Skip to main content

Intelligent and Connected Cyber-Physical Systems: A Perspective from Connected Autonomous Vehicles

  • Chapter
  • First Online:
Intelligent Internet of Things

Abstract

Cyber-physical systems (CPS) have broad applications in the automotive, avionics, robotics, healthcare, and power grid, where the cyber components involving information processing and networking closely interact with the physical processes. Conventionally, there is a separate design flow of CPS. For instance, control algorithms managing the physical dynamics are designed using model-based approaches, without considering details of the cyber implementation platforms. Modern CPS are getting increasingly intelligent and connected. A new design methodology taking all the layers of CPS and their interplays into account is being developed, aiming for assurance of safety and security, as well as high robustness and resource efficiency. This chapter presents the technical background of CPS, with an emphasis on the cyber and physical interactions, corresponding to the new design methodology. Case studies on connected autonomous vehicles (CAVs) are used to illustrate the most recent development in CPS.

The need for connection and community is primal, as fundamental as the need for air, water, and food.

Dean Ornish

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 89.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 119.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W. Chang, S. Chakraborty, Resource-aware automotive control systems design: a cyber-physical systems approach. Found. Trends® Electron. Des. Autom. 10(4), 249–369 (2016)

    Article  Google Scholar 

  2. W. Chang, D. Roy, L. Zhang, S. Chakraborty, Model-based design of resource-efficient automotive control software, ICCAD, 2016

    Google Scholar 

  3. W. Chang, D. Goswami, S. Chakraborty, L. Ju, C. Xue, S. Andalam, Memory-aware embedded control systems design. IEEE Trans. Comput. Aided Des. Integr. Circuits and Syst. 36(4), 586–599 (2017)

    Article  Google Scholar 

  4. W. Chang, D. Roy, X. Hu, S. Chakraborty, Cache-aware task scheduling for maximizing control performance, DATE, 2018

    Google Scholar 

  5. W. Chang, D. Goswami, S. Chakraborty, A. Hamann, OS-aware automotive controller design using non-uniform sampling. ACM Trans. Cyber-Phys. Sys. 2(4), 26 (2018)

    Google Scholar 

  6. W. Chang, A. Proebstl, D. Goswami, M. Zamani, S. Chakraborty, Battery- and aging-aware embedded control systems for electric vehicles, RTSS, 2014

    Google Scholar 

  7. W. Chang, A. Proebstl, D. Goswami, M. Zamani, S. Chakraborty, Reliable CPS design for mitigating semiconductor and battery aging in electric vehicles, CPSNA, 2015

    Google Scholar 

  8. SAE, J3016, Taxonomy and definitions for terms related to on-road motor vehicle automated driving systems, 2013

    Google Scholar 

  9. ISO, ISO 26262, Road Vehicles – Functional Safety (ISO, Geneva, Switzerland, 2011)

    Google Scholar 

  10. ISO, ISO/PRF PAS 21448, Road Vehicles – Safety of the Intended Functionality (ISO, Geneva, Switzerland, 2018)

    Google Scholar 

  11. I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, vol 1 (MIT Press, Cambridge, 2016)

    MATH  Google Scholar 

  12. IEEE, IEEE Standard Adoption of ISO/IEC 15026-1 – Systems and Software Engineering – Systems and Software Assurance (IEEE, New York, 2014)

    Google Scholar 

  13. K. Varshney, Engineering safety in machine learning, ITA, 2016

    Google Scholar 

  14. D. Amodei, C. Olah, J. Steinhardt, P. Christiano, J. Schulman, D. Mane, Concrete problems in AI safety, arXiv preprint, 2016

    Google Scholar 

  15. D. Sculley, G. Holt, D. Golovin, E. Davydov, T. Phillips, D. Ebner, V. Chaudhary, M. Young, J. Crespo, D. Dennison, Hidden technical debt in machine learning systems, Advances in Neural Information Processing Systems, 2503–2511, 2015

    Google Scholar 

  16. A. Nguyen, J. Yosinski, J. Clune, Deep neural networks are easily fooled: High confidence predictions for unrecognizable images, CVPR, 2015

    Google Scholar 

  17. A. Kurakin, I. Goodfellow, S. Bengio, Adversarial examples in the physical world, arXiv preprint, 2016

    Google Scholar 

  18. J. Metzen, T. Genewein, B. Bischoff, On Detecting Adversarial Perturbations (ICLR, 2017). [Online]. Available: https://openreview.net/forum?id=SJzCSf9xg

  19. H. Lin, M. Tegmark, D. Rolnick, Why does deep and cheap learning work so well? J. Stat. Phys. 168(6), 1223–1247 (2017)

    Article  MathSciNet  Google Scholar 

  20. J. Attenberg, P. Ipeirotis, F. Provost, Beat the machine: challenging humans to find a predictive model’s unknown unknowns. J. Data Inf. Qual. 6, 1–17 (2015)

    Article  Google Scholar 

  21. K. Simonyan, A. Vedaldi, A. Zisserman, Deep inside convolutional networks: visualising image classification models and saliency maps, arXiv preprint, 2013

    Google Scholar 

  22. L. Hendriks, Z. Akata, M. Rohrbach, J. Donahue, B. Schiele, T. Darrel, Generating visual explanations, ECCV, 2016

    Google Scholar 

  23. S. Richter, V. Vineet, S. Roth, V. Koltun, Playing for data: Ground truth from computer games, ECCV, 2016

    Google Scholar 

  24. K. Pei, Y. Cao, J. Yang, S. Jana, Deepxplore: Automated whitebox testing of deep learning systems, SOSP, 2017

    Google Scholar 

  25. Y. Sun, X. Huang, D. Kroening, Testing deep neural networks, arXiv preprint, 2018

    Google Scholar 

  26. S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, K. Koscher, A. Czeskis, F. Roesner, T. Kohno, Comprehensive experimental analyses of automotive attack surfaces, USENIX, 2011

    Google Scholar 

  27. P. Kleberger, T. Olovsson, E. Jonsson, Security aspects of the in-vehicle network in the connected car, IV, 2011

    Google Scholar 

  28. K. Koscher, A. Czeskis, F. Roesner, S. Patel, T. Kohno, S. Checkoway, D. McCoy, B. Kantor, D. Anderson, H. Shacham, S. Savage, Experimental security analysis of a modern automobile, SP, 2010

    Google Scholar 

  29. United States Department of Transportation, Security credential management system (SCMS)

    Google Scholar 

  30. H. Liang, M. Jagielski, B. Zheng, C.-W. Lin, E. Kang, S. Shiraishi, C. Nita-Rotaru, Q. Zhu, Network and system level security in connected vehicle applications, ICCAD, 2018

    Google Scholar 

  31. J. Kenney, Dedicated short-range communications (DSRC) standards in the United States. Proc. IEEE 99(7), 1162–1182 (2011)

    Article  Google Scholar 

  32. M. Jagielski, N. Jones, C.-W. Lin, C. Nita-Rotaru, S. Shiraishi, Threat detection for collaborative adaptive cruise control in connected cars, WiSec, 2018

    Google Scholar 

  33. R. Carli, F. Fagnani, P. Frasca, S. Zampieri, Gossip consensus algorithms via quantized communication. Automatica 46(1), 70–80 (2010)

    Article  MathSciNet  Google Scholar 

  34. L. Lamport, Paxos made simple. ACM SIGACT News (Distributed Computing Column) 32(4), 51–58 (2001)

    Google Scholar 

  35. R. Olfati-Saber, R. Murray, Consensus problems in networks of agents with switching topology and time-delays. IEEE Trans. Autom. Control 49(9), 1520–1533 (2004)

    Article  MathSciNet  Google Scholar 

  36. C.-W. Lin, B. Zheng, Q. Zhu, A. Sangiovanni-Vincentelli, Security-aware design methodology and optimization for automotive systems. ACM Trans. Des. Autom. Electron. Sys. (TODAES) 21(1)., 18:), 1–26 (2015)

    Article  Google Scholar 

  37. A. Benveniste, B. Caillaud, D. Nickovic, R. Passerone, J. Raclet, P. Reinkemeier, A. Sangiovanni-Vincentelli, W. Damm, T. Henzinger, K. Larsen, Contracts for system design, research report RR-8147, INRIA, 2012

    Google Scholar 

  38. B. Meyer, Applying “design by contract”. IEEE Comput. 25(10), 40–51 (1992)

    Article  Google Scholar 

  39. L. Carloni, F. Bernardinis, C. Pinello, A. Sangiovanni-Vincentelli, M. Sgroi, Platform-based design for embedded systems, Embedded Systems Handbook, pp. 1281–1304, 2005

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanli Chang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chang, W., Burton, S., Lin, CW., Zhu, Q., Gauerhof, L., McDermid, J. (2020). Intelligent and Connected Cyber-Physical Systems: A Perspective from Connected Autonomous Vehicles. In: Firouzi, F., Chakrabarty, K., Nassif, S. (eds) Intelligent Internet of Things. Springer, Cham. https://doi.org/10.1007/978-3-030-30367-9_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-30367-9_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-30366-2

  • Online ISBN: 978-3-030-30367-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics