Skip to main content

The Riemannian Barycentre as a Proxy for Global Optimisation

  • Conference paper
  • First Online:
Book cover Geometric Science of Information (GSI 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11712))

Included in the following conference series:

  • 1620 Accesses

Abstract

Let M be a simply-connected compact Riemannian symmetric space, and U a twice-differentiable function on M, with unique global minimum at \(x^* \in M\). The idea of the present work is to replace the problem of searching for the global minimum of U, by the problem of finding the Riemannian barycentre of the Gibbs distribution \(P_{\scriptscriptstyle {T}} \propto \exp (-U/T)\). In other words, instead of minimising the function U itself, to minimise \(\mathcal {E}_{\scriptscriptstyle {T}}(x) = \frac{1}{2}\int d^{\scriptscriptstyle 2}(x,z)P_{\scriptscriptstyle {T}}(dz)\), where \(d(\cdot ,\cdot )\) denotes Riemannian distance. The following original result is proved: if U is invariant by geodesic symmetry about \(x^*\), then for each \(\delta < \frac{1}{2} r_{\scriptscriptstyle cx}\) (\(r_{\scriptscriptstyle cx}\) the convexity radius of M), there exists \(T_{\scriptscriptstyle \delta }\) such that \(T \le T_{\scriptscriptstyle \delta }\) implies \(\mathcal {E}_{\scriptscriptstyle {T}}\) is strongly convex on the geodesic ball \(B(x^*,\delta )\,\), and \(x^*\) is the unique global minimum of \(\mathcal {E}_{\scriptscriptstyle {T\,}}\). Moreover, this \(T_{\scriptscriptstyle \delta }\) can be computed explicitly. This result gives rise to a general algorithm for black-box optimisation, which is briefly described, and will be further explored in future work.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Karcher, H.: Riemannian centre of mass and mollifier smoothing. Commun. Pure. Appl. Math. 30(5), 509–541 (1977)

    Article  Google Scholar 

  2. Afsari, B.: Riemannian \(L^p\) center of mass: existence, uniqueness, and convexity. Proc. Am. Math. Soc. 139(2), 655–673 (2010)

    Article  MathSciNet  Google Scholar 

  3. Kantorovich, L.V., Akilov, G.P.: Functional Analysis, 2nd edn. Pergamon Press, Oxford (1982)

    MATH  Google Scholar 

  4. Villani, C.: Optimal Transport, Old and New, 2nd edn. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-540-71050-9

    Book  MATH  Google Scholar 

  5. Wong, R.: Asymptotic Approximations of Integrals. Society for Industrial and Applied Mathematics, Philadelphia (2001)

    Book  Google Scholar 

  6. Chavel, I.: Riemannian Geometry: A Modern Introduction. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  7. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces. American Mathematical Society, Providence (1978)

    MATH  Google Scholar 

  8. Roberts, G.O., Rosenthal, J.S.: General state space Markov chains and MCMC algorithms. Probab. Surv. 1, 20–71 (2004)

    Article  MathSciNet  Google Scholar 

  9. Beals, R., Wong, R.: Special Functions: A Graduate Text. Cambridge University Press, Cambridge (2010)

    Book  Google Scholar 

  10. Mardia, K.V., Jupp, P.E.: Directional Statistics. Academic Press Inc., London (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Salem Said .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Said, S., Manton, J.H. (2019). The Riemannian Barycentre as a Proxy for Global Optimisation. In: Nielsen, F., Barbaresco, F. (eds) Geometric Science of Information. GSI 2019. Lecture Notes in Computer Science(), vol 11712. Springer, Cham. https://doi.org/10.1007/978-3-030-26980-7_68

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-26980-7_68

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-26979-1

  • Online ISBN: 978-3-030-26980-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics