Skip to main content

maskVerif: Automated Verification of Higher-Order Masking in Presence of Physical Defaults

  • Conference paper
  • First Online:
Computer Security – ESORICS 2019 (ESORICS 2019)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 11735))

Included in the following conference series:

Abstract

Power and electromagnetic based side-channel attacks are serious threats against the security of cryptographic embedded devices. In order to mitigate these attacks, implementations use countermeasures, among which masking is currently the most investigated and deployed choice. Unfortunately, commonly studied forms of masking rely on underlying assumptions that are difficult to satisfy in practice. This is due to physical defaults, such as glitches or transitions, which can recombine the masked data in a way that concretely reduces an implementation’s security.

We develop and implement an automated approach for verifying security of masked implementations in presence of physical defaults (glitches or transitions). Our approach helps to recover the main strengths of masking: rigorous foundations, composability guarantees, automated verification under more realistic assumptions. Our work follows the approach of (Barthe et al. EUROCRYPT 2015) and thus contributes to demonstrate the benefits of language-based approaches (specifically probabilistic information flow) for masking.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Missing tuples with Extend does not impact the correctness of the algorithm.

  2. 2.

    Programs/logs are available at https://gitlab.com/benjgregoire/maskverif/.

  3. 3.

    Note that the timings of [9] are obtained with a more powerful machine than ours.

References

  1. Balasch, J., Gierlichs, B., Grosso, V., Reparaz, O., Standaert, F.-X.: On the cost of lazy engineering for masked software implementations. In: Joye, M., Moradi, A. (eds.) CARDIS 2014. LNCS, vol. 8968, pp. 64–81. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16763-3_5

    Chapter  Google Scholar 

  2. Barthe, G., Belaïd, S., Dupressoir, F., Fouque, P.-A., Grégoire, B., Strub, P.-Y.: Verified proofs of higher-order masking. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 457–485. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_18

    Chapter  Google Scholar 

  3. Barthe, G., et al.: Strong non-interference and type-directed higher-order masking. In: Weippl, E.R., Katzenbeisser, S., Kruegel, C., Myers, A.C., Halevi, S. (eds.) ACM CCS 2016, pp. 116–129. ACM Press, October 2016

    Google Scholar 

  4. Barthe, G., Daubignard, M., Kapron, B., Lakhnech, Y., Laporte, V.: On the equality of probabilistic terms. In: Clarke, E.M., Voronkov, A. (eds.) LPAR 2010. LNCS (LNAI), vol. 6355, pp. 46–63. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-17511-4_4

    Chapter  Google Scholar 

  5. Barthe, G., Dupressoir, F., Faust, S., Grégoire, B., Standaert, F.-X., Strub, P.-Y.: Parallel implementations of masking schemes and the bounded moment leakage model. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017, Part I. LNCS, vol. 10210, pp. 535–566. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56620-7_19

    Chapter  Google Scholar 

  6. Bayrak, A.G., Regazzoni, F., Novo, D., Ienne, P.: Sleuth: automated verification of software power analysis countermeasures. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 293–310. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_17

    Chapter  Google Scholar 

  7. Belaïd, S., Goudarzi, D., Rivain, M.: Tight private circuits: achieving probing security with the least refreshing. In: Peyrin, T., Galbraith, S. (eds.) ASIACRYPT 2018, Part II. LNCS, vol. 11273, pp. 343–372. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03329-3_12

    Chapter  Google Scholar 

  8. Bilgin, B., Bogdanov, A., Knežević, M., Mendel, F., Wang, Q.: Fides: lightweight authenticated cipher with side-channel resistance for constrained hardware. In: Bertoni, G., Coron, J.-S. (eds.) CHES 2013. LNCS, vol. 8086, pp. 142–158. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-40349-1_9

    Chapter  MATH  Google Scholar 

  9. Bloem, R., Gross, H., Iusupov, R., Könighofer, B., Mangard, S., Winter, J.: Formal verification of masked hardware implementations in the presence of glitches. In: Nielsen, J.B., Rijmen, V. (eds.) EUROCRYPT 2018, Part II. LNCS, vol. 10821, pp. 321–353. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-78375-8_11

    Chapter  MATH  Google Scholar 

  10. Bloem, R., Iusupov, R., Krenn, M., Mangard, S.: Sharing independence & relabeling: efficient formal verification of higher-order masking. Cryptology ePrint Archive, Report 2018/1031 (2018). https://eprint.iacr.org/2018/1031

  11. Chari, S., Jutla, C.S., Rao, J.R., Rohatgi, P.: Towards sound approaches to counteract power-analysis attacks. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 398–412. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_26

    Chapter  Google Scholar 

  12. Coron, J.-S.: Formal verification of side-channel countermeasures via elementary circuit transformations. In: Preneel, B., Vercauteren, F. (eds.) ACNS 2018. LNCS, vol. 10892, pp. 65–82. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93387-0_4

    Chapter  Google Scholar 

  13. Coron, J.-S., Giraud, C., Prouff, E., Renner, S., Rivain, M., Vadnala, P.K.: Conversion of security proofs from one leakage model to another: a new issue. In: Schindler, W., Huss, S.A. (eds.) COSADE 2012. LNCS, vol. 7275, pp. 69–81. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-29912-4_6

    Chapter  Google Scholar 

  14. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. In: Nguyen, P.Q., Oswald, E. (eds.) EUROCRYPT 2014. LNCS, vol. 8441, pp. 423–440. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-55220-5_24

    Chapter  Google Scholar 

  15. Duc, A., Dziembowski, S., Faust, S.: Unifying leakage models: from probing attacks to noisy leakage. J. Cryptol. 32(1), 151–177 (2019)

    Article  MathSciNet  Google Scholar 

  16. Duc, A., Faust, S., Standaert, F.-X.: Making masking security proofs concrete. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015, Part I. LNCS, vol. 9056, pp. 401–429. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46800-5_16

    Chapter  Google Scholar 

  17. Eldib, H., Wang, C., Schaumont, P.: Formal verification of software countermeasures against side-channel attacks. ACM Trans. Softw. Eng. Methodol. 24(2), 11:1–11:24 (2014)

    Article  Google Scholar 

  18. Eldib, H., Wang, C., Taha, M.M.I., Schaumont, P.: Quantitative masking strength: quantifying the power side-channel resistance of software code. IEEE Trans. CAD Integr. Circuits Syst. 34(10), 1558–1568 (2015)

    Article  Google Scholar 

  19. Faust, S., Grosso, V., Pozo, S.M.D., Paglialonga, C., Standaert, F.-X.: Composable masking schemes in the presence of physical defaults & the robust probing model. IACR TCHES 2018(3), 89–120 (2018). https://tches.iacr.org/index.php/TCHES/article/view/7270

    Google Scholar 

  20. Gandolfi, K., Mourtel, C., Olivier, F.: Electromagnetic analysis: concrete results. In: Koç, Ç.K., Naccache, D., Paar, C. (eds.) CHES 2001. LNCS, vol. 2162, pp. 251–261. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44709-1_21

    Chapter  Google Scholar 

  21. Groß, H., Krenn, M., Mangard, S.: Second and third order verilog implementations of AES s-box (2018)

    Google Scholar 

  22. Gross, H., Mangard, S., Korak, T.: An efficient side-channel protected AES implementation with arbitrary protection order. In: Handschuh, H. (ed.) CT-RSA 2017. LNCS, vol. 10159, pp. 95–112. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52153-4_6

    Chapter  Google Scholar 

  23. Gross, H., Schaffenrath, D., Mangard, S.: Higher-order side-channel protected implementations of keccak. Cryptology ePrint Archive, Report 2017/395 (2017). http://eprint.iacr.org/2017/395

  24. Ishai, Y., Prabhakaran, M., Sahai, A., Wagner, D.: Private circuits II: keeping secrets in tamperable circuits. In: Vaudenay, S. (ed.) EUROCRYPT 2006. LNCS, vol. 4004, pp. 308–327. Springer, Heidelberg (2006). https://doi.org/10.1007/11761679_19

    Chapter  MATH  Google Scholar 

  25. Ishai, Y., Sahai, A., Wagner, D.: Private circuits: securing hardware against probing attacks. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 463–481. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-45146-4_27

    Chapter  Google Scholar 

  26. Knudsen, L.R., Robshaw, M.: The Block Cipher Companion. Information Security and Cryptography. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-17342-4

    Book  MATH  Google Scholar 

  27. Kocher, P.C.: Timing attacks on implementations of Diffie-Hellman, RSA, DSS, and other systems. In: Koblitz, N. (ed.) CRYPTO 1996. LNCS, vol. 1109, pp. 104–113. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-68697-5_9

    Chapter  Google Scholar 

  28. Kocher, P., Jaffe, J., Jun, B.: Differential power analysis. In: Wiener, M. (ed.) CRYPTO 1999. LNCS, vol. 1666, pp. 388–397. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48405-1_25

    Chapter  Google Scholar 

  29. Mangard, S., Oswald, E., Popp, T.: Power Analysis Attacks - Revealing The Secrets of Smart Cards. Springer, New York (2007). https://doi.org/10.1007/978-0-387-38162-6

    Book  MATH  Google Scholar 

  30. Mangard, S., Popp, T., Gammel, B.M.: Side-channel leakage of masked CMOS gates. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 351–365. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-30574-3_24

    Chapter  Google Scholar 

  31. Moss, A., Oswald, E., Page, D., Tunstall, M.: Compiler assisted masking. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 58–75. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33027-8_4

    Chapter  Google Scholar 

  32. Nikova, S., Rechberger, C., Rijmen, V.: Threshold implementations against side-channel attacks and glitches. In: Ning, P., Qing, S., Li, N. (eds.) ICICS 2006. LNCS, vol. 4307, pp. 529–545. Springer, Heidelberg (2006). https://doi.org/10.1007/11935308_38

    Chapter  MATH  Google Scholar 

  33. Trichina, E.: Combinational logic design for AES subbyte transformation on masked data. Cryptology ePrint Archive, Report 2003/236 (2003). http://eprint.iacr.org/2003/236

  34. Zhang, J., Gao, P., Song, F., Wang, C.: SCInfer: refinement-based verification of software countermeasures against side-channel attacks. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018, Part II. LNCS, vol. 10982, pp. 157–177. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96142-2_12

    Chapter  Google Scholar 

Download references

Acknowledgements

This work is partially supported by the French FUI-AAP25 VeriSiCC project and ONR project N00014-19-1-2292. Gaëtan Cassiers and François-Xavier Standaert are resp. Research Fellow and and Senior Associate Researcher of the Belgian Fund for Scientific Research (FNRS-F.R.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Belaïd .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Barthe, G., Belaïd, S., Cassiers, G., Fouque, PA., Grégoire, B., Standaert, FX. (2019). maskVerif: Automated Verification of Higher-Order Masking in Presence of Physical Defaults. In: Sako, K., Schneider, S., Ryan, P. (eds) Computer Security – ESORICS 2019. ESORICS 2019. Lecture Notes in Computer Science(), vol 11735. Springer, Cham. https://doi.org/10.1007/978-3-030-29959-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-29959-0_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-29958-3

  • Online ISBN: 978-3-030-29959-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics