Skip to main content

The Basis of Regional Therapy, Pharmacology, Hyperthermia, and Drug Resistance

  • Chapter
  • First Online:
Cancer Regional Therapy
  • 476 Accesses

Abstract

The peritoneal surface is a common failure site for gastrointestinal and gynecologic tumors. For chemotherapeutic agents to effectively kill malignant cells in peritoneal implants, agents must first reach the target. The inability of the drug to reach the target is a basic mechanism of drug resistance. Chemotherapy delivered intravenously encounters the following resistances: (a) distribution through vascular space, (b) transport across microvascular wall, (c) transport through the interstitial space, (d) transport across the cell membrane, and (e) actual incorporation. This last step is complicated by the low vascularization of the peritoneum. The intraperitoneal route seems more logical as this route bypasses the first compartment, and the peritoneal cavity can absorb almost all agents and mediates the transfer of intraperitoneally administered chemotherapy, with agents entering the systemic circulation either by diffusion into the vascular compartment or by absorption through peritoneal lymphatics. In addition, the peritoneal-plasma barrier allows dose intensification providing high concentrations of the therapeutic agent while minimizing systemic toxicity. Traditionally, the selection of drugs for intraperitoneal administration has been based on beneficial pharmacokinetic and pharmacodynamic parameters, a good tolerance profile, and proven effectiveness with systemic administration. However, the process appears to be more complex. In this chapter, we will discuss how the tumor microenvironment plays a crucial role and the effects of hyperthermia, try to understand the molecular basis of drug effectiveness/resistance at the gene as well as the protein level, and explain why high concentrations of the therapeutic agent at the level of the tumor do not necessarily translate into greater efficacy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Flessner M, Henegar J, Bigler S, Genous L. Is the peritoneum a significant transport barrier in peritoneal dialysis? Perit Dial Int. 2003;23(6):542–9.

    CAS  PubMed  Google Scholar 

  2. de Lima Vazquez V, Stuart OA, Mohamed F, Sugarbaker PH. Extent of parietal peritonectomy does not change intraperitoneal chemotherapy pharmacokinetics. Cancer Chemother Pharmacol. 2003;52(2):108–12.

    Article  PubMed  CAS  Google Scholar 

  3. Jacquet P, Averbach A, Stephens AD, Stuart OA, Chang D, Sugarbaker PH. Heated intraoperative intraperitoneal mitomycin C and early postoperative intraperitoneal 5-fluorouracil: pharmacokinetic studies. Oncology. 1998;55(2):130–8.

    Article  CAS  PubMed  Google Scholar 

  4. Sugarbaker PH, Van der Speeten K, Anthony Stuart O, Chang D. Impact of surgical and clinical factors on the pharmacology of intraperitoneal doxorubicin in 145 patients with peritoneal carcinomatosis. Eur J Surg Oncol. 2011;37(8):719–26.

    Article  CAS  PubMed  Google Scholar 

  5. Van der Speeten K, Stuart OA, Chang D, Mahteme H, Sugarbaker PH. Changes induced by surgical and clinical factors in the pharmacology of intraperitoneal mitomycin C in 145 patients with peritoneal carcinomatosis. Cancer Chemother Pharmacol. 2011;68(1):147–56.

    Article  CAS  PubMed  Google Scholar 

  6. Allen L. On the penetrability of the lymphatics of the diaphragm. Anat Rec. 1956;124(4):639–57.

    Article  CAS  PubMed  Google Scholar 

  7. Allen L, Weatherford T. Role of fenestrated basement membrane in lymphatic absorption from peritoneal cavity. Am J Phys. 1959;197:551–4.

    Article  CAS  Google Scholar 

  8. Dedrick RL, Flessner MF. Pharmacokinetic problems in peritoneal drug administration: tissue penetration and surface exposure. J Natl Cancer Inst. 1997;89(7):480–7.

    Article  CAS  PubMed  Google Scholar 

  9. Ceelen WP, Flessner MF. Intraperitoneal therapy for peritoneal tumors: biophysics and clinical evidence. Nat Rev Clin Oncol. 2010;7(2):108–15.

    Article  PubMed  Google Scholar 

  10. Dedrick RL, Myers CE, Bungay PM, VT DV Jr. Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat Rep. 1978;62(1):1–11.

    CAS  PubMed  Google Scholar 

  11. Mas-Fuster MI, Ramon-Lopez A, Nalda-Molina R. Importance of standardizing the dose in hyperthermic intraperitoneal chemotherapy (HIPEC): a pharmacodynamic point of view. Cancer Chemother Pharmacol. 2013;72(1):273–4.

    Article  PubMed  Google Scholar 

  12. Mujoo K, Maneval DC, Anderson SC, Gutterman JU. Adenoviral-mediated p53 tumor suppressor gene therapy of human ovarian carcinoma. Oncogene. 1996;12(8):1617–23.

    CAS  PubMed  Google Scholar 

  13. Cavazzoni E, Bugiantella W, Graziosi L, Franceschini MS, Donini A. Malignant ascites: pathophysiology and treatment. Int J Clin Oncol. 2013;18(1):1–9.

    Article  PubMed  Google Scholar 

  14. Dykes PW, Jones JH. Albumin exchange between plasma and ascitic fluid. Clin Sci. 1968;34(1):185–97.

    CAS  PubMed  Google Scholar 

  15. Flessner MF. The transport barrier in intraperitoneal therapy. Am J Physiol Renal Physiol. 2005;288(3):F433–42.

    Article  CAS  PubMed  Google Scholar 

  16. Leunig M, Yuan F, Menger MD, Boucher Y, Goetz AE, Messmer K, et al. Angiogenesis, microvascular architecture, microhemodynamics, and interstitial fluid pressure during early growth of human adenocarcinoma LS174T in SCID mice. Cancer Res. 1992;52(23):6553–60.

    CAS  PubMed  Google Scholar 

  17. Flessner MF, Choi J, He Z, Credit K. Physiological characterization of human ovarian cancer cells in a rat model of intraperitoneal antineoplastic therapy. J Appl Physiol (1985). 2004;97(4):1518–26.

    Article  Google Scholar 

  18. Wiig H, Reed RK. Interstitial compliance and transcapillary Starling pressures in cat skin and skeletal muscle. Am J Phys. 1985;248(5 Pt 2):H666–73.

    CAS  Google Scholar 

  19. Gullino PM, Grantham FH, Smith SH. The interstitial water space of tumors. Cancer Res. 1965;25:727–31.

    CAS  PubMed  Google Scholar 

  20. Flessner MF, Choi J, Credit K, Deverkadra R, Henderson K. Resistance of tumor interstitial pressure to the penetration of intraperitoneally delivered antibodies into metastatic ovarian tumors. Clin Cancer Res. 2005;11(8):3117–25.

    Article  CAS  PubMed  Google Scholar 

  21. Jain RK. Transport of molecules in the tumor interstitium: a review. Cancer Res. 1987;47(12):3039–51.

    CAS  PubMed  Google Scholar 

  22. Netti PA, Berk DA, Swartz MA, Grodzinsky AJ, Jain RK. Role of extracellular matrix assembly in interstitial transport in solid tumors. Cancer Res. 2000;60(9):2497–503.

    CAS  PubMed  Google Scholar 

  23. Rubin J, Clawson M, Planch A, Jones Q. Measurements of peritoneal surface area in man and rat. Am J Med Sci. 1988;295(5):453–8.

    Article  CAS  PubMed  Google Scholar 

  24. Elias DM, Sideris L. Pharmacokinetics of heated intraoperative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis. Surg Oncol Clin N Am. 2003;12(3):755–69.. xiv

    Article  PubMed  Google Scholar 

  25. Sugarbaker PH, Stuart OA, Carmignani CP. Pharmacokinetic changes induced by the volume of chemotherapy solution in patients treated with hyperthermic intraperitoneal mitomycin C. Cancer Chemother Pharmacol. 2006;57(5):703–8.

    Article  CAS  PubMed  Google Scholar 

  26. Gardner SN. A mechanistic, predictive model of dose-response curves for cell cycle phase-specific and -nonspecific drugs. Cancer Res. 2000;60(5):1417–25.

    CAS  PubMed  Google Scholar 

  27. Mohamed F, Sugarbaker PH. Carrier solutions for intraperitoneal chemotherapy. Surg Oncol Clin N Am. 2003;12(3):813–24.

    Article  PubMed  Google Scholar 

  28. Pestieau SR, Schnake KJ, Stuart OA, Sugarbaker PH. Impact of carrier solutions on pharmacokinetics of intraperitoneal chemotherapy. Cancer Chemother Pharmacol. 2001;47(3):269–76.

    Article  CAS  PubMed  Google Scholar 

  29. Mohamed F, Marchettini P, Stuart OA, Sugarbaker PH. Pharmacokinetics and tissue distribution of intraperitoneal paclitaxel with different carrier solutions. Cancer Chemother Pharmacol. 2003;52(5):405–10.

    Article  CAS  PubMed  Google Scholar 

  30. Kondo A, Maeta M, Oka A, Tsujitani S, Ikeguchi M, Kaibara N. Hypotonic intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in mice. Br J Cancer. 1996;73(10):1166–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Tsujitani S, Oka A, Kondo A, Katano K, Oka S, Saito H, et al. Administration in a hypotonic solution is preferable to dose escalation in intraperitoneal cisplatin chemotherapy for peritoneal carcinomatosis in rats. Oncology. 1999;57(1):77–82.

    Article  CAS  PubMed  Google Scholar 

  32. Elias D, Bonnay M, Puizillou JM, Antoun S, Demirdjian S, El OA, et al. Heated intra-operative intraperitoneal oxaliplatin after complete resection of peritoneal carcinomatosis: pharmacokinetics and tissue distribution. Ann Oncol. 2002;13(2):267–72.

    Article  CAS  PubMed  Google Scholar 

  33. Mehta AM, Van den Hoven JM, Rosing H, Hillebrand MJ, Nuijen B, Huitema AD, et al. Stability of oxaliplatin in chloride-containing carrier solutions used in hyperthermic intraperitoneal chemotherapy. Int J Pharm. 2015;479(1):23–7.

    Article  CAS  PubMed  Google Scholar 

  34. Jerremalm E, Hedeland M, Wallin I, Bondesson U, Ehrsson H. Oxaliplatin degradation in the presence of chloride: identification and cytotoxicity of the monochloro monooxalato complex. Pharm Res. 2004;21(5):891–4.

    Article  CAS  PubMed  Google Scholar 

  35. Esquis P, Consolo D, Magnin G, Pointaire P, Moretto P, Ynsa MD, et al. High intra-abdominal pressure enhances the penetration and antitumor effect of intraperitoneal cisplatin on experimental peritoneal carcinomatosis. Ann Surg. 2006;244(1):106–12.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Gesson-Paute A, Ferron G, Thomas F, de Lara EC, Chatelut E, Querleu D. Pharmacokinetics of oxaliplatin during open versus laparoscopically assisted heated intraoperative intraperitoneal chemotherapy (HIPEC): an experimental study. Ann Surg Oncol. 2008;15(1):339–44.

    Article  PubMed  Google Scholar 

  37. Jacquet P, Stuart OA, Chang D, Sugarbaker PH. Effects of intra-abdominal pressure on pharmacokinetics and tissue distribution of doxorubicin after intraperitoneal administration. Anti-Cancer Drugs. 1996;7(5):596–603.

    Article  CAS  PubMed  Google Scholar 

  38. Chauffert B, Favoulet P, Polycarpe E, Duvillard C, Beltramo JL, Bichat F, et al. Rationale supporting the use of vasoconstrictors for intraperitoneal chemotherapy with platinum derivatives. Surg Oncol Clin N Am. 2003;12(3):835–48.

    Article  PubMed  Google Scholar 

  39. Ensminger WD, Gyves JW. Regional chemotherapy of neoplastic diseases. Pharmacol Ther. 1983;21(2):277–93.

    Article  CAS  PubMed  Google Scholar 

  40. Facy O, Radais F, Ladoire S, Delroeux D, Tixier H, Ghiringhelli F, et al. Comparison of hyperthermia and adrenaline to enhance the intratumoral accumulation of cisplatin in a murine model of peritoneal carcinomatosis. J Exp Clin Cancer Res. 2011;30:4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Favoulet P, Magnin G, Guilland JC, Beltramo JL, Osmak L, Benoit L, et al. Pre-clinical study of the epinephrine-cisplatin association for the treatment of intraperitoneal carcinomatosis. Eur J Surg Oncol. 2001;27(1):59–64.

    Article  CAS  PubMed  Google Scholar 

  42. Lindner P, Heath D, Howell S, Naredi P, Hafstrom L. Vasopressin modulation of peritoneal, lymphatic, and plasma drug exposure following intraperitoneal administration. Clin Cancer Res. 1996;2(2):311–7.

    CAS  PubMed  Google Scholar 

  43. Molucon-Chabrot C, Isambert N, Benoit L, Zanetta S, Fraisse J, Guilland JC, et al. Feasibility of using intraperitoneal epinephrine and cisplatin in patients with advanced peritoneal carcinomatosis. Anti-Cancer Drugs. 2006;17(10):1211–7.

    Article  CAS  PubMed  Google Scholar 

  44. Duvillard C, Benoit L, Moretto P, Beltramo JL, Brunet-Lecomte P, Correia M, et al. Epinephrine enhances penetration and anti-cancer activity of local cisplatin on rat sub-cutaneous and peritoneal tumors. Int J Cancer. 1999;81(5):779–84.

    Article  CAS  PubMed  Google Scholar 

  45. Yonemura Y, Elnemr A, Endou Y, Ishibashi H, Mizumoto A, Miura M, et al. Effects of neoadjuvant intraperitoneal/systemic chemotherapy (bidirectional chemotherapy) for the treatment of patients with peritoneal metastasis from gastric cancer. Int J Surg Oncol. 2012;2012:148420.

    PubMed  PubMed Central  Google Scholar 

  46. Yonemura Y, Ishibashi H, Hirano M, Mizumoto A, Takeshita K, Noguchi K, et al. Effects of neoadjuvant laparoscopic hyperthermic intraperitoneal chemotherapy and neoadjuvant intraperitoneal/systemic chemotherapy on peritoneal metastases from gastric cancer. Ann Surg Oncol. 2017;24(2):478–85.

    Article  PubMed  Google Scholar 

  47. Zylberberg B, Dormont D, Janklewicz S, Darai E, Bretel JJ, Poncelet C, et al. Response to neo-adjuvant intraperitoneal and intravenous immunochemotherapy followed by interval secondary cytoreduction in stage IIIc ovarian cancer. Eur J Gynaecol Oncol. 2001;22(1):40–5.

    CAS  PubMed  Google Scholar 

  48. Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. Pharmacology of perioperative 5-fluorouracil. J Surg Oncol. 2010;102(7):730–5.

    Article  PubMed  CAS  Google Scholar 

  49. Fujiwara K, Armstrong D, Morgan M, Markman M. Principles and practice of intraperitoneal chemotherapy for ovarian cancer. Int J Gynecol Cancer. 2007;17(1):1–20.

    Article  CAS  PubMed  Google Scholar 

  50. Lemoine L, Sugarbaker P, Van der Speeten K. Drugs, doses, and durations of intraperitoneal chemotherapy: standardising HIPEC and EPIC for colorectal, appendiceal, gastric, ovarian peritoneal surface malignancies and peritoneal mesothelioma. Int J Hyperth. 2017;33(5):582–92.

    Article  CAS  Google Scholar 

  51. Bijelic L, Yan TD, Sugarbaker PH. Failure analysis of recurrent disease following complete cytoreduction and perioperative intraperitoneal chemotherapy in patients with peritoneal carcinomatosis from colorectal cancer. Ann Surg Oncol. 2007;14(8):2281–8.

    Article  PubMed  Google Scholar 

  52. Alberts DS, Liu PY, Hannigan EV, O’Toole R, Williams SD, Young JA, et al. Intraperitoneal cisplatin plus intravenous cyclophosphamide versus intravenous cisplatin plus intravenous cyclophosphamide for stage III ovarian cancer. N Engl J Med. 1996;335(26):1950–5.

    Article  CAS  PubMed  Google Scholar 

  53. Van der Speeten K, Stuart OA, Mahteme H, Sugarbaker PH. A pharmacologic analysis of intraoperative intracavitary cancer chemotherapy with doxorubicin. Cancer Chemother Pharmacol. 2009;63(5):799–805.

    Article  PubMed  CAS  Google Scholar 

  54. Ceelen WP, Påhlman L, Mahteme H. Pharmacodynamic aspects of intraperitoneal cytotoxic therapy. Cancer Treat Res. 2007;134:195–214.

    CAS  PubMed  Google Scholar 

  55. De Bree E, Michelakis D, Stamatiou D. Pharmacological principles of intraperitoneal and bidirectional chemotherapy. Pleura Peritoneum. 2017;2(2):47–62.

    PubMed  PubMed Central  Google Scholar 

  56. Sticca RP, Dach BW. Rationale for hyperthermia with intraoperative intraperitoneal chemotherapy agents. Surg Oncol Clin N Am. 2003;12(3):689–701.

    Article  PubMed  Google Scholar 

  57. Sugarbaker PH. Laboratory and clinical basis for hyperthermia as a component of intracavitary chemotherapy. Int J Hyperth. 2007;23(5):431–42.

    Article  CAS  Google Scholar 

  58. Piche N, Leblond FA, Sideris L, Pichette V, Drolet P, Fortier LP, et al. Rationale for heating oxaliplatin for the intraperitoneal treatment of peritoneal carcinomatosis: a study of the effect of heat on intraperitoneal oxaliplatin using a murine model. Ann Surg. 2011;254(1):138–44.

    Article  PubMed  Google Scholar 

  59. Muller M, Cherel M, Dupre PF, Gouard S, Collet M, Classe JM. The cytotoxic effect of combined hyperthermia and taxane chemotherapy on ovarian cancer cells: results of an in vitro study. Eur Surg Res. 2012;48(2):55–63.

    Article  CAS  PubMed  Google Scholar 

  60. Klaver YL, Hendriks T, Lomme RM, Rutten HJ, Bleichrodt RP, de Hingh IH. Hyperthermia and intraperitoneal chemotherapy for the treatment of peritoneal carcinomatosis: an experimental study. Ann Surg. 2011;254(1):125–30.

    Article  PubMed  Google Scholar 

  61. Hildebrandt B, Wust P. The biologic rationale of hyperthermia. Cancer Treat Res. 2007;134:171–84.

    CAS  PubMed  Google Scholar 

  62. Song CW, Park HJ, Lee CK, Griffin R. Implications of increased tumor blood flow and oxygenation caused by mild temperature hyperthermia in tumor treatment. Int J Hyperth. 2005;21(8):761–7.

    Article  CAS  Google Scholar 

  63. Sorensen O, Andersen AM, Kristian A, Giercksky KE, Flatmark K. Impact of hyperthermia on pharmacokinetics of intraperitoneal mitomycin C in rats investigated by microdialysis. J Surg Oncol. 2014;109(6):521–6.

    Article  CAS  PubMed  Google Scholar 

  64. Blumenthal RD, Goldenberg DM. Methods and goals for the use of in vitro and in vivo chemosensitivity testing. Mol Biotechnol. 2007;35(2):185–97.

    Article  CAS  PubMed  Google Scholar 

  65. Cashin PH, Mahteme H, Graf W, Karlsson H, Larsson R, Nygren P. Activity ex vivo of cytotoxic drugs in patient samples of peritoneal carcinomatosis with special focus on colorectal cancer. BMC Cancer. 2013;13:435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  66. Bjersand K, Mahteme H, Sundstrom Poromaa I, Andreasson H, Graf W, Larsson R, et al. Drug sensitivity testing in cytoreductive surgery and intraperitoneal chemotherapy of pseudomyxoma peritonei. Ann Surg Oncol. 2015;22(Suppl 3):S810–6.

    Article  PubMed  Google Scholar 

  67. Hoffman RM. Three-dimensional histoculture: origins and applications in cancer research. Cancer Cells. 1991;3(3):86–92.

    CAS  PubMed  Google Scholar 

  68. Vermaat JS, Nijman IJ, Koudijs MJ, Gerritse FL, Scherer SJ, Mokry M, et al. Primary colorectal cancers and their subsequent hepatic metastases are genetically different: implications for selection of patients for targeted treatment. Clin Cancer Res. 2012;18(3):688–99.

    Article  CAS  PubMed  Google Scholar 

  69. Ma Y, Ding Z, Qian Y, Wan YW, Tosun K, Shi X, et al. An integrative genomic and proteomic approach to chemosensitivity prediction. Int J Oncol. 2009;34(1):107–15.

    CAS  PubMed  Google Scholar 

  70. Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, et al. Distinct types of diffuse large B-cell lymphoma identified by gene expression profiling. Nature. 2000;403(6769):503–11.

    Article  CAS  PubMed  Google Scholar 

  71. Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, et al. Molecular classification of cancer: class discovery and class prediction by gene expression monitoring. Science. 1999;286(5439):531–7.

    Article  CAS  PubMed  Google Scholar 

  72. Staunton JE, Slonim DK, Coller HA, Tamayo P, Angelo MJ, Park J, et al. Chemosensitivity prediction by transcriptional profiling. Proc Natl Acad Sci U S A. 2001;98(19):10787–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hsu YC, Chen HY, Yuan S, Yu SL, Lin CH, Wu G, et al. Genome-wide analysis of three-way interplay among gene expression, cancer cell invasion and anti-cancer compound sensitivity. BMC Med. 2013;11:106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Govaerts, K., Van der Speeten, K., Bijelic, L., Esquivel, J. (2020). The Basis of Regional Therapy, Pharmacology, Hyperthermia, and Drug Resistance. In: Fong, Y., Gamblin, T., Han, E., Lee, B., Zager, J. (eds) Cancer Regional Therapy. Springer, Cham. https://doi.org/10.1007/978-3-030-28891-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28891-4_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28890-7

  • Online ISBN: 978-3-030-28891-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics