Skip to main content

Towards Soft Exact Computation (Invited Talk)

  • Conference paper
  • First Online:
Computer Algebra in Scientific Computing (CASC 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11661))

Included in the following conference series:

Abstract

Exact geometric computation (EGC) is a general approach for achieving robust numerical algorithms that satisfy geometric constraints. At the heart of EGC are various Zero Problems, some of which are not-known to be decidable and others have high computational complexity. Our current goal is to introduce notions of “soft- correctness” in order to avoid Zero Problems. We give a bird’s eye view of our recent work with collaborators in two principle areas: computing zero sets and robot path planning. They share a common Subdivision Framework. Such algorithms (a) have adaptive complexity, (b) are practical, and (c) are effective. Here, “effective algorithm” means it is easily and correctly implementable from standardized algorithmic components. Our goals are to outline these components and to suggest new components to be developed. We discuss a systematic pathway to go from the abstract algorithmic description to an effective algorithm in the subdivision framework.

This work is supported by NSF Grants CCF-1423228 and CCF-1564132.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    After Bernard Bolzano (1817). Bolzano’s Theorem states that if \(a<b\) and then there is some \(c\in (a,b)\) such that \(f(c)=0\). See also [3, 42] for this principle in real root isolation.

  2. 2.

    Monotone means for all i.

  3. 3.

    The factor \(\sigma >1\) was call the “effectivity factor” in [49]. In the present paper, we avoid this terminology since it conflicts with our notion of “effectivity” of this paper.

  4. 4.

    The -notation is like the O-notation except that logarithm factors in n and in L are ignored. In the subdivision setting, “near-optimality” may be taken to be .

  5. 5.

    Some authors introduce a new symbol, say F, to signal this change.

  6. 6.

    In the spirit of Knuth’s “Literate Programming”.

  7. 7.

    It is possible that such proofs contribute to the poor reputation of error analysis as a topic.

  8. 8.

    We use “precision” for the a priori user-specified bound. The algorithm delivers a value whose a posteriori error is at most this precision.

  9. 9.

    We write \(a = b\pm c\) to mean there exists a constant \(\theta \in [-1,1]\) such that \(a = b+\theta \cdot c\). Alternatively, \(|a-b|\le |c|\).

  10. 10.

    Despite the appearance of asymmetry, x and y are treated symmetrically by this definition.

  11. 11.

    There should no confusion with the notion support of a simplicial complex .

  12. 12.

    Strict inequality may arise in subsets of zero sets: if where \(F_i\) are polynomials, and where each \(G_i\) divides \(F_i\), then might exhibit this phenomenon.

References

  1. Abbott, J.: Quadratic interval refinement for real roots. ACM Commun. Comput. Algebra 48(1/2), 3–12 (2014). https://doi.org/10.1145/2644288.2644291. http://doi.acm.org/10.1145/2644288.2644291

    Article  MathSciNet  MATH  Google Scholar 

  2. Agrawal, A., Requicha, A.: A paradigm for the robust design of algorithms for geometric modeling. In: Computer Graphics Forum, vol. 13, no. 3, pp. 33–44 (1994). 15th Annual Conference and Exhibition. EUROGRAPHICS 1994

    Article  Google Scholar 

  3. Becker, R.: The Bolzano method to isolate the real roots of a bitstream polynomial. Bachelor thesis, University of Saarland, Saarbruecken, Germany, May 2012

    Google Scholar 

  4. Becker, R., Sagraloff, M., Sharma, V., Xu, J., Yap, C.: Complexity analysis of root clustering for a complex polynomial. In: 41st International Symposium on Symbolic and Algebraic Computation, iSSAC 2016, Wilfrid Laurier University, Waterloo, Canada, 20–22 July, pp. 71–78 (2016)

    Google Scholar 

  5. Becker, R., Sagraloff, M., Sharma, V., Yap, C.: A near-optimal subdivision algorithm for complex root isolation based on Pellet test and Newton iteration. J. Symbolic Comput. 86, 51–96 (2018)

    Article  MathSciNet  Google Scholar 

  6. Bennett, H., Papadopoulou, E., Yap, C.: Planar minimization diagrams via subdivision with applications to anisotropic Voronoi diagrams. In: Eurographics Symposium on Geometric Processing, SGP 2016, Berlin, Germany, 20–24 June 2016, vol. 35, no. 5 (2016)

    Article  Google Scholar 

  7. Bennett, H., Yap, C.: Amortized analysis of smooth quadtrees in all dimensions. Comput. Geom. Theory Appl. 63, 20–39 (2017). Also, in Proceedings SWAT 2014

    Article  MathSciNet  Google Scholar 

  8. de Berg, M., Cheong, O., van Kreveld, M., Overmars, M.: Computational Geometry: Algorithms and Applications, 3rd edn. Springer, Berlin (2008). https://doi.org/10.1007/978-3-540-77974-2

    Book  MATH  Google Scholar 

  9. Boissonnat, J.D., Teillaud, M. (eds.): Effective Computational Geometry for Curves and Surfaces. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-33259-6

    Book  MATH  Google Scholar 

  10. Brauße, F., et al.: Semantics, logic, and verification of “exact real computation” (2019)

    Google Scholar 

  11. Brent, R.P.: Algorithms for Minimization Without Derivatives. Prentice Hall, Englewood Cliffs (1973)

    MATH  Google Scholar 

  12. Burr, M., Krahmer, F.: SqFreeEVAL: an (almost) optimal real-root isolation algorithm. J. Symbolic Comput. 47(2), 153–166 (2012)

    Article  MathSciNet  Google Scholar 

  13. Burr, M., Krahmer, F., Yap, C.: Continuous amortization: a non-probabilistic adaptive analysis technique. Electronic Colloquium on Computational Complexity (ECCC) TR09(136), December 2009. http://eccc.hpi-web.de/report/2009/136/

  14. Burr, M.A.: Continuous amortization and extensions: with applications to bisection-based root isolation. J. Symb. Comput. 77, 78–126 (2016). https://doi.org/10.1016/j.jsc.2016.01.007

    Article  MathSciNet  MATH  Google Scholar 

  15. Burr, M.A., Gao, S., Tsigaridas, E.: The complexity of an adaptive subdivision method for approximating real curves. In: 42nd International Symposium on Symbolic and Algebraic Computation (ISSAC), ISSAC 2017, pp. 61–68. ACM, New York (2017). https://doi.org/10.1145/3087604.3087654

  16. Burr, M.A., Gao, S., Tsigaridas, E.: The complexity of subdivision for diameter-distance tests. J. Symbolic Computation (2019, to appear)

    Google Scholar 

  17. Cucker, F., Ergür, A.A., Tonelli-Cueto, J.: Plantinga-vegter algorithm takes average polynomial time. arXiv:1901.09234 [cs.CG] (2019)

  18. Du, Z., Eleftheriou, M., Moreira, J., Yap, C.: Hypergeometric functions in exact geometric computation. In: Brattka, V., Schoeder, M., Weihrauch, K. (eds.) Proceedings of 5th Workshop on Computability and Complexity in Analysis, Malaga, Spain, 12–13 July 2002, pp. 55–66 (2002). In Electronic Notes in Theoretical Computer Science 66:1 (2002). http://www.elsevier.nl/locate/entcs/volume66.html

    Article  Google Scholar 

  19. Du, Z., Yap, C.: Uniform complexity of approximating hypergeometric functions with absolute error. In: Pae, S., Park, H. (eds.) Proceedings of 7th Asian Symposium on Computer Mathematics, ASCM 2005, pp. 246–249 (2006)

    Google Scholar 

  20. Emiris, I.Z., Pan, V.Y., Tsigaridas, E.P.: Algebraic algorithms. In: Gonzalez, T., Diaz-Herrera, J., Tucker, A. (eds.) Computing Handbook: Computer Science and Software Engineering, 3rd edn., pp. 10: 1–30. Chapman and Hall/CRC, Boca Raton (2014)

    Google Scholar 

  21. Higham, N.J.: Accuracy and Stability of Numerical Algorithms, 2nd edn. Society for Industrial and Applied Mathematics, Philadelphia (2002)

    Book  Google Scholar 

  22. Hsu, C.H., Chiang, Y.J., Yap, C.: Rods and rings: soft subdivision planner for \({ R}^{3}\) x \({S}^{2}\). In: Proceedings of 35th International Symposium on Computational Geometry, SoCG 2019, 18–21 June 2019. CG Week 2019, Portland Oregon. Also in arXiv:1903.09416

  23. Imbach, R., Pan, V.Y., Yap, C.: Implementation of a near-optimal complex root clustering algorithm. In: Davenport, J.H., Kauers, M., Labahn, G., Urban, J. (eds.) ICMS 2018. LNCS, vol. 10931, pp. 235–244. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96418-8_28

    Chapter  Google Scholar 

  24. Imbach, R., Pouget, M., Yap, C.: Effective subdivision algorithm for isolating zeros of real systems of equations, with complexity analysis, 21st CASC, Moscow (2019, to appear)

    Google Scholar 

  25. Kearfott, R.B.: Rigorous Global Search: Continuous Problems, vol. 13. Springer, Dordrecht (2013). https://doi.org/10.1007/978-1-4757-2495-0

    Book  MATH  Google Scholar 

  26. Kerber, M., Sagraloff, M.: Efficient real root approximation. In: Schost, É., Emiris, I.Z. (eds.) ISSAC, pp. 209–216. ACM (2011)

    Google Scholar 

  27. Kincaid, D., Cheney, W.: Numerical Analysis: Mathematics of Scientific Computing, 3rd edn. Brooks/Cole, Boston (2002)

    MATH  Google Scholar 

  28. Ko, K.I.: Complexity Theory of Real Functions. Progress in Theoretical Computer Science. Birkhäuser, Boston (1991)

    Book  Google Scholar 

  29. Lien, J.-M., Sharma, V., Vegter, G., Yap, C.: Isotopic arrangement of simple curves: an exact numerical approach based on subdivision. In: Hong, H., Yap, C. (eds.) ICMS 2014. LNCS, vol. 8592, pp. 277–282. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44199-2_43

    Chapter  Google Scholar 

  30. Lin, L., Yap, C.: Adaptive isotopic approximation of nonsingular curves: the parameterizability and nonlocal isotopy approach. Discrete Comp. Geom. 45(4), 760–795 (2011)

    Article  MathSciNet  Google Scholar 

  31. Lin, L., Yap, C., Yu, J.: Non-local isotopic approximation of nonsingular surfaces. Comput. Aided Des. 45(2), 451–462 (2012). Symposium on Solid and Physical Modeling (SPM). U. of Burgundy, Dijon, France, 29–31 October 2012

    Google Scholar 

  32. Mehlhorn, K., Schirra, S.: Exact computation with leda\_real - theory and geometric applications. In: Alefeld, G., Rohn, J., Rump, S., Yamamoto, T. (eds.) Symbolic Algebraic Methods and Verification Methods, pp. 163–172. Springer, Vienna (2001). https://doi.org/10.1007/978-3-7091-6280-4_16

    Chapter  MATH  Google Scholar 

  33. Moore, R.E.: Interval Analysis. Prentice Hall, Englewood Cliffs (1966)

    Google Scholar 

  34. Ó’Dúnlaing, C., Yap, C.K.: A “retraction” method for planning the motion of a disc. J. Algorithms 6, 104–111 (1985). Also, Chapter 6 in Planning, Geometry, and Complexity, eds. Schwartz, Sharir and Hopcroft, Ablex Pub. Corp., Norwood, NJ 1987

    Google Scholar 

  35. Pedersen, P.: Counting real zeros. In: Proceedings of Conference on Algebraic Algorithms and Error Correcting Codes. LNCS, vol. 539, pp. 318–332. Springer (1991)

    Google Scholar 

  36. Pedersen, P.: Counting real zeros. Ph.D. thesis, New York University (1991). Also, Courant Institute Computer Science Technical Report 545 (Robotics Report R243)

    Google Scholar 

  37. Pedersen, P., Roy, M.-F., Szpirglas, A.: Counting real zeros in the multivariate case. In: Eyssette, F., Galligo, A. (eds.) Computational Algebraic Geometry. PM, vol. 109, pp. 203–224. Birkhäuser, Boston (1993). https://doi.org/10.1007/978-1-4612-2752-6_15

    Chapter  Google Scholar 

  38. Plantinga, S., Vegter, G.: Isotopic approximation of implicit curves and surfaces. In: Proceedings of Eurographics Symposium on Geometry Processing, pp. 245–254. ACM Press, New York (2004)

    Google Scholar 

  39. Preparata, F.P., Shamos, M.I.: Computational Geometry. Springer, New York (1985). https://doi.org/10.1007/978-1-4612-1098-6

    Book  MATH  Google Scholar 

  40. Riley, K., Hopson, M., Bence, S.: Mathematical Methods for Physics and Engineering, 3rd edn. Cambridge University Press, New York (2006)

    Book  Google Scholar 

  41. Sagraloff, M., Yap, C.K.: A simple but exact and efficient algorithm for complex root isolation. In: Emiris, I.Z. (ed.) 36th International Symposium on Symbolic and Algebraic Computing, San Jose, California, 8–11 June, pp. 353–360 (2011)

    Google Scholar 

  42. Sagraloff, M., Yap, C.K.: An efficient exact subdivision algorithm for isolating complex roots of a polynomial and its complexity analysis, July 2009, submitted. Full paper from http://cs.nyu.edu/exact/ or http://www.mpi-inf.mpg.de/~msagralo/

  43. Schuurman, P., Woeginger, G.: Approximation schemes: a tutorial. In: Möhring, R., Potts, C., Schulz, A., Woeginger, G., Wolsey, L. (eds.) Lectures in Scheduling (2007, to appear)

    Google Scholar 

  44. Sharma, V., Yap, C.: Near optimal tree size bounds on a simple real root isolation algorithm. In: 37th International Symposium on Symbolic and Algebraic Computing, ISSAC 2012, Grenoble, France, 22–25 July 2012, pp. 319–326 (2012)

    Google Scholar 

  45. Sharma, V., Yap, C.K.: Robust geometric computation. In: Goodman, J.E., O’Rourke, J., Tóth, C. (eds.) Handbook of Discrete and Computational Geometry, 3rd edn., chap. 45, pp. 1189–1224. Chapman & Hall/CRC, Boca Raton (2017)

    Google Scholar 

  46. Snyder, J.: Generative Modeling for Computer Graphics and CAD. Symbolic Shape Design Using Interval Analysis. Academic Press Professional Inc., San Diego (1992)

    MATH  Google Scholar 

  47. Trefethen, L.N., Bau, D.: Numerical Linear Algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  Google Scholar 

  48. Ueberhuber, C.W.: Numerical Computation 2: Methods, Software, and Analysis. Springer, Berlin (1997)

    Book  Google Scholar 

  49. Wang, C., Chiang, Y.J., Yap, C.: On soft predicates in subdivision motion planning. Comput. Geom. Theory Appl. 48(8), 589–605 (2015). (Special Issue for SoCG 2013)

    Article  MathSciNet  Google Scholar 

  50. Weihrauch, K.: Computable Analysis. Springer, Berlin (2000). https://doi.org/10.1007/978-3-642-56999-9

    Book  MATH  Google Scholar 

  51. Xu, J., Yap, C.: Effective subdivision algorithm for isolating zeros of real systems of equations, with complexity analysis. In: 44th International Symposium Symbolic and Algebraic Computing, Beihang University, Beijing, 15–18 July (2019)

    Google Scholar 

  52. Yap, C., Sagraloff, M., Sharma, V.: Analytic root clustering: a complete algorithm using soft zero tests. In: Bonizzoni, P., Brattka, V., Löwe, B. (eds.) CiE 2013. LNCS, vol. 7921, pp. 434–444. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39053-1_51

    Chapter  Google Scholar 

  53. Yap, C.K.: Soft subdivision search in motion planning, II: axiomatics. In: Wang, J., Yap, C. (eds.) FAW 2015. LNCS, vol. 9130, pp. 7–22. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-19647-3_2

    Chapter  Google Scholar 

  54. Yap, C., Luo, Z., Hsu, C.H.: Resolution-exact planner for thick non-crossing 2-link robots. In: Proceedings of 12th International Workshop on Algorithmic Foundations of Robotics, WAFR 2016, San Francisco, 13–16 December 2016 (2016). The appendix in the full paper (and arXiv from http://cs.nyu.edu/exact/ (and arXiv:1704.05123 [cs.CG]) contains proofs and additional experimental data

  55. Yap, C.K.: On guaranteed accuracy computation. In: Chen, F., Wang, D. (eds.) Geometric Computation, chap. 12, pp. 322–373. World Scientific Publishing Co., Singapore (2004)

    Google Scholar 

  56. Yap, C.K.: In praise of numerical computation. In: Albers, S., Alt, H., Näher, S. (eds.) Efficient Algorithms. LNCS, vol. 5760, pp. 380–407. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-03456-5_26

    Chapter  Google Scholar 

  57. Yu, J., Yap, C., Du, Z., Pion, S., Brönnimann, H.: The design of core 2: a library for exact numeric computation in geometry and algebra. In: Fukuda, K., Hoeven, J., Joswig, M., Takayama, N. (eds.) ICMS 2010. LNCS, vol. 6327, pp. 121–141. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15582-6_24

    Chapter  Google Scholar 

Download references

Acknowledgements

The author is deeply grateful for the feedback and bug reports from Michael Burr, Matthew England, Rémi Imbach, Juan Xu and Bo Huang.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chee Yap .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Yap, C. (2019). Towards Soft Exact Computation (Invited Talk). In: England, M., Koepf, W., Sadykov, T., Seiler, W., Vorozhtsov, E. (eds) Computer Algebra in Scientific Computing. CASC 2019. Lecture Notes in Computer Science(), vol 11661. Springer, Cham. https://doi.org/10.1007/978-3-030-26831-2_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26831-2_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26830-5

  • Online ISBN: 978-3-030-26831-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics