Skip to main content

Full-Order Sliding Mode Control Algorithm for Robot Manipulators Using an Adaptive Radial Basis Function Neural Network

  • Conference paper
  • First Online:
Intelligent Computing Methodologies (ICIC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 11645))

Included in the following conference series:

Abstract

In this paper, a full-order sliding mode tracking control system is developed for industrial robots. First, to dismiss the effects of perturbations and uncertainties, while to improve faster response time and to eliminate the singularity, a full-order sliding function is selected. Next, to reach the prescribed tracking path and to remove the chattering, a control method is designed for robot manipulators by using a combination of full-order sliding function and a continuous adaptive control term. Additionally, the unknown dynamic model of the robot is estimated by adopting a radial basis function neural network. Due to the combination of these methodologies, the proposed controller can run free of exact robot dynamics. The suggested controller provides strong properties of high tracking accuracy and quick response with minimum tracking errors. In simulation analysis, the simulated performances verify high effectiveness of the proposed controller in trajectory tracking control of a 3-DOF robot manipulator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edwards, C., Spurgeon, S.: Sliding Mode Control: Theory and Applications. CRC Press, Boca Raton (1998)

    Book  Google Scholar 

  2. Utkin, V.I.: Sliding Modes in Control and Optimization. Springer, Heidelberg (2013)

    Google Scholar 

  3. Tang, Y.: Terminal sliding mode control for rigid robots. Automatica 34(1), 51–56 (1998)

    Article  MathSciNet  Google Scholar 

  4. Wu, Y., Yu, X., Man, Z.: Terminal sliding mode control design for uncertain dynamic systems. Syst. Control Lett. 34(5), 281–287 (1998)

    Article  MathSciNet  Google Scholar 

  5. Mobayen, S.: Fast terminal sliding mode controller design for nonlinear second-order systems with time-varying uncertainties. Complexity 21(2), 239–244 (2015)

    Article  MathSciNet  Google Scholar 

  6. Madani, T., Daachi, B., Djouani, K.: Modular-controller-design-based fast terminal sliding mode for articulated exoskeleton systems. IEEE Trans. Control Syst. Technol. 25(3), 1133–1140 (2017)

    Article  Google Scholar 

  7. Eshghi, S., Varatharajoo, R.: Nonsingular terminal sliding mode control technique for attitude tracking problem of a small satellite with combined energy and attitude control system (CEACS). Aerospace Sci. Technol. 76, 14–26 (2018)

    Article  Google Scholar 

  8. Safa, A., Abdolmalaki, R.Y., Shafiee, S., Sadeghi, B.: Adaptive nonsingular terminal sliding mode controller for micro/nanopositioning systems driven by linear piezoelectric ceramic motors. ISA Trans. 77, 122–132 (2018)

    Article  Google Scholar 

  9. Tuan, V.A., Kang, H.J.: A new finite time control solution for robotic manipulators based on nonsingular fast terminal sliding variables and the adaptive super-twisting scheme. J. Comput. Nonlinear Dyn. 14(3), 031002 (2019)

    Article  Google Scholar 

  10. Yang, L., Yang, J.: Nonsingular fast terminal sliding-mode control for nonlinear dynamical systems. Int. J. Robust Nonlinear Control 21(16), 1865–1879 (2011)

    Article  MathSciNet  Google Scholar 

  11. Chen, G., Jin, B., Chen, Y.: Nonsingular fast terminal sliding mode posture control for six-legged walking robots with redundant actuation. Mechatronics 50, 1–15 (2018)

    Article  Google Scholar 

  12. Vo, A.T., Kang, H.: A chattering-free, adaptive, robust tracking control scheme for nonlinear systems with uncertain dynamics. IEEE Access (2019) https://doi.org/10.1109/access.2019.2891763

    Article  Google Scholar 

  13. Vo, A.T., Kang, H.: An adaptive terminal sliding mode control for robot manipulators with non-singular terminal sliding surface variables. IEEE Access (2018). https://doi.org/10.1109/access.2018.2886222

    Article  Google Scholar 

  14. Feng, Y., Zhou, M., Zheng, X., Han, F., Yu, X.: Full-order terminal sliding-mode control of MIMO systems with unmatched uncertainties. J. Franklin Inst. 355(2), 653–674 (2018)

    Article  MathSciNet  Google Scholar 

  15. Feng, Y., Han, F., Yu, X.: Chattering free full-order sliding-mode control. Automatica 50(4), 1310–1314 (2014)

    Article  MathSciNet  Google Scholar 

  16. Utkin, V.: Discussion aspects of high-order sliding mode control. IEEE Trans. Autom. Control 61(3), 829–833 (2016)

    Article  MathSciNet  Google Scholar 

  17. Liu, J., Wang, X.: Advanced Sliding Mode Control for Mechanical Systems: Design, Analysis and MATLAB Simulation. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-20907-9

    Book  Google Scholar 

  18. Vo, A.T., Kang, H.J., Nguyen, V.C.: An output feedback tracking control based on neural sliding mode and high order sliding mode observer. In: 2017 10th International Conference on Human System Interactions (HSI), pp. 161–165. IEEE (2017)

    Google Scholar 

  19. Sun, R., Wang, J., Zhang, D., Shao, X.: Neural network-based sliding mode control for atmospheric-actuated spacecraft formation using switching strategy. Adv. Space Res. 61(3), 914–926 (2018)

    Article  Google Scholar 

  20. Vo, A.T., Kang, H.-J., Le, T.D.: An adaptive fuzzy terminal sliding mode control methodology for uncertain nonlinear second-order systems. In: Huang, De-Shuang, Bevilacqua, Vitoantonio, Premaratne, Prashan, Gupta, Phalguni (eds.) ICIC 2018. LNCS, vol. 10954, pp. 123–135. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-95930-6_13

    Chapter  Google Scholar 

  21. Shen, Q., Jiang, B., Cocquempot, V.: Adaptive fuzzy observer-based active fault-tolerant dynamic surface control for a class of nonlinear systems with actuator faults. IEEE Trans. Fuzzy Syst. 22(2), 338–349 (2014)

    Article  Google Scholar 

  22. Spong, M.W., Vidyasagar, M.: Robot Dynamics and Control. Wiley, New York (1989)

    Google Scholar 

  23. Islam, S., Liu, X.P.: Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron. 58(6), 2444–2453 (2011)

    Article  Google Scholar 

  24. Armstrong, B., Khatib, O., Burdick, J.: The explicit dynamic model and inertial parameters of the PUMA 560 arm. In: Proceedings of 1986 IEEE International Conference on Robotics and Automation, vol. 3, pp. 510–518. IEEE (1986)

    Google Scholar 

Download references

Acknowledgement

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (NRF-2016R1D1A3B03930496).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hee-Jun Kang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Vo, A.T., Kang, HJ., Le, T.D. (2019). Full-Order Sliding Mode Control Algorithm for Robot Manipulators Using an Adaptive Radial Basis Function Neural Network. In: Huang, DS., Huang, ZK., Hussain, A. (eds) Intelligent Computing Methodologies. ICIC 2019. Lecture Notes in Computer Science(), vol 11645. Springer, Cham. https://doi.org/10.1007/978-3-030-26766-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26766-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26765-0

  • Online ISBN: 978-3-030-26766-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics