Skip to main content

Part of the book series: Lecture Notes in Statistics ((LNS,volume 223))

  • 580 Accesses

Abstract

In this chapter besides briefly introducing the Meijer G and Fox H functions through their usual definitions, the authors open the way to the establishment of several cases where there are finite representations for these functions which have not been previously identified and that as such are not recognized by any of the available software. These cases are related to the distribution of three extended products of independent Beta random variables, which are treated in Chap. 3.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Arnold, B.C., Coelho, C.A., Marques, F.J.: The distribution of the product of powers of independent uniform random variables – a simple but useful tool to address and better understand the structure of some distributions. J. Multivar. Anal. 113, 19–36 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  • Askey, R.A., Daalhaus, A.B.O.: Generalized Hypergeometric Functions and Meijer G-function. In: Olver, W.J., Lozier, D.W., Boisvert, R.F., Clark, C.W. (eds.) NIST Handbook of Mathematical Functions, pp. 403–418. National Institute of Standards and Technology, U.S. Dept. of Commerce and Cambridge University Press, New York (2010)

    Google Scholar 

  • Barnes, E.W.: The asymptotic expansion of integral functions defined by generalised hypergeometric series. Proc. Lond. Math. Soc. s2-5 59–116 (1907)

    Article  MathSciNet  MATH  Google Scholar 

  • Barnes, E.W.: A new development of the theory of hypergeometric functions. Proc. Lond. Math. Soc. s2-6 141–177 (1908)

    Google Scholar 

  • Braaksma, B.L.J.: Asymptotic expansions and analytic continuations for a class of Barnes-integrals. Compos. Math. 15, 239–341 (1963)

    MathSciNet  MATH  Google Scholar 

  • Cahen, E.: Sur la fonction ζ(x) de Riemann et sur des fonctions analogues. Ann. Sci. École Normale Supérieure 11 75–164 (1894)

    Article  MathSciNet  MATH  Google Scholar 

  • Cardeño, L., Nagar, D.K.: Testing block sphericity of a covariance matrix. Divulgaciones Matemáticas 9, 25–34 (2001)

    MathSciNet  MATH  Google Scholar 

  • Carter, B.D., Springer, M.D.: The distribution of products, quotients and powers of independent H-function variates. SIAM J. Appl. Math. 33, 542–558 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho, C.A.: The generalized integer Gamma distribution – a basis for distributions in multivariate statistics. J. Multivar. Anal. 64, 86–102 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  • Coelho, C.A.: Addendum to the paper “The generalized integer Gamma distribution – a basis for distributions in multivariate statistics”. J. Multivar. Anal. 69, 281–285 (1999)

    Article  MATH  Google Scholar 

  • Consul, P.C.: The exact distributions of likelihood criteria for different hypotheses. In: Krishnaiah, P. R. (ed.) Multivariate Analysis II, pp. 171–181. Academic Press, New York (1969)

    Google Scholar 

  • Davis, A.W.: On the differential equation for Meijer’s \(G^{p,0}_{p,p}\) function, and further tables of Wilks’s likelihood ratio criterion. Biometrika 66, 519–531 (1979)

    MathSciNet  MATH  Google Scholar 

  • Erdélyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Higher Transcendental Functions (The Bateman Manuscript Project), vol. I. McGraw-Hill, New York (1953)

    MATH  Google Scholar 

  • Fox, C.: The G and H functions as symmetrical kernels. Trans. Amer. Math. Soc. 98, 395–429 (1961)

    MathSciNet  MATH  Google Scholar 

  • Gupta, A.K.: Nonnull distribution of Wilks’ statistic for MANOVA in the complex case. Commun. Statist. Simulation Comput. 5, 177–188 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  • Gupta, A.K., Rathie, P.N.: Nonnull distributions of Wilks’ Lambda in the complex case. Statistics 43, 443–450 (1983)

    MATH  Google Scholar 

  • Luke, Y.L.: The Special Functions and Their Approximations, vol. I. Academic Press, New York (1969)

    MATH  Google Scholar 

  • Luke, Y.L.: Mathematical Functions and Their Approximations. Academic Press, New York (1975)

    MATH  Google Scholar 

  • Mathai, A.M.: The exact non-central distribution of the generalized variance. Ann. Inst. Statist. Math. 24, 53–65 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai, A.M.: A few remarks about some recent articles on the exact distributions of multivariate test criteria: I. Ann. Inst. Statist. Math. 25, 557–566 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai, A.M.: A Handbook of Generalized Special Functions for Statistical and Physical Sciences. Oxford University Press, New York (1993)

    MATH  Google Scholar 

  • Mathai, A.M., Haubold, H.J.: Special Functions for Applied Scientists. Springer, New York (2008)

    Book  MATH  Google Scholar 

  • Mathai, A.M., Rathie, P.N.: The Exact Distribution of Wilks’ Criterion. Ann. Math. Statist. 42, 1010–1019 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Mathai, A.M., Saxena, R.K.: Generalized Hypergeometric Functions with Applications in Statistics and Physical Sciences. Lecture Notes in Mathematics, vol. 348. Springer, New York (1973)

    Book  MATH  Google Scholar 

  • Mathai, A.M., Saxena, R.K.: The H-function with Applications in Statistics and Other Disciplines. Wiley, New York (1978)

    MATH  Google Scholar 

  • Mathai, A. M., Saxena, R. K., Haubold, H. J.: The H-Function – Theory and Applications. Springer, New York (2010)

    MATH  Google Scholar 

  • Meijer, C.S.: Über Whittakersche bzw. Besselsche Funktionen und deren Produkte. Nieuw Archief voor Wiskunde 18(2), 10–29 (1936a)

    MATH  Google Scholar 

  • Meijer, C.S.: Neue Integraldarstellungen aus der Theorie der Whittakerschen und Hankelschen Funktionen. Math. Annalen 112(2), 469–489 (1936b)

    Article  MathSciNet  MATH  Google Scholar 

  • Meijer, C.S.: Multiplikationstheoreme für die Funktion \(G_{p,q}^{m,n}(z)\). Proc. Koninklijk Nederlandse Akademie van Weteenschappen 44, 1062–1070 (1941)

    Google Scholar 

  • Meijer, C.S.: On the G-function I–VIII. Proc. Koninklijk Nederlandse Akademie van Weteenschappen 49, 227–237, 344–356, 457–469, 632–641, 765–772, 936–943, 1063–1072, 1165–1175 (1946)

    Google Scholar 

  • Mellin, H.: Über einen zusammenhang zwischen gewissen linearen differential- und differenzengleichungen. Acta Math. 9, 137–166 (1887)

    Article  MathSciNet  MATH  Google Scholar 

  • Mellin, H.: Zur theorie der linearen Differenzengleichungen erster Ordnung. Acta Math. 15, 317–384 (1891)

    Article  MathSciNet  MATH  Google Scholar 

  • Mellin, H.: Über eine Verallgemeinerung der Riemannscher Funktion ζ(s). Acta Soc. Sci. Fenn. 24, 1–50 (1899)

    Google Scholar 

  • Mellin, H.: Eine Formel für den Logarithmus transcendenter Functionen von endlichem Geschlecht. Acta Soc. Sci. Fenn. 29 1–49 (1900)

    Google Scholar 

  • Mellin, H.: Über den Zusammenhang Zwischen den Linearen Differential- und Differenzengleichungen. Acta Math. 25, 139–164 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  • Mellin, H.: Eine Formel für den Logarithmus transcendenter Functionen von endlichem Geschlecht. Acta Math. 25, 165–183 (1902)

    Article  MathSciNet  MATH  Google Scholar 

  • Mellin, H.: Die Dirichlettschen Reihen, die zahlentheoretischen Funktionen die unendlichen Produkte von endlichem Geschlecht. Acta Math. 28 37–64 (1904)

    Article  MathSciNet  MATH  Google Scholar 

  • Mellin, H.: Abriß einer einheitlichen Theorie der Gamma- und hypergeometrischen Funktionen. Math. Ann. 68, 305–337 (1910)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagar, D.K., Jain S.K., Gupta A.K.: Distribution of LRC for testing sphericity of a complex multivariate Gaussian model. Int. J. Math. Math. Sci. 8, 555–562 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  • Nagarsenker, B.N., Das, M.M.: Exact distribution of sphericity criterion in the complex case and its percentage points. Commun. Stat. 4, 363–374 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  • Pillai, K.C.S., Jouris, G.M.: Some distribution problems in the multivariate complex Gaussian case. Amm. Math. Statist. 42, 517–525 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  • Pillai, K.C.S., Nagarsenker, B.N.: On the distribution of the sphericity test criterion in classical and complex Normal populations having unknown covariance matrix. Ann. Math. Statist. 42, 764–767 (1971)

    Article  MATH  Google Scholar 

  • Pillai, K.C.S., Al-Ani, S., Jouris, G.M.: On the distributions of the ratios of the roots of a covariance matrix and Wilks’ criterion for test of three hypotheses. Ann. Math. Statist. 40, 2033–2040 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  • Pincherle, S.: Sulle funzioni ipergeometriche generalizzate. Atti R. Accad. Lincei, Rend. Cl. Sci. Fis. Mat. Natur. 4 694–700, 792–799 (1888)

    Google Scholar 

  • Podolski, H.: The distribution of a product of n independent random variables with generalized Gamma distribution. Demonstratio Math. IV, 119–123 (1972)

    Google Scholar 

  • Prudnikov, A.P., Brychkov, Y.A., Marichev, O.J.: Integrals and Series, vol. 3: More Special Functions. Gordon and Breach, Newark (1990)

    Google Scholar 

  • Roach, K.: Meijer G function representations. In: Küchlin W. (eds) Proceedings of the 1997 International Symposium on Symbolic and Algebraic Computation, pp. 205–211. ACM Press, New York (1997). ISBN: 0-89791-875-4

    Chapter  Google Scholar 

  • Salo, J., El-Sallabi, H.M., Vainikainen, P.: The distribution of the product of independent Rayleigh random variables. IEEE Trans. Antennas Propag. 54, 639–643 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  • Shah, M.C., Rathie, P.N.: Exact distribution of product of generalized F-variates. Can. J. Stat. 2, 13–24 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  • Springer, M.D.: The Algebra of Random Variables. Wiley, New York (1979)

    MATH  Google Scholar 

  • Springer, M.D., Thompson, W.E.: The distribution of products of Beta, Gamma and Gaussian random variables. SIAM J. Appl. Math. 18, 721–737 (1970)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Appendix: Notation and Expressions for the Probability Density and Cumulative Distribution Functions of the Gamma, GIG, and EGIG Distributions

Appendix: Notation and Expressions for the Probability Density and Cumulative Distribution Functions of the Gamma, GIG, and EGIG Distributions

This appendix is used to establish the notation used concerning the p.d.f. and c.d.f. of the GIG (Generalized Integer Gamma) and the EGIG (Exponentiated Generalized Integer Gamma) distributions.

We say that the r.v. (random variable) X has a Gamma distribution with shape parameter r (> 0) and rate parameter λ (> 0), and we will denote this fact by X ∼ Γ(r, λ), if the p.d.f. of X is

$$\displaystyle \begin{aligned} f^{}_X(x)=\frac{\lambda^r}{\varGamma(r)}\,e^{-\lambda x}\,x^{r-1}~~~~(x>0)\,. \end{aligned}$$

Let X j ∼ Γ(r j, λ j) (j = 1, …, p) be a set of p independent r.v.’s and consider the r.v.

$$\displaystyle \begin{aligned} W=\sum^p_{j=1}X_j\,. \end{aligned}$$

In case all the \(r_j\in \mathbb {N}\), the distribution of W is what we call a GIG distribution (Coelho, 1998, 1999). If all the λ j are different, W has a GIG distribution of depth p, with shape parameters r j and rate parameters λ j, with p.d.f.

$$\displaystyle \begin{aligned} f^{}_W(w)=f^{\,\,GIG}\Big(w\,\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)=K\sum^p_{j=1} P_j(w)\,e^{-\lambda_j w}\,,~~~~(w>0) {} \end{aligned} $$
(2.18)

and c.d.f.

$$\displaystyle \begin{aligned} F^{}_W(w)=F^{GIG}\Big(w\,\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)=1-K\sum^p_{j=1}P^*_j(w)\,e^{-\lambda_jw}\,,~~~~(w>0) {} \end{aligned} $$
(2.19)

where

$$\displaystyle \begin{aligned} K=\prod^p_{j=1}\lambda_j^{r_j}\,,~~~~~~P_j(w)=\sum^{r_j}_{k=1} c_{j,k}\,w^{k-1} \end{aligned}$$

and

$$\displaystyle \begin{aligned} P^*_j(w)=\sum^{r_j}_{k=1}c_{j,k}(k-1)!\sum^{k-1}_{i=0}\frac{w^i}{i!\,\lambda_j^{k-i}}\,, \end{aligned}$$

with

(2.20)

and

$$\displaystyle \begin{aligned} c_{j,r_j-k}=\frac{1}{k}\sum_{i=1}^k\frac{(r_j-k+i-1)!}{(r_j-k-1)!}\,R(i,j,p)c_{j,r_j-(k-i)}\,,~~~~(k=1,\dots,r_j-1;\,j=1,\dots,p) {} \end{aligned} $$
(2.21)

where

(2.22)

In case some of the λ j assume the same value as other λ j’s, the distribution of W still is a GIG distribution, but in this case with a reduced depth. In this more general case, let {λ ; = 1, …, g(≤ p)} be the set of different λ j’s and let {r ; = 1, …, g(≤ p)} be the set of the corresponding shape parameters, with r being the sum of all r j (j ∈{1, …, p}) which correspond to the λ j assuming the value λ . In this case W will have a GIG distribution of depth g, with shape parameters r and rate parameters λ ( = 1, …, g).

Let us consider the r.v. Z = e W. Then the r.v. Z has what Arnold et al. (2013) call an Exponentiated Generalized Integer Gamma (EGIG) distribution of depth p, with p.d.f.

$$\displaystyle \begin{aligned} \begin{array}{rcl} \displaystyle f^{}_Z(z) & = & \displaystyle f^{\,EGIG}\Big(z~\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)\\ & = & \displaystyle f^{\,\,GIG}\Big(-\log\,z~\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)\,\frac{1}{z}~~~~~~~~~~(0<z<1) \end{array} {} \end{aligned} $$
(2.23)

and c.d.f.

$$\displaystyle \begin{aligned} \begin{array}{rcl} \displaystyle F^{}_Z(z) & = & \displaystyle F^{EGIG}\Big(z~\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)\\ & = & \displaystyle 1-F^{GIG}\Big(-\log\,z~\big|\,\{r_j\}_{j=1:p};\{\lambda_j\}_{j=1:p};p\Big)~~~~~~~~~~(0<z<1)\,. \end{array} {} \end{aligned} $$
(2.24)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Coelho, C.A., Arnold, B.C. (2019). The Meijer G and Fox H Functions. In: Finite Form Representations for Meijer G and Fox H Functions. Lecture Notes in Statistics, vol 223. Springer, Cham. https://doi.org/10.1007/978-3-030-28790-0_2

Download citation

Publish with us

Policies and ethics