Skip to main content

Displacement Dynamics and Simulation for Overhead Gantry Crane Using Servo Control System

  • Conference paper
  • First Online:
Applied Computer Sciences in Engineering (WEA 2019)

Abstract

This paper presents an alternate form for the dynamic modelling of a mechanical system that simulates in real life a gantry crane type, using Euler’s classical mechanics and Lagrange formalism, which allows find the equations of motion that our model describe. Moreover, it has a basic model design system using the SolidWorks software, based on the material and dimensions of the model provides some physical variables necessary for modelling. The force is determined, but not as exerted by the spring, as this will be the control variable. The objective is to bring the mass of the pendulum from one point to another with a specified distance without the oscillation from it, so that, the answer is overdamped. This article includes an analysis of servo system control in which the equations of motion of Euler-Lagrange are rewritten in the state space, once there, they were implemented in Simulink to get the natural response of the system to a step input in F and then draw the desired trajectories.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. de Moura Oliverira, P.B., Boaventura Cunha, J.: Gantry crane control: a simulation case study. IEEE (2013)

    Google Scholar 

  2. Sorensen, K.L., Singhose, W., Dickerson, S.: A controller enabling precise positioning and sway reduction in bridge and gantry cranes. Control Eng. Pract. 15, 825–837 (2006)

    Article  Google Scholar 

  3. Khalid, A., Singhose, W., Huey, J., Lawrence, J.: Study of operator behavior, learning, and performance using and input-shaped bridge crane. In: Proceedings of the 2004 IEEE International Conference on Control Applications (2004)

    Google Scholar 

  4. Fernández Villaverde, A., Santos Peñas, M.: Control de una grúa pórtico mediante redes neuronales. In: XXVII Jornadas de Automática, Almeria (2006)

    Google Scholar 

  5. Fang, Y., Dixon, W.E., Dawson, D.M., Zergeroglu, E.: Nonlinear coupling control laws for a 3-DOF overhead crane system. In: Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No. 01CH37228) (2004)

    Google Scholar 

  6. Kim, Y.S., Hong, K.S., Sul, S.K.: Anti-sway control of container cranes: inclinometer, observer, and state feedback. Int. J. Control Autom. Syst. 2(4), 435–449 (2004)

    Google Scholar 

  7. Liu, D.T., Guo, W.P., Yi, J.Q., Zhao, D.B.: Double-pendulum-type overhead crane dynamics and its adaptive sliding mode fuzzy control. In: Proceeding of the Third International Conference on Machine Learning and Cybernetics, Shanghai (2004)

    Google Scholar 

  8. Yang, J.H., Yang, K.S.: Adaptive control for 3-D overhead crane systems. In: Proceedings of the 2006 American Control Conference, USA (2006)

    Google Scholar 

  9. Ahmad, M.A., Raja Ismail, R.M.T., Ramli, M.S., Hambali, N.: Investigations of NCTF with input shaping for sway control of double-pendulum-type overhead crane. IEEE (2010)

    Google Scholar 

  10. Burul, I., Kolonic, F., Matusko, J.: The control system design of a gantry crane based on H infinity control theory. In: MIPRO 2010, Croatia (2010)

    Google Scholar 

  11. Dey, R., Sinha, N., Chaubey, P., Ghosh, S., Ray, G.: Active sway control of a single pendulum gantry crane system using output-delayed feedback control technique. In: 11th International Conference Control, Automation, Robotics and Vision, Singapore (2010)

    Google Scholar 

  12. Kelly, R., Santibáñez, V.: Control de Movimiento de Robots Manipuladores, p. 327. Pearson Education, S.A., Madrid (2003)

    Google Scholar 

  13. Domínguez, S., Campoy, P., Sebastián, J.M., Jiménez, A.: Control en el Espacio de Estados, 2nd edn, p. 440. Pearson Education S.A., Madrid (2006)

    Google Scholar 

  14. Ogata, K.: Ingeniería de Control Moderna, 3rd edn, p. 1015. Pearson Education S.A., México D.F. (1998)

    Google Scholar 

Download references

Acknowledgments

Deisy Carolina Páez and P. A. Ospina-Henao, gratefully acknowledge the permanent support of Vicerrectoría Académica de la Universidad Santo Tomás.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paolo Andres Ospina-Henao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mora P., Z.A., Castaño Rivillas, A.C., Moncada B., J.G., Páez, D.C., Ospina-Henao, P.A. (2019). Displacement Dynamics and Simulation for Overhead Gantry Crane Using Servo Control System. In: Figueroa-García, J., Duarte-González, M., Jaramillo-Isaza, S., Orjuela-Cañon, A., Díaz-Gutierrez, Y. (eds) Applied Computer Sciences in Engineering. WEA 2019. Communications in Computer and Information Science, vol 1052. Springer, Cham. https://doi.org/10.1007/978-3-030-31019-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31019-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31018-9

  • Online ISBN: 978-3-030-31019-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics