Skip to main content

Constraint Splitting and Projection Methods for Optimal Control of Double Integrator

  • Chapter
  • First Online:
Splitting Algorithms, Modern Operator Theory, and Applications

Abstract

We consider the minimum-energy control of a car, which is modelled as a point mass sliding on the ground in a fixed direction, and so it can be mathematically described as the double integrator. The control variable, representing the acceleration or the deceleration, is constrained by simple bounds from above and below. Despite the simplicity of the problem, it is not possible to find an analytical solution to it because of the constrained control variable. To find a numerical solution to this problem we apply three different projection-type methods: (i) Dykstra’s algorithm, (ii) the Douglas–Rachford (DR) method and (iii) the Aragón Artacho–Campoy (AAC) algorithm. To the knowledge of the authors, these kinds of (projection) methods have not previously been applied to continuous-time optimal control problems, which are infinite-dimensional optimization problems. The problem we study in this article is posed in infinite-dimensional Hilbert spaces. Behaviour of the DR and AAC algorithms are explored via numerical experiments with respect to their parameters. An error analysis is also carried out numerically for a particular instance of the problem for each of the algorithms.

We dedicate our contribution to the memory of our friend and mentor Jonathan Borwein

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    In the general case, there is also an auxiliary sequence (p n) associated with A; however, because A is an affine subspace, it is not needed in our setting.

  2. 2.

    It appears that this constraint qualification is not easy to check in our setting.

  3. 3.

    Aragón Artacho and Campoy recommend α = 0.9 and β ∈ [0.7,  0.8]; see [3, End of Section 7].

References

  1. Alt, W., Kaya, C.Y., Schneider, C.: Dualization and discretization of linear-quadratic control problems with bang–bang solutions. EURO J. Comput. Optim. 4, 47–77 (2016)

    Article  MathSciNet  Google Scholar 

  2. Alwadani, S., Bauschke, H.H., Moursi, W.M., Wang, X.: On the asymptotic behaviour of the Aragon Artacho-Campoy algorithm. Oper. Res. Letters 46 585–587 (2018)

    Article  MathSciNet  Google Scholar 

  3. Aragón Artacho, F.J., Campoy, R.: A new projection method for finding the closest point in the intersection of convex sets. Comput. Optim. Appl. 69, 99–132 (2018)

    Article  MathSciNet  Google Scholar 

  4. Aragón Artacho, F.J., Campoy, R.: Computing the resolvent of the sum of maximally monotone operators with the averaged alternating modified reflections algorithm. J. Optim. Th. Appl. 181, 709–726 (2019)

    Article  MathSciNet  Google Scholar 

  5. Ascher, U.M., Mattheij, R.M.M., Russell, R.D.: Numerical Solution of Boundary Value Problems for Ordinary Differential Equations. SIAM Publications, Philadelphia (1995)

    Book  Google Scholar 

  6. Bauschke, H.H., Combettes, P.L.: Convex Analysis and Monotone Operator Theory in Hilbert Spaces. Second edition. Springer (2017)

    Book  Google Scholar 

  7. Bauschke, H.H., Koch, V.R.: Projection methods: Swiss Army knives for solving feasibility and best approximation problems with halfspaces. Infinite Products of Operators and Their Applications, 1–40 (2012)

    Google Scholar 

  8. Bauschke, H.H., Moursi, W.M.: On the order of the operators in the Douglas–Rachford algorithm. Optimization Letters 10, 447–455 (2016)

    Article  MathSciNet  Google Scholar 

  9. Bauschke, H.H., Moursi, W.M.: On the Douglas–Rachford algorithm. Math. Program. (Ser. A) 164, 263–284 (2017)

    Google Scholar 

  10. Borwein, J.M., Sims, B.: The Douglas-Rachford Algorithm in the absence of convexity. In: Bauschke H., Burachik R., Combettes P., Elser V., Luke D., Wolkowicz H. (eds) Fixed-Point Algorithms for Inverse Problems in Science and Engineering. Springer Optimization and Its Applications, vol 49, pp. 93–109. Springer, New York, NY (2011)

    Google Scholar 

  11. Boyle J.P., Dykstra R.L.: A method for finding projections onto the intersection of convex sets in Hilbert spaces. In: Advances in Order Restricted Statistical Inference, vol. 37, Lecture Notes in Statistics, pp. 28–47. Springer (1986)

    Google Scholar 

  12. Burachik, R.S., Kaya, C.Y., Majeed, S.N.: A duality approach for solving control-constrained linear-quadratic optimal control problems. SIAM J. Control Optim. 52, 1771–1782 (2014)

    Article  MathSciNet  Google Scholar 

  13. Combettes, P.L.: A block-iterative surrogate constraint splitting method for quadratic signal recovery. IEEE Trans. Sig. Proc. 51, 2432–2442 (2003)

    Article  MathSciNet  Google Scholar 

  14. Combettes, P.L.: Iterative construction of the resolvent of a sum of maximal monotone operators. J. Convex Anal. 16, 727–748 (2009)

    MathSciNet  MATH  Google Scholar 

  15. Dontchev, A.L., Hager, W.W.: The Euler approximation in state constrained optimal control. Math. Comp. 70, 173–203 (2001)

    Article  MathSciNet  Google Scholar 

  16. Dontchev, A.L., Hager, W.W., Malanowski, K.: Error bound for Euler approximation of a state and control constrained optimal control problem. Numer. Funct. Anal. Optim. 21, 653–682 (2000)

    Article  MathSciNet  Google Scholar 

  17. Douglas, J., Rachford, H.H.: On the numerical solution of heat conduction problems in two and three space variables. Trans. Amer. Math. Soc. 82, 421–439 (1956)

    Article  MathSciNet  Google Scholar 

  18. Eckstein, J., Bertsekas, D.P.: On the Douglas-Rachford splitting method and the proximal point algorithm for maximal monotone operators. Math. Prog. (Ser. A) 55, 293–318 (1992)

    Google Scholar 

  19. Eckstein, J., Ferris, M.C.: Operator-splitting methods for monotone affine variational inequalities, with a parallel application to optimal control. INFORMS J. Comput. 10, 218–235 (1998)

    Article  MathSciNet  Google Scholar 

  20. Fourer, R., Gay, D.M., Kernighan, B.W.: AMPL: A Modeling Language for Mathematical Programming, Second Edition. Brooks/Cole Publishing Company / Cengage Learning (2003)

    Google Scholar 

  21. Hestenes, M.R.: Calculus of Variations and Optimal Control Theory. John Wiley & Sons, New York (1966)

    MATH  Google Scholar 

  22. Kaya, C.Y., Lucas, S.K. Simakov, S.T.: Computations for bang–bang constrained optimal control using a mathematical programming formulation. Optim. Contr. Appl. Meth. 25, 295–308 (2004)

    Article  MathSciNet  Google Scholar 

  23. Kaya, C.Y., Noakes, J.L.: Computations and time-optimal controls, Opt. Cont. Appl. Meth. 17, 171–185 (1996)

    Article  MathSciNet  Google Scholar 

  24. Kaya, C.Y., Noakes, J.L.: Computational algorithm for time-optimal switching control. J. Optim. Theory App. 117, 69–92 (2003)

    Article  Google Scholar 

  25. Lions, P.-L., Mercier, B.: Splitting algorithms for the sum of two nonlinear operators. SIAM J. Numer. Anal. 16, 964–979 (1979)

    Article  MathSciNet  Google Scholar 

  26. O’Donoghue, B., Stathopoulos, G., Boyd, S.: A splitting method for optimal control. IEEE Trans. Contr. Sys. Tech. 21, 2432–2442 (2013)

    Article  Google Scholar 

  27. Rugh, W.J.: Linear System Theory, 2nd Edition. Pearson (1995)

    Google Scholar 

  28. Stoer, J., Bulirsch, R.: Introduction to Numerical Analysis, 2nd Edition. Springer-Verlag, New York (1993)

    Book  Google Scholar 

  29. Svaiter, B.F.: On weak convergence of the Douglas-Rachford method. SIAM J. Control Optim. 49 , 280–287 (2011)

    Article  MathSciNet  Google Scholar 

  30. Wächter, A., Biegler, L.T.: On the implementation of a primal-dual interior point filter line search algorithm for large-scale nonlinear programming. Math. Prog. 106, 25–57 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. Yalçın Kaya .

Editor information

Editors and Affiliations

Appendix

Appendix

Algorithm 1b (Dykstra-b)

Steps 1–4:

(Initialization) Do as in Steps 1–4 of Algorithm 1.

Step 5:

(Stopping criterion) If \(\|u^{k+1} - u^k\|{ }_{L^\infty } \le \varepsilon \), then return u k+1 and stop. Otherwise, set k := k + 1 and go to Step 2.

Algorithm 2b (DR-b)

Step 1:

(Initialization) Choose a parameter \(\lambda \in \left ]0,1\right [\) and the initial iterate u 0 arbitrarily. Choose a small parameter ε > 0, and set k = 0.

Step 2:

(Projection onto \(\mathcal {A}\)) Set u  = λu k. Compute \(\widetilde {u} = P_{\mathcal {A}}(u^-)\) by using (2.9).

Step 3:

(Projection onto \(\mathcal {B}\)) Set \(u^- := 2\widetilde {u}-u^k\). Compute \(\widehat {u} = P_{\mathcal {B}}(u^-)\) by using (2.22).

Step 4:

(Update) Set \(u^{k+1} := u^k + \widehat {u} - \widetilde {u}\).

Step 5:

(Stopping criterion) If \(\|u^{k+1} - u^k\|{ }_{L^\infty } \le \varepsilon \), then return \(\widetilde {u}\) and stop. Otherwise, set k := k + 1 and go to Step 2.

Algorithm 3b (AAC-b)

Step 1:

(Initialization) Choose the initial iterate u 0 arbitrarily. Choose a small parameter ε > 0, two parameters α and β in \(\left ]0,1\right [\), and set k = 0.

Step 2:

(Projection onto \(\mathcal {A}\)) Set u  = u k. Compute \(\widetilde {u} = P_{\mathcal {A}}(u^-)\) by using (2.9).

Step 3:

(Projection onto \(\mathcal {B}\)) Set \(u^- = 2\beta \widetilde {u}-u^k\). Compute \(\widehat {u} = P_{\mathcal {B}}(u^-)\) by using (2.22).

Step 4:

(Update) Set \(u^{k+1} := u^k +2\alpha \beta (\widehat {u}-\widetilde {u})\).

Step 5:

(Stopping criterion) If \(\|u^{k+1} - u^k\|{ }_{L^\infty } \le \varepsilon \), then return \(\widetilde {u}\) and stop. Otherwise, set k := k + 1 and go to Step 2.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bauschke, H.H., Burachik, R.S., Kaya, C.Y. (2019). Constraint Splitting and Projection Methods for Optimal Control of Double Integrator. In: Bauschke, H., Burachik, R., Luke, D. (eds) Splitting Algorithms, Modern Operator Theory, and Applications. Springer, Cham. https://doi.org/10.1007/978-3-030-25939-6_2

Download citation

Publish with us

Policies and ethics