Skip to main content

Upcoming Pharmacological and Interventional Therapies for the Treatment of Physical Frailty and Sarcopenia

  • Chapter
  • First Online:
Frailty and Sarcopenia in Cirrhosis

Abstract

Sarcopenia in cirrhosis is a multifaceted process. As our understanding of the complex biology of skeletal muscle improves, we are getting closer to identifying specific therapies to treat muscle depletion in cirrhotic and non-cirrhotic populations. Anabolic hormones including testosterone and growth factor are often reduced in cirrhosis; pharmacological therapies that replenish these deficiencies may assist in preventing or reversing muscle depletion. In cirrhosis, hyperammonemia and portal hypertension both play important roles in the pathogenesis of sarcopenia. Specific treatments and interventions targeting these physiological abnormalities may also have added anabolic effects on muscle. Myostatin has emerged as key negative regulator of skeletal muscle in many chronic disease states including cirrhosis. Novel therapies that target different components of the extracellular myostatin signaling pathway are currently in various stages of development. Other drugs in clinical development include selective androgen receptor modulators, ghrelin agonists, and urocortin II agonists. However, while mechanistically these interventions offer possible treatments for sarcopenia in cirrhosis, there is a lack of large randomized trials to support any pharmacological intervention in this population. Therapeutic clinical trials in sarcopenia face significant challenges including a lack of consensus in the definition and assessment methodology for sarcopenia and the heterogenous population who each likely has differing underlying contributors to muscle wasting. Importantly, it is yet to be determined whether increasing muscle mass translates to improved patient outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sinclair M, Grossmann M, Angus PW, Hoermann R, Hey P, Scodellaro T, et al. Low testosterone as a better predictor of mortality than sarcopenia in men with advanced liver disease. J Gastroenterol Hepatol. 2016;31(3):661–7.

    Article  CAS  PubMed  Google Scholar 

  2. Moctezuma-Velazquez C, Low G, Mourtzakis M, Ma M, Burak KW, Tandon P, et al. Association between low testosterone levels and sarcopenia in cirrhosis: a cross-sectional study. Ann Hepatol. 2018;17(4):615–23.

    Article  CAS  PubMed  Google Scholar 

  3. Jones TH, Kennedy RL. Cytokines and hypothalamic-pituitary function. Cytokine. 1993;5(6):531–8.

    Article  CAS  PubMed  Google Scholar 

  4. Grossmann M, Hoermann R, Gani L, Chan I, Cheung A, Gow PJ, et al. Low testosterone levels as an independent predictor of mortality in men with chronic liver disease. Clin Endocrinol. 2012;77(2):323–8.

    Article  CAS  Google Scholar 

  5. Wells R. Prednisolone and testosterone propionate in cirrhosis of the liver. A controlled trial. Lancet. 1960;2(7166):1416–9.

    Article  CAS  PubMed  Google Scholar 

  6. Puliyel MM, Vyas GP, Mehta GS. Testosterone in the management of cirrhosis of the liver – a controlled study. Aust NZ J Med. 1977;7(6):17–30.

    Article  CAS  Google Scholar 

  7. Rambaldi A, Gluud C. Anabolic-androgenic steroids for alcoholic liver disease. Cochrane Database Syst Rev. 2006(4).

    Google Scholar 

  8. Gluud C, Hardt F, Juhl E. Testosterone treatment of men with alcoholic cirrhosis: a double-blind study. Hepatology. 1986;6(5):807–13.

    Article  Google Scholar 

  9. Fenster F. The nonefficacy of short-term anabolic steroid therapy in alcoholic liver disease. Ann Intern Med. 1966;65(4):738–44.

    Article  CAS  Google Scholar 

  10. Yurci A, Yucesoy M, Unluhizarci K, Torun E, Gursoy S, Baskol M, et al. Effects of testosterone gel treatment in hypogonadal men with liver cirrhosis. Clin Res Hepatol Gastroenterol. 2011;35(12):845–54.

    Article  CAS  PubMed  Google Scholar 

  11. Bhasin S, Jasuja R. Selective androgen receptor modulators as function promoting therapies. Curr Opin Clin Nutr Metab Care. 2009;12(3):232–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Jones A, Hwang D-J, Narayanan R, Miller DD, Dalton JT. Effects of a novel selective androgen receptor modulator on dexamethasone-induced and hypogonadism-induced muscle atrophy. Endocrinology. 2010;151(8):3706–19.

    Article  CAS  PubMed  Google Scholar 

  13. Crawford J, Prado CMM, Johnston MA, Gralla RJ, Taylor RP, Hancock ML, et al. Study design and rationale for the phase 3 clinical development program of enobosarm, a selective androgen receptor modulator, for the prevention and treatment of muscle wasting in cancer patients (POWER trials). Curr Oncol Rep. 2016;18:37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Crawford J, Dalton JT, Hancock ML, Johnston MA, Steiner M. Results from two Phase 3 randomized trials of enobosarm, selective androgen receptor modulator (SARM), for the prevention and treatment of muscle wasting in NSCLC2013. Eur J Cancer. 2013:S10–S p.

    Google Scholar 

  15. Papanicolaou DA, Ather SN, Zhu H, Zhou Y, Lutkiewicz J, Scott BB, et al. A phase IIA randomized, placebo-controlled clinical trial to study the efficacy and safety of the selective androgen receptor modulator (SARM), MK-0773 in female participants with sarcopenia. J Nutr Health Aging. 2013;17(6):533–43. Epub 2013/06/05.

    Article  CAS  PubMed  Google Scholar 

  16. Dolz C, Raurich JM, Ibanez J, Obrador A, Marse P, Gaya J. Ascites increases the resting energy expenditure in liver cirrhosis. Gastroenterology. 1991;100(3):738–44.

    Article  CAS  PubMed  Google Scholar 

  17. Saunders J, Brian A, Wright M, Stroud M. Malnutrition and nutrition support in patients with liver disease. Front Gastroenterol. 2010;1(2):105–11.

    Article  Google Scholar 

  18. Karlsen S, Fynne L, Gronbaek H, Krogh K. Small intestinal transit in patients with liver cirrhosis and portal hypertension: a descriptive study. BMC Gastroenterol. 2012;12:176.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kovarik M, Muthny T, Sispera L, Holecek M. The dose-dependent effects of endotoxin on protein metabolism in two types of rat skeletal muscle. J Physiol Biochem. 2012;68(3):385–95.

    Article  CAS  PubMed  Google Scholar 

  20. Papaluca T, Gow P. Terlipressin: current and emerging indications in chronic liver disease. J Gastroenterol Hepatol. 2018;33(3):591–8.

    Article  PubMed  Google Scholar 

  21. Sharma P, Kumar A, Shrama BC, Sarin SK. An open label, pilot, randomized controlled trial of noradrenaline versus terlipressin in the treatment of type 1 hepatorenal syndrome and predictors of response. Am J Gastroenterol. 2008;103(7):1689–97.

    Article  CAS  PubMed  Google Scholar 

  22. Gow PJ, Ardalan ZS, Vasudevan A, Testro AG, Ye B, Angus PW. Outpatient terlipressin infusion for the treatment of refractory ascites. Am J Gastroenterol. 2016;111(7):1041–2.

    Article  CAS  PubMed  Google Scholar 

  23. Robertson M, Majumdar A, Garrett K, Rumler G, Gow P, Testro A. Continuous outpatient terlipressin infusion for hepatorenal syndrome as a bridge to successful liver transplantation. Hepatology. 2014;60(6):2125–6.

    Article  PubMed  Google Scholar 

  24. Vasudevan A, Ardalan Z, Gow P, Angus P, Testro A. Efficacy of outpatient continuous terlipressin infusions for hepatorenal syndrome. Hepatology. 2016;64(1):316–8.

    Article  PubMed  Google Scholar 

  25. Chapman B, Gow P, Angus P, Sinclair M, Testro A. Outpatient terlipressin infusion increases dietary intake and functional muscle strength in patients awaiting liver transplant. J Hepatol. 2018;68:S726.

    Article  Google Scholar 

  26. Plauth M, Schutz T, Buckendahl DP, Kreymann G, Pirlich M, Grungreiff S, et al. Weight gain after transjugular intrahepatic portosystemic shunt is associated with improvement in body composition in malnourished patients with cirrhosis and hypermetabolism. J Hepatol. 2004;40(2):228–33.

