Inglis JE, Panton LB, Duque G, Ormsbee MJ (2014) Interrelationship among muscle, fat, and bone: connecting the dots on cellular, hormonal, and whole body levels. Ageing Res Rev 15:51–60

    Article  CAS  PubMed  Google Scholar 

  • Irani PF (1976) Electromyography in nutritional osteomalacic myopathy. J Neurol Neurosurg Psychiatry 39:686–693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irazoqui AP, Boland RL, Buitrago CG (2014) Actions of 1,25(OH)2-vitamin D on the cellular cycle depend on VDR and p38 MAPK in skeletal muscle cells. J Mol Endocrinol 53:331–343

    Article  CAS  PubMed  Google Scholar 

  • Ivaska KK, Hentunen TA, Vääräniemi J, Ylipahkala H, Pettersson K, Vääräniemi HK (2004) Release of intact and fragmented osteocalcin molecules from bone matrix during bone resorption in vitro. J Biol Chem 279:18361–18369

    Article  CAS  PubMed  Google Scholar 

  • Jilka RL (2007) Molecular and cellular mechanisms of the anabolic effect of intermittent PTH. Bone 40:1434–1446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joborn C, Joborn H, Rastad J (1988) Maximal isokinetic muscle strength in patients with primary hyperparathyroidism before and after parathyroid surgery. Br J Surg 75:77–80

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G (2006) Convergence between bone and energy homeostases: leptin regulation of bone mass. Cell Metab 4:341–348

    Article  CAS  PubMed  Google Scholar 

  • Karsenty G, Olson EN (2016) Bone and muscle endocrine functions: unexpected paradigms of inter-organ communication. Cell 164:1248–1256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawao N, Kaji H (2015) Interactions between muscle tissues and bone metabolism. J Cell Biochem 116:687–695

    Article  CAS  PubMed  Google Scholar 

  • Kishida Y, Hirao M, Tamai N, Nampei A, Fujimoto T, Nakase T, Shimizu N, Yoshikawa H, Myoui A (2005) Leptin regulates chondrocyte differentiation and matrix maturation during endochondral ossification. Bone 37:607–621

    Article  CAS  PubMed  Google Scholar 

  • Kristoffersson A, Boström A, Söderberg T (1992) Muscle strength is improved after parathyroidectomy in patients with primary hyperparathyroidism. Br J Surg 79:165–168

    Article  CAS  PubMed  Google Scholar 

  • Kuo TR, Chen CH (2017) Bone biomarker for the clinical assessment of osteoporosis: recent developments and future perspectives. Biomark Res 5:18

    Article  PubMed  PubMed Central  Google Scholar 

  • Lee NK, Sowa H, Hinoi E, Ferron M, Ahn JD, Confavreux C, Dacquin R, Mee PJ, McKee MD, Jung DY, Zhang Z, Kim JK, Mauvais-Jarvis F, Ducy P, Karsenty G (2007) Endocrine regulation of energy metabolism by the skeleton. Cell 130:456–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levinger I, Lin X, Zhang X, Brennan-Speranza TC, Volpato B, Hayes A, Jerums G, Seeman E, McConell G (2016) The effects of muscle contraction and recombinant osteocalcin on insulin sensitivity ex vivo. Osteoporos Int 27:653–663

    Article  CAS  PubMed  Google Scholar 

  • Levy JR, Gyarmati J, Lesko JM, Adler RA, Stevens W (2000) Dual regulation of leptin secretion: intracellular energy and calcium dependence of regulated pathway. Am J Physiol Endocrinol Metab 278:E892–E901

    Article  CAS  PubMed  Google Scholar 

  • Lin S, Boey D, Herzog H (2004) NPY and Y receptors: lessons from transgenic and knockout models. Neuropeptides 38:189–200

    Article  CAS  PubMed  Google Scholar 

  • Lin YY, Chen CY, Ding ST (2017) Adiponectin receptor 1 resists the decline of serum osteocalcin and GPRC6A expression in ovariectomized mice. PLoS One 12:e0189063

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lips P (2001) Vitamin D deficiency and secondary hyperparathyroidism in the elderly: consequences for bone loss and fractures and therapeutic implications. Endocr Rev 22:477–501

    Article  CAS  PubMed  Google Scholar 

  • Lips P, van Schoor NM (2011) The effect of vitamin D on bone and osteoporosis. Best Pract Res Clin Endocrinol Metab 25:585–591

    Article  CAS  PubMed  Google Scholar 

  • Maffei M, Halaas J, Ravussin E, Pratley RE, Lee GH, Zhang Y, Fei H, Kim S, Lallone R, Ranganathan S et al (1995) Leptin levels in human and rodent: measurement of plasma leptin and ob RNA in obese and weight-reduced subjects. Nat Med 1:1155–1161

    Article  CAS  PubMed  Google Scholar 

  • Mantzoros CS, Magkos F, Brinkoetter M, Sienkiewicz E, Dar-deno TA, Kim SY, Hamnvik OP, Koniaris A (2011) Leptin in human physiology and pathophysiology. Am J Physiol Endocrinol Metab 301:E567–E584

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maor G, Rochwerger M, Segev Y, Phillip M (2002) Leptin acts as a growth factor on the chondrocytes of skeletal growth cen- ters. J Bone Miner Res 17:1034–1043

    Article  CAS  PubMed  Google Scholar 

  • Martin A, de Vittoris R, David V, Moraes R, Begeot M, Lafage- Proust MH, Alexandre C, Vico L, Thomas T (2005) Leptin modulates both resorption and formation while preventing disuse-induced bone loss in tail-suspended female rats. Endocrinology 146:3652–3659

    Article  CAS  PubMed  Google Scholar 

  • Melamed ML, Michos ED, Post W, Astor B (2008) 25-hydroxyvitamin D levels and risk of mortality in the general population. Arch Intern Med 168:1629–1637

    Article  PubMed  PubMed Central  Google Scholar 

  • Mera P, Laue K, Ferron M, Confavreux C, Wei J, Galán-Díez M, Lacampagne A, Mitchell SJ, Mattison JA, Chen Y, Bacchetta J, Szulc P, Kitsis RN, de Cabo R, Friedman RA, Torsitano C, McGraw TE, Puchowicz M, Kurland I, Karsenty G (2017) Osteocalcin signaling in Myofibers is necessary and sufficient for optimum adaptation to exercise. Cell Metab 25:218

    Article  CAS  PubMed  Google Scholar 

  • Michos ED, Melamed ML (2008) Vitamin D and cardiovascular disease risk. Curr Opin Clin Metab Care 11:7–12

    Article  CAS  Google Scholar 

  • Mitnick MA, Grey A, Masiukiewicz U, Bartkiewicz M, Rios-Velez L, Friedman S, Xu L, Horowitz MC, Insogna K (2001) Parathyroid hormone induces hepatic production of bioactive interleukin-6 and its soluble receptor. Am J Physiol Endocrinol Metab 280:E405–E412

    Article  CAS  PubMed  Google Scholar 

  • Molina P, Carrero JJ, Bover J, Chauveau P, Mazzaferro S, Torres PU, European Renal Nutrition (ERN) and Chronic Kidney Disease-Mineral and Bone Disorder (CKD-MBD) Working Groups of the European Renal Association-European Dialysis Transplant Association (ERA-EDTA) (2017) Vitamin D, a modulator of musculoskeletal health in chronic kidney disease. J Cachexia Sarcopenia Muscle 8:686–701

    Article  PubMed  PubMed Central  Google Scholar 

  • Montero-Odasso M, Sakurai R, Muir-Hunter S, Islam A, Doherty T, Duque G, Crilly R (2016) Serum parathyroid hormone but not vitamin D is associated with impaired gait in community-dwelling older adults. J Am Geriatr Soc 64:2606–2608

