Skip to main content

Abstract

In recent years, machine learning (ML) has become a key enabling technology for the sciences and industry. Especially through improvements in methodology, the availability of large databases and increased computational power, today’s ML algorithms are able to achieve excellent performance (at times even exceeding the human level) on an increasing number of complex tasks. Deep learning models are at the forefront of this development. However, due to their nested non-linear structure, these powerful models have been generally considered “black boxes”, not providing any information about what exactly makes them arrive at their predictions. Since in many applications, e.g., in the medical domain, such lack of transparency may be not acceptable, the development of methods for visualizing, explaining and interpreting deep learning models has recently attracted increasing attention. This introductory paper presents recent developments and applications in this field and makes a plea for a wider use of explainable learning algorithms in practice.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The authors of [24] showed that deep models can be easily fooled by physical-world attacks. For instance, by putting specific stickers on a stop sign one can achieve that the stop sign is not recognized by the system anymore.

  2. 2.

    The PASCAL VOC images have been automatically crawled from flickr and especially the horse images were very often copyrighted with a watermark.

  3. 3.

    Traditional methods to evaluate classifier performance require large test datasets.

References

  1. Alber, M., et al.: iNNvestigate neural networks!. J. Mach. Learn. Res. 20(93), 1–8 (2019)

    MathSciNet  Google Scholar 

  2. Ancona, M., Ceolini, E., Öztireli, C., Gross, M.: Gradient-based attribution methods. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 169–191. Springer, Cham (2019)

    Google Scholar 

  3. Antunes, P., Herskovic, V., Ochoa, S.F., Pino, J.A.: Structuring dimensions for collaborative systems evaluation. ACM Comput. Surv. (CSUR) 44(2), 8 (2012)

    Google Scholar 

  4. Arjona-Medina, J.A., Gillhofer, M., Widrich, M., Unterthiner, T., Hochreiter, S.: RUDDER: return decomposition for delayed rewards. arXiv preprint arXiv:1806.07857 (2018)

  5. Arras, L., et al.: Explaining and interpreting LSTMs. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 211–238. Springer, Cham (2019)

    Google Scholar 

  6. Arras, L., Horn, F., Montavon, G., Müller, K.R., Samek, W.: What is relevant in a text document?: An interpretable machine learning approach. PLoS ONE 12(8), e0181142 (2017)

    Google Scholar 

  7. Arras, L., Montavon, G., Müller, K.R., Samek, W.: Explaining recurrent neural network predictions in sentiment analysis. In: EMNLP 2017 Workshop on Computational Approaches to Subjectivity, Sentiment & Social Media Analysis (WASSA), pp. 159–168 (2017)

    Google Scholar 

  8. Arras, L., Osman, A., Müller, K.R., Samek, W.: Evaluating recurrent neural network explanations. In: ACL 2019 Workshop on BlackboxNLP: Analyzing and Interpreting Neural Networks for NLP (2019)

    Google Scholar 

  9. Bach, S., Binder, A., Montavon, G., Klauschen, F., Müller, K.R., Samek, W.: On pixel-wise explanations for non-linear classifier decisions by layer-wise relevance propagation. PLoS ONE 10(7), e0130140 (2015)

    Google Scholar 

  10. Baehrens, D., Schroeter, T., Harmeling, S., Kawanabe, M., Hansen, K., Müller, K.R.: How to explain individual classification decisions. J. Mach. Learn. Res. 11, 1803–1831 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Bahdanau, D., Cho, K., Bengio, Y.: Neural machine translation by jointly learning to align and translate. In: International Conference on Learning Representations (ICLR) (2015)

    Google Scholar 

  12. Bau, D., Zhou, B., Khosla, A., Oliva, A., Torralba, A.: Network dissection: quantifying interpretability of deep visual representations. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 6541–6549 (2017)

    Google Scholar 

  13. Binder, A., Bach, S., Montavon, G., Müller, K.-R., Samek, W.: Layer-wise relevance propagation for deep neural network architectures. Information Science and Applications (ICISA) 2016. LNEE, vol. 376, pp. 913–922. Springer, Singapore (2016). https://doi.org/10.1007/978-981-10-0557-2_87

    Chapter  Google Scholar 

  14. Binder, A., et al.: Towards computational fluorescence microscopy: machine learning-based integrated prediction of morphological and molecular tumor profiles. arXiv preprint arXiv:1805.11178 (2018)

  15. Chmiela, S., Sauceda, H.E., Müller, K.R., Tkatchenko, A.: Towards exact molecular dynamics simulations with machine-learned force fields. Nat. Commun. 9(1), 3887 (2018)

    Google Scholar 

  16. Cireşan, D., Meier, U., Masci, J., Schmidhuber, J.: A committee of neural networks for traffic sign classification. In: International Joint Conference on Neural Networks (IJCNN), pp. 1918–1921 (2011)

    Google Scholar 

  17. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 248–255 (2009)

    Google Scholar 

  18. Doshi-Velez, F., Kim, B.: Towards a rigorous science of interpretable machine learning. arXiv preprint arXiv:1702.08608 (2017)

  19. Doshi-Velez, F., et al.: Accountability of AI under the law: the role of explanation. arXiv preprint arXiv:1711.01134 (2017)

  20. Eitel, F., et al.: Uncovering convolutional neural network decisions for diagnosing multiple sclerosis on conventional MRI using layer-wise relevance propagation. arXiv preprint arXiv:1904.08771 (2019)

  21. European Commission’s High-Level Expert Group: Draft ethics guidelines for trustworthy AI. European Commission (2019)

    Google Scholar 

  22. Everingham, M., Eslami, S.A., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The PASCAL visual object classes challenge: a retrospective. Int. J. Comput. Vision 111(1), 98–136 (2015)

    Google Scholar 

  23. Everingham, M., Van Gool, L., Williams, C.K., Winn, J., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vision 88(2), 303–338 (2010)

    Google Scholar 

  24. Eykholt, K., et al.: Robust physical-world attacks on deep learning models. arXiv preprint arXiv:1707.08945 (2017)

  25. Fong, R.C., Vedaldi, A.: Interpretable explanations of black boxes by meaningful perturbation. In: IEEE International Conference on Computer Vision (CVPR), pp. 3429–3437 (2017)

    Google Scholar 

  26. Fong, R., Vedaldi, A.: Explanations for attributing deep neural network predictions. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 149–167. Springer, Cham (2019)

    Google Scholar 

  27. Goodman, B., Flaxman, S.: European union regulations on algorithmic decision-making and a “right to explanation”. AI Mag. 38(3), 50–57 (2017)

    Google Scholar 

  28. Hajian, S., Bonchi, F., Castillo, C.: Algorithmic bias: from discrimination discovery to fairness-aware data mining. In: 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 2125–2126 (2016)

    Google Scholar 

  29. Han, S., Pool, J., Tran, J., Dally, W.: Learning both weights and connections for efficient neural network. In: Advances in Neural Information Processing Systems (NIPS), pp. 1135–1143 (2015)

    Google Scholar 

  30. Heath, R.L., Bryant, J.: Human Communication Theory and Research: Concepts, Contexts, and Challenges. Routledge, New York (2013)

    Google Scholar 

  31. Hofmarcher, M., Unterthiner, T., Arjona-Medina, J., Klambauer, G., Hochreiter, S., Nessler, B.: Visual scene understanding for autonomous driving using semantic segmentation. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 285–296. Springer, Cham (2019)

    Google Scholar 

  32. Holzinger, A., Langs, G., Denk, H., Zatloukal, K., Müller, H.: Causability and explainabilty of artificial intelligence in medicine. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. 9, e1312 (2019)

    Google Scholar 

  33. Horst, F., Lapuschkin, S., Samek, W., Müller, K.R., Schöllhorn, W.I.: Explaining the unique nature of individual gait patterns with deep learning. Sci. Rep. 9, 2391 (2019)

    Google Scholar 

  34. Karpathy, A., Toderici, G., Shetty, S., Leung, T., Sukthankar, R., Fei-Fei, L.: Large-scale video classification with convolutional neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1725–1732 (2014)

    Google Scholar 

  35. Kauffmann, J., Müller, K.R., Montavon, G.: Towards explaining anomalies: a deep Taylor decomposition of one-class models. arXiv preprint arXiv:1805.06230 (2018)

  36. Kauffmann, J., Esders, M., Montavon, G., Samek, W., Müller, K.R.: From clustering to cluster explanations via neural networks. arXiv preprint arXiv:1906.07633 (2019)

  37. Khanna, R., Kim, B., Ghosh, J., Koyejo, O.: Interpreting black box predictions using fisher kernels. arXiv preprint arXiv:1810.10118 (2018)

  38. Kim, B., et al.: Interpretability beyond feature attribution: quantitative testing with concept activation vectors (TCAV). In: International Conference on Machine Learning (ICML), pp. 2673–2682 (2018)

    Google Scholar 

  39. Kindermans, P.J., et al.: Learning how to explain neural networks: patternnet and patternattribution. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  40. Klauschen, F., et al.: Scoring of tumor-infiltrating lymphocytes: from visual estimation to machine learning. Semin. Cancer Biol. 52(2), 151–157 (2018)

    Google Scholar 

  41. Koh, P.W., Liang, P.: Understanding black-box predictions via influence functions. In: International Conference on Machine Learning (ICML), pp. 1885–1894 (2017)

    Google Scholar 

  42. Kriegeskorte, N., Goebel, R., Bandettini, P.: Information-based functional brain mapping. Proc. Nat. Acad. Sci. 103(10), 3863–3868 (2006)

    Google Scholar 

  43. Lage, I., et al.: An evaluation of the human-interpretability of explanation. arXiv preprint arXiv:1902.00006 (2019)

  44. Lapuschkin, S., Binder, A., Montavon, G., Müller, K.R., Samek, W.: Analyzing classifiers: fisher vectors and deep neural networks. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 2912–2920 (2016)

    Google Scholar 

  45. Lapuschkin, S.: Opening the machine learning black box with layer-wise relevance propagation. Ph.D. thesis, Technische Universität Berlin (2019)

    Google Scholar 

  46. Lapuschkin, S., Wäldchen, S., Binder, A., Montavon, G., Samek, W., Müller, K.R.: Unmasking clever hans predictors and assessing what machines really learn. Nat. Commun. 10, 1096 (2019)

    Google Scholar 

  47. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015)

    Google Scholar 

  48. LeCun, Y.A., Bottou, L., Orr, G.B., Müller, K.-R.: Efficient backprop. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 9–48. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_3

    Chapter  Google Scholar 

  49. Lemm, S., Blankertz, B., Dickhaus, T., Müller, K.R.: Introduction to machine learning for brain imaging. Neuroimage 56(2), 387–399 (2011)

    Google Scholar 

  50. Li, J., Monroe, W., Jurafsky, D.: Understanding neural networks through representation erasure. arXiv preprint arXiv:1612.08220 (2016)

  51. Libbrecht, M.W., Noble, W.S.: Machine learning applications in genetics and genomics. Nat. Rev. Genet. 16(6), 321 (2015)

    Google Scholar 

  52. Lindholm, E., Nickolls, J., Oberman, S., Montrym, J.: NVIDIA tesla: a unified graphics and computing architecture. IEEE Micro 28(2), 39–55 (2008)

    Google Scholar 

  53. Lu, C., Tang, X.: Surpassing human-level face verification performance on LFW with GaussianFace. In: 29th AAAI Conference on Artificial Intelligence, pp. 3811–3819 (2015)

    Google Scholar 

  54. Lundberg, S.M., Lee, S.I.: A unified approach to interpreting model predictions. In: Advances in Neural Information Processing Systems (NIPS), pp. 4765–4774 (2017)

    Google Scholar 

  55. Madry, A., Makelov, A., Schmidt, L., Tsipras, D., Vladu, A.: Towards deep learning models resistant to adversarial attacks. In: International Conference on Learning Representations (ICLR) (2018)

    Google Scholar 

  56. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Google Scholar 

  57. Montavon, G.: Gradient-based vs. propagation-based explanations: an axiomatic comparison. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 253–265. Springer, Cham (2019)

    Google Scholar 

  58. Montavon, G., Binder, A., Lapuschkin, S., Samek, W., Müller, K.-R.: Layer-wise relevance propagation: an overview. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 193–209. Springer, Cham (2019)

    Google Scholar 

  59. Montavon, G., Lapuschkin, S., Binder, A., Samek, W., Müller, K.R.: Explaining nonlinear classification decisions with deep Taylor decomposition. Pattern Recogn. 65, 211–222 (2017)

    Google Scholar 

  60. Montavon, G., Samek, W., Müller, K.R.: Methods for interpreting and understanding deep neural networks. Digit. Signal Process. 73, 1–15 (2018)

    MathSciNet  Google Scholar 

  61. Moravčík, M., et al.: Deepstack: expert-level artificial intelligence in heads-up no-limit poker. Science 356(6337), 508–513 (2017)

    MathSciNet  MATH  Google Scholar 

  62. Morch, N., et al.: Visualization of neural networks using saliency maps. In: International Conference on Neural Networks (ICNN), vol. 4, pp. 2085–2090 (1995)

    Google Scholar 

  63. Mordvintsev, A., Olah, C., Tyka, M.: Inceptionism: going deeper into neural networks (2015)

    Google Scholar 

  64. Nguyen, A., Dosovitskiy, A., Yosinski, J., Brox, T., Clune, J.: Synthesizing the preferred inputs for neurons in neural networks via deep generator networks. In: Advances in Neural Information Processing Systems (NIPS), pp. 3387–3395 (2016)

    Google Scholar 

  65. Nguyen, A., Yosinski, J., Clune, J.: Understanding neural networks via feature visualization: a survey. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 55–76. Springer, Cham (2019)

    Google Scholar 

  66. Nguyen, D.: Comparing automatic and human evaluation of local explanations for text classification. In: Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT), pp. 1069–1078 (2018)

    Google Scholar 

  67. Phinyomark, A., Petri, G., Ibáñez-Marcelo, E., Osis, S.T., Ferber, R.: Analysis of big data in gait biomechanics: current trends and future directions. J. Med. Biol. Eng. 38(2), 244–260 (2018)

    Google Scholar 

  68. Pilania, G., Wang, C., Jiang, X., Rajasekaran, S., Ramprasad, R.: Accelerating materials property predictions using machine learning. Sci. Rep. 3, 2810 (2013)

    Google Scholar 

  69. Poerner, N., Roth, B., Schütze, H.: Evaluating neural network explanation methods using hybrid documents and morphosyntactic agreement. In: 56th Annual Meeting of the Association for Computational Linguistics (ACL), pp. 340–350 (2018)

    Google Scholar 

  70. Preuer, K., Klambauer, G., Rippmann, F., Hochreiter, S., Unterthiner, T.: Interpretable deep learning in drug discovery. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 331–345. Springer, Cham (2019)

    Google Scholar 

  71. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 779–788 (2016)

    Google Scholar 

  72. Reyes, E., et al.: Enhanced rotational invariant convolutional neural network for supernovae detection. In: International Joint Conference on Neural Networks (IJCNN), pp. 1–8 (2018)

    Google Scholar 

  73. Ribeiro, M.T., Singh, S., Guestrin, C.: Why should I trust you?: explaining the predictions of any classifier. In: ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 1135–1144 (2016)

    Google Scholar 

  74. Ross, A.S., Hughes, M.C., Doshi-Velez, F.: Right for the right reasons: training differentiable models by constraining their explanations. In: 26th International Joint Conferences on Artificial Intelligence (IJCAI), pp. 2662–2670 (2017)

    Google Scholar 

  75. Samek, W., Binder, A., Montavon, G., Lapuschkin, S., Müller, K.R.: Evaluating the visualization of what a deep neural network has learned. IEEE Trans. Neural Netw. Learn. Syst. 28(11), 2660–2673 (2017)

    MathSciNet  Google Scholar 

  76. Samek, W., Wiegand, T., Müller, K.R.: Explainable artificial intelligence: understanding, visualizing and interpreting deep learning models. ITU J. ICT Discov. 1(1), 39–48 (2018). Special Issue 1 - The Impact of Artificial Intelligence (AI) on Communication Networks and Services

    Google Scholar 

  77. Sánchez, J., Perronnin, F., Mensink, T., Verbeek, J.J.: Image classification with the fisher vector: theory and practice. Int. J. Comput. Vision 105(3), 222–245 (2013)

    MathSciNet  MATH  Google Scholar 

  78. Schütt, K.T., Arbabzadah, F., Chmiela, S., Müller, K.R., Tkatchenko, A.: Quantum-chemical insights from deep tensor neural networks. Nat. Commun. 8, 13890 (2017)

    Google Scholar 

  79. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-CAM: visual explanations from deep networks via gradient-based localization. In: IEEE International Conference on Computer Vision (CVPR), pp. 618–626 (2017)

    Google Scholar 

  80. Shapley, L.S.: A value for n-person games. Contrib. Theory Games 2(28), 307–317 (1953)

    MathSciNet  MATH  Google Scholar 

  81. Shrikumar, A., Greenside, P., Kundaje, A.: Learning important features through propagating activation differences. arXiv preprint arXiv:1704.02685 (2017)

  82. Silver, D., et al.: Mastering the game of Go with deep neural networks and tree search. Nature 529(7587), 484–489 (2016)

    Google Scholar 

  83. Silver, D., et al.: Mastering the game of Go without human knowledge. Nature 550(7676), 354–359 (2017)

    Google Scholar 

  84. Simonyan, K., Vedaldi, A., Zisserman, A.: Deep inside convolutional networks: visualising image classification models and saliency maps. In: ICLR Workshop (2014)

    Google Scholar 

  85. Smilkov, D., Thorat, N., Kim, B., Viégas, F., Wattenberg, M.: SmoothGrad: removing noise by adding noise. arXiv preprint arXiv:1706.03825 (2017)

  86. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net. In: ICLR Workshop (2015)

    Google Scholar 

  87. Sturm, I., Lapuschkin, S., Samek, W., Müller, K.R.: Interpretable deep neural networks for single-trial EEG classification. J. Neurosci. Methods 274, 141–145 (2016)

    Google Scholar 

  88. Sundararajan, M., Taly, A., Yan, Q.: Axiomatic attribution for deep networks. In: International Conference on Machine Learning (ICML), pp. 3319–3328 (2017)

    Google Scholar 

  89. Thomas, A.W., Heekeren, H.R., Müller, K.R., Samek, W.: Analyzing neuroimaging data through recurrent deep learning models. arXiv preprint arXiv:1810.09945 (2018)

  90. Van Den Oord, A., et al.: Wavenet: a generative model for raw audio. arXiv preprint arXiv:1609.03499 (2016)

  91. Weller, A.: Transparency: motivations and challenges. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 23–40. Springer, Cham (2019)

    Google Scholar 

  92. Wu, D., Wang, L., Zhang, P.: Solving statistical mechanics using variational autoregressive networks. Phys. Rev. Lett. 122(8), 080602 (2019)

    Google Scholar 

  93. Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)

  94. Zeiler, M.D., Fergus, R.: Visualizing and understanding convolutional networks. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8689, pp. 818–833. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10590-1_53

    Chapter  Google Scholar 

  95. Zhang, J., Lin, Z., Brandt, J., Shen, X., Sclaroff, S.: Top-down neural attention by excitation backprop. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 543–559. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_33

    Chapter  Google Scholar 

  96. Zhou, B., Bau, D., Oliva, A., Torralba, A.: Comparing the interpretability of deep networks via network dissection. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L.K., Müller, K.-R. (eds.) Explainable AI. LNCS, vol. 11700, pp. 243–252. Springer, Cham (2019)

    Google Scholar 

  97. Zintgraf, L.M., Cohen, T.S., Adel, T., Welling, M.: Visualizing deep neural network decisions: prediction difference analysis. In: International Conference on Learning Representations (ICLR) (2017)

    Google Scholar 

Download references

Acknowledgements

This work was supported by the German Ministry for Education and Research as Berlin Big Data Centre (01IS14013A), Berlin Center for Machine Learning (01IS18037I) and TraMeExCo (01IS18056A). Partial funding by DFG is acknowledged (EXC 2046/1, project-ID: 390685689). This work was also supported by the Institute for Information & Communications Technology Planning & Evaluation (IITP) grant funded by the Korea government (No. 2017-0-00451, No. 2017-0-01779).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wojciech Samek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Samek, W., Müller, KR. (2019). Towards Explainable Artificial Intelligence. In: Samek, W., Montavon, G., Vedaldi, A., Hansen, L., Müller, KR. (eds) Explainable AI: Interpreting, Explaining and Visualizing Deep Learning. Lecture Notes in Computer Science(), vol 11700. Springer, Cham. https://doi.org/10.1007/978-3-030-28954-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-28954-6_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-28953-9

  • Online ISBN: 978-3-030-28954-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics