Skip to main content

Fatigue Monitoring of a Dented Pipeline Specimen Using Infrared Thermography, DIC and Fiber Optic Strain Gages

  • Conference paper
  • First Online:
Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3

Abstract

An investigation program has been launched with the objective of presenting combinations of analytical, experimental and numerical methods to predict and monitor fatigue initiation and fatigue damage progression in equipment such as pressure vessels, tanks, piping and pipelines with dents or shape anomalies. The present paper reports initial results from tests where these techniques were applied to a pipeline specimen containing a plain longitudinal dented subjected to hydrostatic cyclic loading. Some of the material’s fatigue properties assessment used validated rapid approaches based on infrared thermography. The monitoring of fatigue initiation and propagation in the actual specimen used nondestructive infrared inspection techniques. Thermoelasticity stress analysis (TSA) and three-dimensional digital image correlation (3D-DIC) were used to determine fatigue hot spots locations as well as strain concentrations. Full field TSA and fiber optic Bragg strain gages (FBSG) were used to determine the overall stress field (TSA) as well hot spot strain evolution (FBSG) along the loading cycles. Strain fields determined from the experimental measurements and from finite element analysis (FEA) were combined with the fatigue Coffin-Manson model to predict fatigue life (Nc). The tested 3 m long tubular specimen was fabricated with API 5L Gr. B 12.75 OD with ¼ thickness pipes. The excellent agreement among test and predicted results achieved up to now are commented in the paper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rosenfeld, M. (2001). Proposed new guidelines for ASME B31.8 on assessment of dents and mechanical damage. Topical report GRI-01/0084. Des Plaines, IL: GRI.

    Google Scholar 

  2. Fowler, J. R. (1993). Criteria for dent acceptability in offshore pipeline. 25th Offshore Technology Conference, Houston, Texas, USA, 3-6 May, 1993.

    Google Scholar 

  3. Garbatov, Y., & Guedes Soares, C. (2017). Fatigue reliability of dented pipeline based on limited experimental data. International Journal of Pressure Vessels and Piping, 155, 15–26.

    Article  Google Scholar 

  4. Pinheiro, B. C., & Pasqualino, I. P. (2009). Fatigue analysis of damaged steel pipelines under cyclic internal pressure. International Journal of Fatigue, 31, 962–973.

    Article  Google Scholar 

  5. Cosham, A., & Hopkins, P. (2004). The effect of dents in pipelines—Guidance in the pipeline defect assessment manual. International Journal of Pressure Vessels an Piping, 81, 127–139.

    Article  Google Scholar 

  6. Fitness-for-Service, API 579-1/ASME FFS-1, June, 2016. American Petroleum Institute, American Society of Mechanical Engineers.

    Google Scholar 

  7. Paiva, V. E. L., Gonzáles, G. L. G., Vieira, R. D., Maneschy, J. E., Vieira, R. B., & Freire, J. L. F. (2018). Fatigue monitoring of a dented piping specimen using infrared thermography, PVP2018–84597. In Proceedings of the ASME 2018 Pressure Vessels and Piping Conference, July 15–20, 2018. Prague: The American Society of Mechanical Engineers.

    Google Scholar 

  8. Paiva, V. E. L., Gonzáles, G. L. G., Vieira, R. D., Maneschy, J. E., Freire, J. L. F., Ribeiro, A. S., & Almeida, A. L. F. S. (2019). Fatigue assessment and monitoring of a dented pipeline, PVP2019–93663. In Proceedings of the ASME 2019 Pressure Vessels and Piping Conference, July 14–19, 2019. San Antonio, TX: The American Society of Mechanical Engineers.

    Google Scholar 

  9. La Rosa, G., & Risitano, A. (2000). Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components. International Journal of Fatigue, 22, 65–73.

    Article  Google Scholar 

  10. Fargione, G., Geraci, A., La Rosa, G., & Risitano, A. (2000). Rapid determination of the fatigue curve by the thermographic method. International Journal of Fatigue, 24, 11–19.

    Article  Google Scholar 

  11. Risitano, & Risitano, G. (2010). Cumulative damage evaluation of steel fracture mechanics. Theoretical and Applied Fracture Mechanics, 54, 82–90.

    Article  Google Scholar 

  12. Risitano, G., Risitano, A., & Clienti, C. (2011). Determination of the fatigue limit by semi static tests. Convegno Nationale, IGF XXI, Cassino, Italia 13–15 Giugo 2011 (pp. 322–330).

    Google Scholar 

  13. Wong, K., Sparrow, J. G., & Dunn, S. A. (1987). On the revised theory of the thermoelastic effect. In SPIE Vol. 731 Stress Analysis by Thermoelastic Techniques 1987.

    Google Scholar 

  14. Wong, K., Jones, R., & Sparrow, J. G. (1987). Thermoelastic constant or thermoelastic parameter? Journal of Physics and Chemistry of Solids, 48(8), 749–753.

    Article  Google Scholar 

  15. Pitarresi, G., & Patterson, E. A. (2003). A review of the general theory of thermoelastic stress analysis. The Journal of Strain Analysis for Engineering Design, 38(5), 405–417.

    Article  Google Scholar 

  16. Greene, R. J., Patterson, E. A., & Rowlands, R. E. (2008). Thermoelastic stress analysis. In W. Sharpe (Ed.), Springer handbook of experimental solid mechanics. Boston: Springer.

    Google Scholar 

  17. Dulieu-Barton, J. M., & Stanley, P. (1998). Development and applications of thermoelastic stress analysis. The Journal of Strain Analysis for Engineering Design, 33(2), 93–104.

    Article  Google Scholar 

  18. Freire, J. L. F., Waugh, R. C., Fruehmann, R., & Dulieu-Barton, J. M. (2015). Using thermoelastic stress analysis to detect damaged and hot spot areas in structural components. Journal of Mechanics Engineering and Automation, 5(11), 623–634.

    Google Scholar 

  19. Vieira, R. B., Kurunthottikkal Philip, S., Gonzáles, G. L. G., Freire, J. L. F., Yang, B., & Rowlands, R. E. (2016). Determination of a U-notch stress concentration factor using thermoelasticity. Journal of Mechanics Engineering and Automation, 6(2), 66–76.

    Article  Google Scholar 

  20. Sutton, M. A., Orteu, J. J., & Schreier, H. W. (2009). Image correlation for shape, motion and deformation measurements. New York: Springer Science + Business Media, LLC.

    Google Scholar 

  21. Shukla, A., & Dally, J. W. (2010). Experimental Solid Mechanics. Knoxville: College House Enterprises, LLC.

    Google Scholar 

  22. Castro, J. T. P., & Meggiolaro, M. A. (2013). Fatigue design techniques: Vol. 1: High-cycle fatigue. Create space. 2016. Specification for line pipe, API specification 5L, 2013. American Petroleum Institute.

    Google Scholar 

  23. Paiva, V. E. L., Vieira, R. D., & Freire, J. L. F. (2018) , Fatigue properties assessment of API 5L Gr. B pipeline steel using infrared thermography. In Proceedings of the 2018 Experimental and Applied Mechanics Meeting, SEM, Society for Experimental Mechanics.

    Google Scholar 

  24. Specification for line pipe, API Specification 5L, 2013. American Petroleum Institute.

    Google Scholar 

  25. Vieira, R. B., Gonzáles, G. L. G., & Freire, J. L. F. (2018). Thermography applied to the study of fatigue crack propagation in polycarbonate. Experimental Mechanics, 58, 269.

    Article  Google Scholar 

  26. Paiva, V. E. L., Freire, J. L., & Etchebehere, R. C. (2018). Assessment of chain links using infrared thermography. In CONAEND & IEV2018–378, Congresso Nacional de Ensaios Não Destrutivos e Inspeção, 21ª IEV Conferencia Internacional sobre Evaluación de Integridad y Extensión de Vida de Equipos Industriales ABENDI, 2018, São Paulo. Anais of CONAEND & IEV2018 (pp. 1–17).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. L. F. Freire .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Society for Experimental Mechanics, Inc.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Freire, J.L.F. et al. (2020). Fatigue Monitoring of a Dented Pipeline Specimen Using Infrared Thermography, DIC and Fiber Optic Strain Gages. In: Lin, MT., et al. Advancements in Optical Methods & Digital Image Correlation in Experimental Mechanics, Volume 3. Conference Proceedings of the Society for Experimental Mechanics Series. Springer, Cham. https://doi.org/10.1007/978-3-030-30009-8_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30009-8_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30008-1

  • Online ISBN: 978-3-030-30009-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics