Skip to main content

Precipitation Partitioning, or to the Surface and Back Again: Historical Overview of the First Process in the Terrestrial Hydrologic Pathway

  • Chapter
  • First Online:
Precipitation Partitioning by Vegetation

Abstract

This chapter presents a history of the interdisciplinary field focused on improving our understanding of the first step in the terrestrial hydrologic cycle: precipitation partitioning by vegetation. We describe the origins of interest, rooted in observations from “The Father of Botany,” Theophrastus (350 BCE) and synthesize the early formal hydrologic and biogeochemical research (~1800–1917) that provided the foundation for modern precipitation partitioning investigation. To examine the field’s publication and citation trends over the past century (1918–2017), a meta-analysis of precipitation partitioning research sampled from the Thompson Reuter’s Web of Science is presented and discussed. Finally, a summary of research published on this topic through September 2018 (when this chapter was written) is used to discuss broad future directions as well as to introduce the overall structure of this book.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Ahmadi MT, Attarod P, Mohadjer MRM, Rahmani R, Fathi J (2009) Partitioning rainfall into throughfall, stemflow, and interception loss in an oriental beech (Fagus orientalis Lipsky) forest during the growing season. Turk J Agric For 33(6):557–568

    Google Scholar 

  • Andréassian V (2004) Waters and forests: from historical controversy to scientific debate. J Hydrol 291(1–2):1–27

    Article  Google Scholar 

  • Arens K (1934) Die kutikuläre Exkretion des Laubblattes. Jb wiss Bot 80:248–300

    Google Scholar 

  • Aung K, Jiang Y, He SY (2018) The role of water in plant–microbe interactions. Plant J 93(4):771–780

    Article  Google Scholar 

  • Beard J (1955) Hydrological studies in the Natal Wattle Belt. J S Afr For Assoc 25(1):40–51

    Google Scholar 

  • Belmonte Serrato F, Romero Díaz A (1998) A simple technique for measuring rainfall interception by small shrub: “interception flow collection box”. Hydrol Process 12(3):471–481

    Article  Google Scholar 

  • Berry ZC, Emery NC, Gotsch SG, Goldsmith GR (2019) Foliar water uptake: processes, pathways, and integration into plant water budgets. Plant, Cell Environ 42(2):410–423

    Article  Google Scholar 

  • Biddick M, Hutton I, Burns K (2018) An alternative water transport system in land plants. Proc R Soc B Biol Sci 285(1884):20180995

    Article  Google Scholar 

  • Bischoff S, Schwarz MT, Siemens J, Thieme L, Wilcke W, Michalzik B (2015) Properties of dissolved and total organic matter in throughfall, stemflow and forest floor leachate of central European forests. Biogeosciences 12(9): https://doi.org/10.5194/bg-12-2695-2015

    Article  Google Scholar 

  • Bittar TB, Pound P, Whitetree A, Moore LD, Van Stan JT (2018) Estimation of throughfall and stemflow bacterial flux in a subtropical Oak-Cedar forest. Geophys Res Lett 45(3):1410–1418. https://doi.org/10.1002/2017gl075827

    Article  Google Scholar 

  • Bracho R, Vogel JG, Will RE, Noormets A, Samuelson LJ, Jokela EJ, Gonzalez-Benecke CA, Gezan SA, Markewitz D, Seiler JR (2018) Carbon accumulation in loblolly pine plantations is increased by fertilization across a soil moisture availability gradient. For Ecol Manage 424:39–52

    Article  Google Scholar 

  • Bruijnzeel L, Mulligan M, Scatena FN (2011) Hydrometeorology of tropical montane cloud forests: emerging patterns. Hydrol Process 25(3):465–498

    Article  Google Scholar 

  • Bühler A (1892) Die Niederschläge im Walde. 1. Mittheilung. In: Mitteilungen der Eidgenössischen Forschungsanstalt für Wald, Schnee und Landschaft, vol 2(1/2), pp 127–160

    Google Scholar 

  • Bühler A (1918) Der Waldbau nach wissenschaftlicher Forschung und praktischer Erfahrung: ein Hand- und Lehrbuch, vol 1, 662 pp. Ulmer, Stuttgart, Germany

    Google Scholar 

  • Calder I, Wright I, Murdiyarso D (1986) A study of evaporation from tropical rain forest—West Java. J Hydrol 89(1–2):13–31

    Article  Google Scholar 

  • Carlyle-Moses DE, Si Iida, Germer S, Llorens P, Michalzik B, Nanko K, Tischer A, Levia DF (2018) Expressing stemflow commensurate with its ecohydrological importance. Adv Water Resour 121:472–479

    Article  Google Scholar 

  • Clavé J (1875) Étude de météorologie forestière. Revue des Deux Mondes (1829–1971) 9(3):632–649

    Google Scholar 

  • Dalbro S (1955) Leaching of nutrients from apple foliage. In: Proceedings of the XIV international horticultural congress, pp 770–778

    Google Scholar 

  • Davies-Barnard T, Valdes P, Jones C, Singarayer J (2014) Sensitivity of a coupled climate model to canopy interception capacity. Clim Dyn 42(7–8):1715–1732

    Article  Google Scholar 

  • De Galindo JDA, Glas G (1764) The history of the discovery and conquest of the Canary Islands. A. Pope & J. Swift

    Google Scholar 

  • de Saussure NT (1804) Recherches chimiques sur la vegetation. Nyon

    Google Scholar 

  • Dove H (1855) Ueber die Vertheilung der Regen in der gemässigten Zone. Ann Phys 170(1):42–59

    Article  Google Scholar 

  • Dundonald AC (1795) A treatise, shewing the intimate connection that subsists between agriculture and chemistry, addressed to the cultivators of the soil, to the proprietors of fens and mosses, in Great Britain and Ireland; and to the proprietors of West India estates. By the Earl of Dundonald

    Google Scholar 

  • Eaton JS, Likens GE, Bormann FH (1973) Throughfall and stemflow chemistry in a northern hardwood forest. J Ecol 495–508

    Google Scholar 

  • Ebermayer E (1873) Die physikalischen Einwirkungen des Waldes auf Luft und Boden und seine klimatologische und hygienische Bedeutung. Krebs, Aschaffenburg, Germany, 253 pp.

    Google Scholar 

  • Ebermayer E (1897) Untersuchungs-Ergebnisse über die Menge und Verteilung der Niederschläge in den Wäldern. Forstl Naturw Zeitschr 6:283–301

    Google Scholar 

  • Ellison L, Coaldrake J (1954) Soil mantle movement in relation to forest clearing in Southeastern Queensland. Ecology 35(3):380–388

    Article  Google Scholar 

  • Eriksson E (1952) Composition of atmospheric precipitation II. Sulfur, chloride, iodine compounds. Tellus 4(4):280–303

    Google Scholar 

  • Erisman JW, Sutton MA, Galloway J, Klimont Z, Winiwarter W (2008) How a century of ammonia synthesis changed the world. Nat Geosci 1(10):636

    Article  Google Scholar 

  • Ford E, Deans J (1978) The effects of canopy structure on stemflow, throughfall and interception loss in a young Sitka spruce plantation. J Appl Ecol 905–917

    Google Scholar 

  • Friesen J, Zink M, Bawain A, Müller T (2018) Hydrometeorology of the Dhofar cloud forest and its implications for groundwater recharge. J Hydrol Regional Stud 16:54–66

    Article  Google Scholar 

  • Friesen J, Van Stan JT (2019) Early European observations of precipitation partitioning by vegetation: a synthesis and evaluation of 19th century findings. Geosci 9(10):423. https://doi.org/10.3390/geosciences9100423

  • Garbelotto M, Davidson J, Ivors K, Maloney P, Hüberli D, St Koike, Rizzo D (2003) Non-oak native plants are main hosts for sudden oak death pathogen in California. Calif Agric 57(1):18–23

    Article  Google Scholar 

  • Gerrits A, Savenije H (2011) Forest floor interception. In: Forest hydrology and biogeochemistry. Springer, Berlin, pp 445–454

    Google Scholar 

  • Gimeno TE, McVicar TR, O’Grady AP, Tissue DT, Ellsworth DS (2018) Elevated CO2 did not affect the hydrological balance of a mature native Eucalyptus woodland. Glob Change Biol 24(7):

    Article  Google Scholar 

  • Glinski DA, Purucker ST, Van Meter RJ, Black MC, Henderson WM (2018) Analysis of pesticides in surface water, stemflow, and throughfall in an agricultural area in South Georgia, USA. Chemosphere 209:496–507

    Google Scholar 

  • Gönczöl J, Révay Á (2004) Fungal spores in rainwater: stemflow, throughfall and gutter conidial assemblages. Fungal Divers 16:67–86

    Google Scholar 

  • Gordin MD (2015) Scientific Babel: how science was done before and after global English. University of Chicago Press, Chicago

    Google Scholar 

  • Guilbert H, Mead S, Jackson H (1931) The effect of leaching on the nutritive value of forage plants. Hilgardia 6:13–26

    Article  Google Scholar 

  • Hakimi L, Sadeghi SMM, Van Stan JT, Pypker TG, Khosropour E (2018) Management of pomegranate (Punica granatum) orchards alters the supply and pathway of rain water reaching soils in an arid agricultural landscape. Agr Ecosyst Environ 259:77–85

    Article  Google Scholar 

  • Hales S (1727) Vegetable staticks: or, an account of fome statical experiments on the sap in vegetables: being an essay towards a natural history of vegetation. Alfo, a specimen of an attempt to analyfe the air, by a great variety of chymio-statical experiments; which Were Read at Feveral Meetings Before the Royal Society, vol 1. W. and J. Innys and T. Woodward

    Google Scholar 

  • Hall RL, Calder IR (1993) Drop size modification by forest canopies: measurements using a disdrometer. J Geophys Res Atmos 98(D10):

    Article  Google Scholar 

  • Harzing A-W, Alakangas S (2016) Google Scholar, Scopus and the web of science: a longitudinal and cross-disciplinary comparison. Scientometrics 106(2):787–804

    Article  Google Scholar 

  • Hellström RÅ (2000) Forest cover algorithms for estimating meteorological forcing in a numerical snow model. Hydrol Process 14(18):

    Article  Google Scholar 

  • Herbstritt B, Gralher B, Weiler M (2018) Real-time observations of stable isotope dynamics during rainfall and throughfall events. Hydrol Earth Syst Sci Discuss. https://doi.org/10.5194/hess-2018-301

  • Hildebrandt A, Eltahir EAB (2006) Forest on the edge: seasonal cloud forest in Oman creates its own ecological niche. Geophys Res Lett 33(11). https://doi.org/10.1029/2006gl026022

  • Hölzl R (2010) Umkämpfte Wälder: die Geschichte einer ökologischen Reform in Deutschland 1760–1860, vol 51. Campus Verlag

    Google Scholar 

  • Hoppe E (1896) Regenmessung unter Baumkronen. Frick, Vienna, Austria, 75 pp.

    Google Scholar 

  • Horton RE (1919) Rainfall interception. Mon Weather Rev 47(9):603–623

    Article  Google Scholar 

  • Howard DH, VanStan JT, Whitetree A, Zhu L, Stubbins A (2018) Interstorm variability in the biolability of tree-derived dissolved organic matter (Tree-DOM) in throughfall and stemflow. Forests 9(5):236

    Article  Google Scholar 

  • Ibn Baṭṭūṭah (1356) The travels of Ibn Baṭṭūṭah (trans: Lee S in 1829). Public Library of Cambridge, London, 291 pp.

    Google Scholar 

  • Ingham G (1950) Effect of materials absorbed from the atmosphere in maintaining soil fertility. Soil Sci 70(3):205–212

    Article  Google Scholar 

  • Johnen A, Breitenlohner J (1879) Comparative Beobachtungen der Niederschläge nach Fautrat’s Methode. Centralblatt für das gesamte Forstwesen 4(1):16–19

    Google Scholar 

  • Johnson SW (1869) How crops grow. Macmillan and Co., London, England

    Google Scholar 

  • Johnson MS, Lehmann J (2006) Double-funneling of trees: stemflow and root-induced preferential flow. Ecoscience 13(3):324–333

    Article  Google Scholar 

  • Jose S, Gillespie AR (1998) Allelopathy in black walnut (Juglans nigra L.) alley cropping. I. Spatio-temporal variation in soil juglone in a black walnut–corn (Zea mays L.) alley cropping system in the midwestern USA. Plant Soil 203(2):191–197

    Google Scholar 

  • Karwan D, Pizzuto J, Aalto R, Marquard J, Harpold A, Skalak K, Benthem A, Levia D, Siegert C, Aufdenkampe AK (2018) Direct channel precipitation and storm characteristics influence short-term fallout radionuclide assessment of sediment source. Water Resour Res 54(7):

    Article  Google Scholar 

  • Keim RF, Link TE (2018) Linked spatial variability of throughfall amount and intensity during rainfall in a coniferous forest. Agric For Meteorol 248:15–21

    Article  Google Scholar 

  • Keim RF, Skaugset AE (2004) A linear system model of dynamic throughfall rates beneath forest canopies. Water Resour Res 40(5). https://doi.org/10.1029/2003wr002875

  • Kerfoot O (1968) Mist precipitation on vegetation. For Abstr 29:8–20

    Google Scholar 

  • Klamerus-Iwan A, Witek W (2018) Variability in the wettability and water storage capacity of common oak leaves (Quercus robur L.). Water 10(6):695

    Google Scholar 

  • Krutzsch H (1855) Ueber den Einfluss der Waldungen auf die Regenverh&ltnisse der gemassigten Zone. Tharander forstliches Jahrbuch 11:123–141

    Google Scholar 

  • Krutzsch H (1863) Über die zu forstlichen Zwecken in Sachsen eingerichteten meteorologischen Stationen. Tharandter Forstl Jahrb 15:72–104

    Google Scholar 

  • Krutzsch H (1864) Die zu forstlichen Zwecken eingerichteten meteorologischen Stationen und die Resultate der Beobachtungen im Jahre 1863. Tharandter Forstl Jahrb 16:216–226

    Google Scholar 

  • Kunkel G (2012) Biogeography and ecology in the Canary Islands, vol 30. Springer Science & Business Media

    Google Scholar 

  • Lacombe G, Valentin C, Sounyafong P, De Rouw A, Soulileuth B, Silvera N, Pierret A, Sengtaheuanghoung O, Ribolzi O (2018) Linking crop structure, throughfall, soil surface conditions, runoff and soil detachment: 10 land uses analyzed in Northern Laos. Sci Total Environ 616:1330–1338

    Article  Google Scholar 

  • Le Clerc JA, Breazeale JF (1908) Plant food removed from growing plants by rain or dew. US Department of Agriculture

    Google Scholar 

  • Lee EJ, Kenkel N, Booth T (1996) Atmospheric deposition of macronutrients by pollen in the boreal forest. Ecoscience 3(3):304–309

    Article  Google Scholar 

  • Li J, Gilhooly WP, Okin GS, Blackwell J (2017) Abiotic processes are insufficient for fertile island development: a 10-year artificial shrub experiment in a desert grassland. Geophys Res Lett 44(5):

    Article  Google Scholar 

  • Liebscher G (1887) Der Verlauf der Stoffaufnahme und seine Bedeutung für die Düngerlehre. J Fuer Landwirtsch 35

    Google Scholar 

  • Liston GE, Elder K (2006) A distributed snow-evolution modeling system (SnowModel). J Hydrometeorol 7(6):1259–1276

    Article  Google Scholar 

  • Long W, Sweet D, Tukey H (1956) Loss of nutrients from plant foliage by leaching as indicated by radioisotopes. Science 123(3206):1039–1040

    Article  Google Scholar 

  • Low K, Goh K (1972) The water balance of five catchments in Selangor, West Malaysia. J Trop Geogra 35:60–66

    Google Scholar 

  • Lundberg A, Halldin S (2001) Snow interception evaporation. Review of measurement techniques, processes, and models. Theor Appl Climatol 70(1–4):117–133

    Google Scholar 

  • Mahendrappa M, Ogden E (1973) Effects of fertilization of a black spruce stand on nitrogen contents of stemflow, throughfall, and litterfall. Can J For Res 3(1):54–60

    Article  Google Scholar 

  • Maurice A, Frécaut R (1962) Hydrologie fluviale de l’Europe continentale. Revue Géographique de l’Est 2(4):411–428

    Article  Google Scholar 

  • McGuire KJ, Likens GE (2011) Historical roots of forest hydrology and biogeochemistry. In: Forest hydrology and biogeochemistry. Springer, Berlin, pp 3–26

    Google Scholar 

  • Meetham A (1950) Natural removal of pollution from the atmosphere. Q J R Meteorol Soc 76(330):359–371

    Article  Google Scholar 

  • Mongeon P, Paul-Hus A (2016) The journal coverage of web of science and Scopus: a comparative analysis. Scientometrics 106(1):213–228

    Article  Google Scholar 

  • Ney CE (1893) Der Wald und die Quellen. Pietzcker, Tübingen, Germany, 101 pp.

    Google Scholar 

  • Ney CE (1894) Über die Messung des an den Schäften der Bäume herabfließenden Wassers. Mitteilungen aus dem Forstlichen Versuchswesen Österreichs 17:115–125

    Google Scholar 

  • Niether W, Armengot L, Andres C, Schneider M, Gerold G (2018) Shade trees and tree pruning alter throughfall and microclimate in cocoa (Theobroma cacao L.) production systems. Ann For Sci 75(2):38

    Google Scholar 

  • Norton JP (1847) On the analysis of the oat. Am J Sci Arts 3(9)

    Google Scholar 

  • O’Connell CS, Ruan L, Silver WL (2018) Drought drives rapid shifts in tropical rainforest soil biogeochemistry and greenhouse gas emissions. Nat Commun 9(1):1348

    Article  Google Scholar 

  • Orság M, Fischer M, Tripathi AM, Žalud Z, Trnka M (2018) Sensitivity of short rotation poplar coppice biomass productivity to the throughfall reduction–estimating future drought impacts. Biomass Bioenergy 109:182–189

    Article  Google Scholar 

  • Osburn CL, Oviedo-Vargas D, Barnett E, Dierick D, Oberbauer SF, Genereux DP (2018) Regional groundwater and storms are hydrologic controls on the quality and export of dissolved organic matter in two tropical rainforest streams, Costa Rica. J Geophys Res Biogeosci 123(3):850–866

    Article  Google Scholar 

  • Parejko K (2003) Pliny the Elder’s silphium: first recorded species extinction. Conserv Biol 17(3):925–927

    Article  Google Scholar 

  • Parker GG (1983) Throughfall and stemflow in the forest nutrient cycle, vol 13, pp 57–133. https://doi.org/10.1016/s0065-2504(08)60108-7

  • Phillips J (1926) Rainfall interception by plants. Nature 118(2980):837

    Article  Google Scholar 

  • Phillips J (1928) Rainfall interception by plants. Nature 121(3045):354

    Article  Google Scholar 

  • Pomeroy J, Parviainen J, Hedstrom N, Gray D (1998) Coupled modelling of forest snow interception and sublimation. Hydrol Process 12(15):

    Article  Google Scholar 

  • Porada P, Van Stan JT, Kleidon A (2018) Significant contribution of non-vascular vegetation to global rainfall interception. Nat Geosci 11(8):563

    Article  Google Scholar 

  • Pozdnyakov L (1956) The role of rain penetrating beneath the forest canopy in the process of exchange of material between forest and soil. Soils Fert 19(4)

    Google Scholar 

  • Ptatscheck C, Milne PC, Traunspurger W (2018) Is stemflow a vector for the transport of small metazoans from tree surfaces down to soil? BMC Ecol 18(1):43

    Article  Google Scholar 

  • Qi J, Markewitz D, Radcliffe D (2018) Modelling the effect of changing precipitation inputs on deep soil water utilization. Hydrol Process 32(5):672–686

    Article  Google Scholar 

  • Riegler W (1881) Beobachtungen über die Abfuhr meteorischen Wassers entlang den Hochstämmen. Mitteilungen der forstlichen Bundes-Versuchsanstalt Wien 2:234–246

    Google Scholar 

  • Ritthausen H (1856) Alteration of clover-hay by washing with rain. Journal fuer Praktische Chemie 65:8

    Google Scholar 

  • Roth-Nebelsick A, Ebner M, Miranda T, Gottschalk V, Voigt D, Gorb S, Stegmaier T, Sarsour J, Linke M, Konrad W (2012) Leaf surface structures enable the endemic Namib desert grass Stipagrostis sabulicola to irrigate itself with fog water. J R Soc Interface 9(73):1965–1974

    Article  Google Scholar 

  • Rutter A, Kershaw K, Robins P, Morton A (1971) A predictive model of rainfall interception in forests, 1. Derivation of the model from observations in a plantation of Corsican pine. Agric Meteorol 9:367–384

    Article  Google Scholar 

  • Samuelson LJ, Kane MB, Markewitz D, Teskey RO, Akers MK, Stokes TA, Pell CJ, Qi J (2018) Fertilization increased leaf water use efficiency and growth of Pinus taeda subjected to five years of throughfall reduction. Can J For Res 48(2):227–236

    Article  Google Scholar 

  • Savenije HHG (2004) The importance of interception and why we should delete the term evapotranspiration from our vocabulary. Hydrol Process 18(8):1507–1511. https://doi.org/10.1002/hyp.5563

    Article  Google Scholar 

  • Savenije HH (2018) Intercepted by lichens. Nat Geosci 11(8):548

    Article  Google Scholar 

  • Silberstein O, Wittwer S (1951) Foliar application of phosphatic nutrients to vegetable crops. In: Proceedings of the American Society for Horticultural Science, 1951, vol DEC. American Society for Horticultural Science, 701 North Saint Asaph Street, Alexandria, VA, pp 179–190

    Google Scholar 

  • Stubbins A, Silva LM, Dittmar T, Van Stan JT (2017) Molecular and optical properties of tree-derived dissolved organic matter in throughfall and stemflow from live oaks and eastern red cedar. Front Earth Sci 5. https://doi.org/10.3389/feart.2017.00022

  • Tamm CO (1951) Removal of plant nutrients from tree crowns by rain. Physiol Plant 4(1):184–188

    Article  Google Scholar 

  • Teachey ME, Pound PT, Ottesen EA, Van Stan JT (2018) Bacterial community composition of throughfall and stemflow. Front For Glob Chang 1:7

    Article  Google Scholar 

  • Theophrastus (1483) Historia Plantarum, Tarvisii, Bartholomaeus Confalonerius. Retrieved from the Library of Congress

    Google Scholar 

  • Trimble G, Weitzman S (1954) Effect of a hardwood forest canopy on rainfall intensities. Eos Trans Am Geophys Union 35(2):226–234

    Article  Google Scholar 

  • Tukey Jr H (1966) Leaching of metabolites from above-ground plant parts and its implications. Bull Torrey Bot Club 385–401

    Google Scholar 

  • Van der Ent R, Wang-Erlandsson L, Keys PW, Savenije H (2014) Contrasting roles of interception and transpiration in the hydrological cycle—part 2: moisture recycling. Earth Syst Dyn 5(2):471–489

    Article  Google Scholar 

  • van Dijk AIJM, Gash JH, van Gorsel E, Blanken PD, Cescatti A, Emmel C, Gielen B, Harman IN, Kiely G, Merbold L, Montagnani L, Moors E, Sottocornola M, Varlagin A, Williams CA, Wohlfahrt G (2015) Rainfall interception and the coupled surface water and energy balance. Agric For Meteorol 214–215:402–415. https://doi.org/10.1016/j.agrformet.2015.09.006

    Article  Google Scholar 

  • Van Stan JT, Gordon DA (2018) Mini-review: stemflow as a resource limitation to near-stem soils. Front Plant Sci 9. https://doi.org/10.3389/fpls.2018.00248

  • Van Stan JT, Stubbins A (2018) Tree-DOM: dissolved organic matter in throughfall and stemflow. Limnol Ocean Lett. https://doi.org/10.1002/lol2.10059

    Article  Google Scholar 

  • Voigt G (1960) Alteration of the composition of rainwater by trees. Am Midl Nat 321–326

    Google Scholar 

  • von Humboldt A, Bonpland A (1807) Essai sur la géographie des plantes

    Google Scholar 

  • Watanabe K, Kohzu A, Suda W, Yamamura S, Takamatsu T, Takenaka A, Koshikawa MK, Hayashi S, Watanabe M (2016) Microbial nitrification in throughfall of a Japanese cedar associated with archaea from the tree canopy. Springerplus 5(1):1596. https://doi.org/10.1186/s40064-016-3286-y

    Article  Google Scholar 

  • Wehmer C (1892) Die dem Laubfall voraufgehende vermeintliche Blattentleerung. Jüst botanischer Jahresbericht 1:152–163

    Google Scholar 

  • Whitford WG, Anderson J, Rice PM (1997) Stemflow contribution to the ‘fertile island’ effect in creosotebush, Larrea tridentata. J Arid Environ 35(3):451–457

    Article  Google Scholar 

  • Wicht C (1941) An approach to the study of rainfall interception by forest canopies. J S Afr For Assoc 6(1):54–70

    Google Scholar 

  • Will G (1955) Removal of mineral nutrients from tree crowns by rain. Nature 176(4494):1180

    Article  Google Scholar 

  • Will GM (1959) Nutrient return in litter and rainfall under some exotic conifer stands in New Zealand. N Z J Agric Res 2(4):719–734

    Article  Google Scholar 

  • Zhang Q, Shao Ma, Jia X, Zhang C (2018) Understory vegetation and drought effects on soil aggregate stability and aggregate-associated carbon on the loess plateau in China. Soil Sci Soc Am J 82:106–114

    Google Scholar 

  • Zon R (1912) Forests and water in the light of scientific investigation forest service, United states department of agriculture. United States Government Printing Office, Washington, USA, p 106

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John T. Van Stan II .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Van Stan II, J.T., Friesen, J. (2020). Precipitation Partitioning, or to the Surface and Back Again: Historical Overview of the First Process in the Terrestrial Hydrologic Pathway . In: Van Stan, II, J., Gutmann, E., Friesen, J. (eds) Precipitation Partitioning by Vegetation. Springer, Cham. https://doi.org/10.1007/978-3-030-29702-2_1

Download citation

Publish with us

Policies and ethics