    Article  PubMed  Google Scholar 

  • Mori A, Nishino T, Obata Y, Nakazawa M, Hirose M, Yamashita H, Uramatsu T, Shinzato K, Kohno S (2013) The effect of active vitamin D administration on muscle mass in hemodialysis patients. Clin Drug Investig 33:837–846

    Article  CAS  PubMed  Google Scholar 

  • Motyl KJ, Rosen CJ (2012 Oct) Understanding leptin-dependent regulation of skeletal homeostasis. Biochimie 94(10):2089–2096

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muoio DM, Dohm GL, Fiedorek FT Jr, Tapscott EB, Coleman RA (1997) Leptin directly alters lipid partitioning in skeletal muscle. Diabetes 46:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Odabasi E, Ozata M, Turan M, Bingol N, Yonem A, Cakir B, Kutlu M, Ozdemir IC (2000) Plasma leptin concentrations in postmenopausal women with osteoporosis. Eur J Endocrinol 142:170–173

    Article  CAS  PubMed  Google Scholar 

  • Ormarsdottir S, Ljunggren O, Mallmin H, Olofsson H, Blum WF, Loof L (2001) Inverse relationship between circulating levels of leptin and bone mineral density in chronic liver dis- ease. J Gastroenterol Hepatol 16:1409–1414

    Article  CAS  PubMed  Google Scholar 

  • Park S, Ham JO, Lee BK (2014) A positive association of vitamin D deficiency and sarcopenia in 50 year old women, but not men. Clin Nutr 33:900–905

    Article  CAS  PubMed  Google Scholar 

  • Peterlik M, Cross HS (2005) Vitamin D and calcium deficits predispose for multiple chronic diseases. Euro J Clin Invest 35:290–304

    Article  CAS  Google Scholar 

  • Pleasure D, Wyszynski B, Summer A, Schotland D, Feldman B, Nugent N, Hitz K, Goodman DB (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prineas JW, Mason AS, Henson RA (1965) Myopathy in metabolic bone disease. Br Med J 1:1034–1036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reid IR, Bolland MJ, Grey A (2014) Effects of vitamin D supplements on bone mineral density: a systematic review and meta-analysis. Lancet 383:146–155

    Article  CAS  PubMed  Google Scholar 

  • Reseland JE, Syversen U, Bakke I, Qvigstad G, Eide LG, Hjertner O, Gordeladze JO, Drevon CA (2001) Leptin is ex- pressed in and secreted from primary cultures of human os- teoblasts and promotes bone mineralization. J Bone Miner Res 16:1426–1433

    Article  CAS  PubMed  Google Scholar 

  • Roux C, Arabi A, Porcher R, Garnero P (2003) Serum leptin as a determinant of bone resorption in healthy postmenopausal women. Bone 33:847–852

    Article  CAS  PubMed  Google Scholar 

  • Ruhl CE, Everhart JE (2002) Relationship of serum leptin concentration with bone mineral density in the United States population. J Bone Miner Res 17:1896–1903

    Article  CAS  PubMed  Google Scholar 

  • Sahin G, Polat G, Baethis S, Milcan A, Baethdatoethlu O, Er-doethan C, Camdeviren H (2003) Body composition, bone mineral density, and circulating leptin levels in postmenopausal Turkish women. Rheumatol Int 3:87–91

    Article  CAS  Google Scholar 

  • Sáinz N, Rodríguez A, Catalán V, Becerril S, Ramírez B, Gómez-Ambrosi J, Frühbeck G (2009) Leptin administration favors muscle mass accretion by decreasing FoxO3a and increasing PGC-1alpha in ob/ob mice. PLoS One 4:e6808

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Salles J, Chanet A, Giraudet C, Patrac V, Pierre P, Jourdan M, Luiking YC, Verlaan S, Migné C, Boirie Y, Walrand S (2013) 1,25(OH)2-vitamin D3 enhances the stimulating effect of leucine and insulin on protein synthesis rate through Akt/PKB and mTOR mediated pathways in murine C2C12 skeletal myotubes. Mol Nutr Food Res 57:2137–2146

    Article  CAS  PubMed  Google Scholar 

  • Sambrook PN, Chen JS, March LM, Cameron ID, Cumming RG, Lord SR, Zochling J, Sitoh YY, Lau TC, Schwarz J, Seibel MJ (2004) Serum parathyroid hor- mone predicts time to fall independent of vitamin D status in a frail elderly popu- lation. J Clin Endocrinol Metab 89:1572–1576

    Article  CAS  PubMed  Google Scholar 

  • Sato M, Takeda N, Sarui H, Takami R, Takami K, Hayashi M, Sasaki A, Kawachi S, Yoshino K, Yasuda K (2001) Association between serum leptin concentrations and bone mineral density, and biochemical markers of bone turnover in adult men. J Clin Endocrinol Metab 86:5273–5276

    Article  CAS  PubMed  Google Scholar 

  • Sato Y, Iwamoto J, Kanoko T, Satoh K (2005) Low-dose vitamin D prevents muscular atrophy and reduces falls and hip fractures in women after stroke: a randomized controlled trial. Cerebrovasc Dis 20:187–192

    Article  CAS  PubMed  Google Scholar 

  • Sato S, Hanada R, Kimura A, Abe T, Matsumoto T, Iwasaki M, Inose H, Ida T, Mieda M, Takeuchi Y, Fukumoto S, Fujita T, Kato S, Kangawa K, Kojima M, Shinomiya K, Takeda S (2007) Central control of bone remodeling by neuromedin U. Nat Med 13:1234–1240

    Article  CAS  PubMed  Google Scholar 

  • Schwetz V, Pieber T, Obermayer-Pietsch B (2012) The endocrine role of the skeleton: background and clinical evidence. Eur J Endocrinol 166:959–967

    Article  CAS  PubMed  Google Scholar 

  • Scott D, Ebeling PR, Sanders KM, Aitken D, Winzenberg T, Jones G (2015) Vitamin d and physical activity status: associations with five-year changes in body composition and muscle function in community-dwelling older adults. J Clin Endocrinol Metab 100:670–678

    Article  CAS  PubMed  Google Scholar 

  • Shi YC, Baldock PA (2012) Central and peripheral mechanisms of the NPY system in the regulation of bone and adipose tissue. Bone 50:430–436

    Article  CAS  PubMed  Google Scholar 

  • Singh S, Kumar D, Lal AK (2015) Serum osteocalcin as a diagnostic biomarker for primary osteoporosis in women. J Clin Diagn Res 9:RC04–RC07

    CAS  PubMed  PubMed Central  Google Scholar 

  • Snijder MB, van Schoor NM, Pluijm SM, van Dam RM, Visser M, Lips P (2006) Vitamin D status in relation to one-year risk of recurrent falling in older men and women. J Clin Endocrinol Metab 91:2980–2985

    Article  CAS  PubMed  Google Scholar 

  • Steinberg GR, Parolin ML, Heigenhauser GJ, Dyck DJ (2002) Leptin increases FA oxidation in lean but not obese human skeletal muscle: evidence of peripheral leptin resistance. Am J Physiol Endocrinol Metab 283:E187–E192

    Article  CAS  PubMed  Google Scholar 

  • Suriyaarachchi P, Gomez F, Curcio CL, Boersma D, Murthy L, Grill V, Duque G (2018) High parathyroid hormone levels are associated with osteosarcopenia in older individuals with a history of falling. Maturitas 113:21–25

    Article  CAS  PubMed  Google Scholar 

  • Swaminathan R (2001) Biochemical markers of bone turnover. Clin Chim Acta 313:95–105

    Article  CAS  PubMed  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R, Liu X, Zhao L, Parker KL, Armstrong D, Ducy P, Karsenty G (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  CAS  PubMed  Google Scholar 

  • Tartaglia LA, Dembski M, Weng X, Deng N, Culpepper J, Devos R, Richards GJ, Campfield LA, Clark FT, Deeds J, Muir C, Sanker S, Moriarty A, Moore KJ, Smutko JS, Mays GG, Wool EA, Monroe CA, Tepper RI (1995) Identification and expression cloning of a leptin receptor, OB-R. Cell 83:1263–1271

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Gori F, Khosla S, Jensen MD, Burguera B, Riggs BL (1999) Leptin acts on human marrow stromal cells to enhance differentiation to osteoblasts and to inhibit differentiation to adipocytes. Endocrinology 140:1630–1638

    Article  CAS  PubMed  Google Scholar 

  • Thomas T, Burguera B, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Riggs BL, Khosla S (2001) Role of serum leptin, insulin, and estrogen levels as potential mediators of the relationship between fat mass and bone mineral density in men versus women. Bone 29:114–120

    Article  CAS  PubMed  Google Scholar 

  • Turner RT, Kalra SP, Wong CP, Philbrick KA, Lindenmaier LB, Boghossian S, Iwaniec UT (2013) Peripheral leptin regulates bone formation. J Bone Miner Res 28:22–34

    Article  CAS  PubMed  Google Scholar 

  • Visser M, Pahor M, Taaffe DR, Goodpaster BH, Simonsick EM, Newman AB et al (2002) Relationship of interleukin-6 and tumor necrosis factor-alpha with muscle mass and muscle strength in elderly men and women: the Health ABC Study. J Gerontol A Biol Sci Med Sci 57:M326–M332

    Article  PubMed  Google Scholar 

  • Visser M, Deeg DJ, Lips P (2003) Longitudinal aging study Amsterdam. Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the longitudinal aging study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  CAS  PubMed  Google Scholar 

  • Walrand S (2016) Effect of vitamin D on skeletal muscle. Geriatr Psychol Neuropsychiatr Vieil 14:127–134

    PubMed  Google Scholar 

  • Wang J, Liu R, Hawkins M, Barzilai N, Rossetti L (1998) A nutrient-sensing pathway regulates leptin gene expression in muscle and fat. Nature 393:684–688

    Article  CAS  PubMed  Google Scholar 

  • Wren AM, Small CJ, Abbott CR, Jethwa PH, Kennedy AR, Murphy KG, Stanley SA, Zollner AN, Ghatei MA, Bloom SR (2002) Hypothalamic actions of neuromedin U. Endocrinology 143:4227–4234

    Article  CAS  PubMed  Google Scholar 

  • Wu N, Wang QP, Li H, Wu XP, Sun ZQ, Luo XH (2010) Relationships between serum adiponectin, leptin concentrations and bone mineral density, and bone biochemical markers in Chinese women. Clin Chim Acta 411:771–775

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi M, Sugimoto T, Yamaguchi T, Nakaoka D, Kanzawa M, Yano S, Ozuru R, Sugishita T, Chihara K (2001) Plasma leptin concentrations are associated with bone mineral density and the presence of vertebral fractures in postmenopausal women. Clin Endocrinol 55:341–347

    Article  CAS  Google Scholar 

  • Yasumura S, Aloia JF, Gundberg CM, Yeh J, Vaswani AN, Yuen K, Lo Monte AF, Ellis KJ, Cohn SH (1987) Serum osteocalcin and total body calcium in normal pre- and postmenopausal women and postmenopausal osteoporotic patients. J Clin Endocrinol Metab 64:681–685

    Article  CAS  PubMed  Google Scholar 

  • Zhao LJ, Liu YJ, Liu PY, Hamilton J, Recker RR, Deng HW (2007) Relationship of obesity with osteoporosis. J Clin Endocrinol Metab 92:1640–1646

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guillaume T. Duval .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Duval, G.T., Meytadier, H., Annweiler, C., Duque, G. (2019). Calciotropic Hormones and Osteosarcopenia. In: Duque, G. (eds) Osteosarcopenia: Bone, Muscle and Fat Interactions. Springer, Cham. https://doi.org/10.1007/978-3-030-25890-0_9

Download citation

Publish with us

Policies and ethics