    Article  PubMed  Google Scholar 

  27. Tsien C, Shah SN, McCullough AJ, Dasarathy S. Reversal of sarcopenia predicts survival after a transjugular intrahepatic portosystemic stent. Eur J Gastroenterol Hepatol. 2013;25(1):85–93.

    Article  PubMed  Google Scholar 

  28. Allard JP, Chau J, Sandokji K, Blendis LM, Wong F. Effects of ascites resolution after successful TIPS on nutrition in cirrhotic patients with refractory ascites. Am J Gastroenterol. 2001;96(8):2442–7.

    Article  CAS  PubMed  Google Scholar 

  29. Montomoli J, Holland-Fischer P, Bianchi G, Gronbaek H, Vilstrup H, Marchesini G, et al. Body composition changes after transjugular intrahepatic portosystemic shunt in patients with cirrhosis. World J Gastroenterol. 2010;16(3):348–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Nolte W, Wirtz M, Rossbach C, Leonhardt U, Buchwald AB, Scholz KH, et al. TIPS implantation raises leptin levels in patients with liver cirrhosis. Exp Clin Endocrinol Diabetes. 2003;111(7):435–42.

    Article  CAS  PubMed  Google Scholar 

  31. Holland-Fischer P, Vilstrup H, Frystyk J, Nielsen DT, Flyvbjerg A, Groonbaek H. The IGF system after insertion of a transjugular intrahepatic porto-systemic shunt in patients with liver cirrhosis. Eur J Endocrinol. 2009;160(6):957–63.

    Article  CAS  PubMed  Google Scholar 

  32. Holland-Fischer P, Nielsen MF, Vilstrup H, Nielsen DT, Schmitz O, Gronbaek H. Insulin sensitivity and body composition in cirrhosis: changes after tips. J Hepatol. 2009;1:S80.

    Article  Google Scholar 

  33. Dasarathy S, Hatzoglou M. Hyperammonemia and proteostasis in cirrhosis. Curr Opin Clin Nutr Metab Care. 2018;21(1):30–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Merli M, Giusto M, Lucidi C, Giannelli V, Pentassuglio I, Di Gregorio V, et al. Muscle depletion increases the risk of overt and minimal hepatic encephalopathy: results of a prospective study. Metab Brain Dis. 2013;28(2):281–4.

    Article  CAS  PubMed  Google Scholar 

  35. Bhanji RA, Moctezuma-Velazquez C, Duarte-Rojo A, Ebadi M, Ghosh S, Rose C, et al. Myosteatosis and sarcopenia are associated with hepatic encephalopathy in patients with cirrhosis. Hepatol Int. 2018:1–10.

    Google Scholar 

  36. Davuluri G, Krokowski D, Guan BJ, Kumar A, Thapaliya S, Singh D, et al. Metabolic adaptation of skeletal muscle to hyperammonemia drives the beneficial effects of l-leucine in cirrhosis. J Hepatol. 2016;65(5):929–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Dasarathy S, McCullough AJ, Muc S, Schneyer A, Bennett CD, Dodig M, et al. Sarcopenia associated with portosystemic shunting is reversed by follistatin. J Hepatol. 2011;54(5):915–21.

    Article  CAS  PubMed  Google Scholar 

  38. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ. Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol. 2009;296(6):C1258–70.

    Article  CAS  PubMed  Google Scholar 

  39. Davuluri G, Thapaliya S, Kumar A, Have GAT, Welle SL, Engelen M, et al. Hyperammonemia impairs skeletal muscle protein synthesis via a novel Myostatin-ALK5-AMPK dependent mechanism. Hepatology. 2016;64(1 Supplement 1):355A.

    Google Scholar 

  40. Matsumura T, Morinaga Y, Fujitani S, Takehana K, Nishitani S, Sonaka I. Oral administration of branched-chain amino acids activates the mTOR signal in cirrhotic rat liver. Hepatol Res. 2005;33(1):27–32.

    Article  CAS  PubMed  Google Scholar 

  41. Kumar A, Nascimento ESR, Rennison JH, Allawy A, Van Wagoner DR, Hoppel CL, et al. Ammonia withdrawal reverses impaired skeletal muscle mitochondrial function. Hepatology. 2017;66. S1:1032A.

    Article  Google Scholar 

  42. Kumar A, Davuluri G, Silva RNE, Engelen MPKJ, Ten Have GAM, Prayson R, et al. Ammonia lowering reverses sarcopenia of cirrhosis by restoring skeletal muscle proteostasis. Hepatology. 2017;65(6):2045–58.

    Article  CAS  PubMed  Google Scholar 

  43. Borentain P, Rouabah K, Allard G, Ressiot E, Gerolami R. Letter: nutritional benefits of rifaximin in cirrhotic patients. Aliment Pharmacol Ther. 2018;47(5):699–700.

    Article  CAS  PubMed  Google Scholar 

  44. Kang SH, Lee YB, Lee JH, Nam JY, Chang Y, Cho H, et al. Rifaximin treatment is associated with reduced risk of cirrhotic complications and prolonged overall survival in patients experiencing hepatic encephalopathy. Aliment Pharmacol Ther. 2017;46(9):845–55.

    Article  CAS  PubMed  Google Scholar 

  45. Kaji K, Takaya H, Saikawa S, Furukawa M, Sato S, Kawaratani H, et al. Rifaximin ameliorates hepatic encephalopathy and endotoxemia without affecting the gut microbiome diversity. World J Gastroenterol. 2017;23(47):8355–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Caufriez A, Reding P, Urbain D, Golstein J, Copinschi G. Insulin-like growth factor I: a good indicator of functional hepatocellular capacity in alcoholic liver cirrhosis. J Endocrinol Investig. 1991;14(4):317–21.

    Article  CAS  Google Scholar 

  47. Khoshnood A, Nasiri Toosi M, Faravash MJ, Esteghamati A, Froutan H, Ghofrani H, et al. A survey of correlation between insulin-like growth factor-I (IGF-I) levels and severity of liver cirrhosis. Hepat Mon. 2013;13(2):e6181.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Naranjo JD, Dziki JL, Badylak SF. Regenerative medicine approaches for age-related muscle loss and sarcopenia: a mini-review. Gerontology. 2017;63(6):580–9.

    Article  CAS  PubMed  Google Scholar 

  49. Sattler FR. Growth hormone in the aging male. Best Pract Res Clin Endocrinol Metab. 2013;27(4):541–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S. Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab. 2003;88(11):5490–6.

    Article  CAS  PubMed  Google Scholar 

  51. Pérez R, García-Fernández M, Díaz-Sánchez M, Puche JE, Delgado G, Conchillo M, et al. Mitochondrial protection by low doses of insulin-like growth factor- I in experimental cirrhosis. World J Gastroenterol. 2008;14(17):2731–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Lorenzo-Zúñiga V, Rodríguez-Ortigosa CM, Bartolí R, Martínez-Chantar ML, Martínez-Peralta L, Pardo A, et al. Insulin-like growth factor I improves intestinal barrier function in cirrhotic rats. Gut. 2006;55(9):1306–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Donaghy A, Ross R, Wicks C, Hughes SC, Holly J, Gimson A, et al. Growth hormone therapy in patients with cirrhosis: a pilot study of efficacy and safety. Gastroenterology. 1997;113(5):1617–22.

    Article  CAS  PubMed  Google Scholar 

  54. Wallace JD, Abbott-Johnson WJ, Crawford DHG, Barnard R, Potter JM, Cuneo RC. GH treatment in adults with chronic liver disease: a randomized, double-blind, placebo-controlled, cross-over study. J Clin Endocrinol Metab. 2002;87(6):2751–9.

    Article  CAS  PubMed  Google Scholar 

  55. Li N, Zhou L, Zhang B, Dong P, Lin W, Wang H, et al. Recombinant human growth hormone increases albumin and prolongs survival in patients with chronic liver failure: a pilot open, randomized, and controlled clinical trial. Dig Liver Dis. 2008;40(7):554–9.

    Article  CAS  PubMed  Google Scholar 

  56. Conchillo M, de Knegt RJ, Payeras M, Quiroga J, Sangro B, Herrero JI, et al. Insulin-like growth factor I (IGF-I) replacement therapy increases albumin concentration in liver cirrhosis: results of a pilot randomized controlled clinical trial. J Hepatol. 2005;43(4):630–6.

    Article  CAS  PubMed  Google Scholar 

  57. Tavares ABW, Micmacher E, Biesek S, Assumpção R, Redorat R, Veloso U, et al. Effects of growth hormone administration on muscle strength in men over 50 years old. Int J Endocrinol. 2013;2013:942030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Pape GS, Friedman M, Underwood LE, Clemmons DR. The effect of growth hormone on weight gain and pulmonary function in patients with chronic obstructive lung disease. Chest. 1991;99(6):1495–500.

    Article  CAS  PubMed  Google Scholar 

  59. Burdet L, de Muralt B, Schutz Y, Pichard C, Fitting JW. Administration of growth hormone to underweight patients with chronic obstructive pulmonary disease. A prospective, randomized, controlled study. Am J Respir Crit Care Med. 1997;156(6):1800–6.

    Article  CAS  PubMed  Google Scholar 

  60. Gelato M, McNurlan M, Freedland E. Role of recombinant human growth hormone in HIV-associated wasting and cachexia: pathophysiology and rationale for treatment. Clin Ther. 2007;29(11):2269–88.

    Article  CAS  PubMed  Google Scholar 

  61. Generali JA, Cada DJ. Recombinant human growth hormone: HIV-related lipodystrophy. Hosp Pharm. 2014;49(5):432–4.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Available from: https://clinicaltrials.gov/ct2/show/NCT03420144.

  63. Dasarathy S. Myostatin and beyond in cirrhosis: all roads lead to sarcopenia. J Cachexia Sarcopenia Muscle. 2017;8(6):864–9. Epub 2017/11/24.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Dasarathy S, Merli M. Sarcopenia from mechanism to diagnosis and treatment in liver disease. J Hepatol. 2016;65(6):1232–44.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Garcia PS, Cabbabe A, Kambadur R, Nicholas G, Csete M. Brief-reports: elevated myostatin levels in patients with liver disease: a potential contributor to skeletal muscle wasting. Anesth Analg. 2010;111(3):707–9. Epub 2010/08/06.

    Article  CAS  PubMed  Google Scholar 

  66. Nishikawa H, Enomoto H, Ishii A, Iwata Y, Miyamoto Y, Ishii N, et al. Elevated serum myostatin level is associated with worse survival in patients with liver cirrhosis. J Cachexia Sarcopenia Muscle. 2017;8(6):915–25. Epub 2017/06/20.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Sinclair M, Gow PJ, Grossmann M, Angus PW. Review article: sarcopenia in cirrhosis – aetiology, implications and potential therapeutic interventions. Aliment Pharmacol Ther. 2016;43(7):765–77.

    Article  CAS  PubMed  Google Scholar 

  68. Rodino-Klapac LR, Haidet AM, Kota J, Handy C, Kaspar BK, Mendell JR. Inhibition of myostatin with emphasis on follistatin as a therapy for muscle disease. Muscle Nerve. 2009;39(3):283–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kota J, Handy CR, Haidet AM, Montgomery CL, Eagle A, Rodino-Klapac LR, et al. Follistatin gene delivery enhances muscle growth and strength in nonhuman primates. Sci Transl Med. 2009;1(6):6ra15. Epub 2010/04/07.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Saitoh M, Ishida J, Ebner N, Anker SD, Springer J, Haehling S. Myostatin inhibitors as pharmacological treatment for muscle wasting and muscular dystrophy. J Cachexia Sarcopenia Muscle. 2017;2(1):1–10.

    Google Scholar 

  71. Golan T, Geva R, Richards D, Madhusadan S, Lin B, Wang H, et al. LY2495655, an antimyostatin antibody, in pancreatic cancer: a randomised, phase 2 trail. J Cachexia Sarcopenia Muscle. 2018;9(5):871–9.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Woodhouse L, Gandhi R, Warden SJ, Poiraudeau S, Myers SL, Benson CT, et al. A phase 2 randomized study investigating the efficacy and safety of myostatin antibody LY2495655 versus placebo in older patients undergoing elective total hip arthroplasty. J Frailty Aging. 2016;5(1):62–70.

    CAS  PubMed  Google Scholar 

  73. Becker C, Lord SR, Studenski SA, Warden SJ, Fielding RA, Recknor CP, et al. Myostatin antibody (LY2495655) in older weak fallers: a proof-of-concept, randomised, phase 2 trial. Lancet Diabetes Endocrinol. 2015;3(12):948–57.

    Article  CAS  PubMed  Google Scholar 

  74. Polkey MI, Praestgaard J, Berwick A, Franssen FME, Singh D, Steiner MC, et al. Activin type II receptor blockade for treatment of muscle depletion in COPD: a randomized trial. Am J Respir Crit Care Med. 2019;199(3):313–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Marchesini G, Bianchi G, Lucidi P, Villanova N, Zoli M, De Feo P. Plasma ghrelin concentrations, food intake, and anorexia in liver failure. J Clin Endocrinol Metab. 2004;89(5):2136.

    Article  CAS  PubMed  Google Scholar 

  76. Tacke F, Brabant G, Kruck E, Horn R, Schöffski P, Hecker H, et al. Ghrelin in chronic liver disease. J Hepatol. 2003;38(4):447–54.

    Article  CAS  PubMed  Google Scholar 

  77. Nagaya N, Itoh T, Murakami S, Oya H, Uematsu M, Miyatake K, et al. Treatment of cachexia with ghrelin in patients with COPD. Chest. 2005;128(3):1187–93.

    Article  CAS  PubMed  Google Scholar 

  78. Temel JS, Abernethy AP, Currow DC, Friend J, Duus EM, Yan Y, et al. Anamorelin in patients with non-small-cell lung cancer and cachexia (ROMANA 1 and ROMANA 2): results from two randomised, double-blind, phase 3 trials. Lancet Oncol. 2016;17(4):519–31.

    Article  CAS  PubMed  Google Scholar 

  79. Anker SD, Coats AJS, Morley JE. Evidence for partial pharmaceutical reversal of the cancer anorexia–cachexia syndrome: the case of anamorelin. J Cachexia Sarcopenia Muscle. 2015;6(4):275–7.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Reyes TM, Lewis K, Perrin MH, Kunitake KS, Vaughan J, Arias CA, et al. Urocortin II: a member of the corticotropin-releasing factor (CRF) neuropeptide family that is selectively bound by type 2 CRF receptors. Proc Natl Acad Sci U S A. 2001;98(5):2843–8. Epub 2001/02/28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Hinkle RT, Donnelly E, Cody DB, Bauer MB, Isfort RJ. Urocortin II treatment reduces skeletal muscle mass and function loss during atrophy and increases nonatrophying skeletal muscle mass and function. Endocrinology. 2003;144(11):4939–46.

    Article  CAS  PubMed  Google Scholar 

  82. Hinkle RT, Lefever FR, Dolan ET, Reichart DL, Zwolshen JM, Oneill TP, et al. Treatment with a corticotrophin releasing factor 2 receptor agonist modulates skeletal muscle mass and force production in aged and chronically ill animals. BMC Musculoskelet Disord. 2011;12:15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Amthor H, Macharia R, Navarrete R, Schuelke M, Brown SC, Otto A, et al. Lack of myostatin results in excessive muscle growth but impaired force generation. Proc Natl Acad Sci U S A. 2007;104(6):1835–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Tapper EB, Konerman M, Murphy S, Sonnenday CJ. Hepatic encephalopathy impacts the predictive value of the Fried Frailty Index. Am J Transplant. 2018;18(10):2566–70.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marie Sinclair .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hey, P., Sinclair, M. (2020). Upcoming Pharmacological and Interventional Therapies for the Treatment of Physical Frailty and Sarcopenia. In: Tandon, P., Montano-Loza, A. (eds) Frailty and Sarcopenia in Cirrhosis. Springer, Cham. https://doi.org/10.1007/978-3-030-26226-6_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26226-6_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26225-9

  • Online ISBN: 978-3-030-26226-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics