Skip to main content

Repairing Timed Automata Clock Guards through Abstraction and Testing

  • Conference paper
  • First Online:
Tests and Proofs (TAP 2019)

Abstract

Timed automata (TAs) are a widely used formalism to specify systems having temporal requirements. However, exactly specifying the system may be difficult, as the user may not know the exact clock constraints triggering state transitions. In this work, we assume the user already specified a TA, and (s)he wants to validate it against an oracle that can be queried for acceptance. Under the assumption that the user only wrote wrong guard transitions (i.e., the structure of the TA is correct), the search space for the correct TA can be represented by a Parametric Timed Automaton (PTA), i.e., a TA in which some constants are parametrized. The paper presents a process that (i) abstracts the initial (faulty) TA \( ta_{init} \) in a PTA \( pta \); (ii) generates some test data (i.e., timed traces) from \( pta \); (iii) assesses the correct evaluation of the traces with the oracle; (iv) uses the IMITATOR tool for synthesizing some constraints \(\varphi \) on the parameters of \( pta \); (v) instantiate from \(\varphi \) a TA \( ta_{rep} \) as final repaired model. Experiments show that the approach is successfully able to partially repair the initial design of the user.

This work is partially supported by ERATO HASUO Metamathematics for Systems Design Project (No. JPMJER1603), JST and by the ANR national research program PACS (ANR-14-CE28-0002).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    To limit the number of tests, we only keep the maximal accepted traces (i.e., we remove accepted traces included in longer accepted traces), and the minimal rejected traces (i.e., we remove rejected traces having as prefix another rejected trace).

  2. 2.

    This does not necessarily mean that both TAs have the same language, but that the tests did not exhibit any discrepancy.

  3. 3.

    This procedure transforms the word to a non-parametric TA; we nevertheless use the name \(\textsf {TW2PTA}\) for consistency with [11].

  4. 4.

    Note that it does not make sense to measure the syntactical distance, as the structure of the oracle is different.

References

  1. Aichernig, B.K., Hörmaier, K., Lorber, F.: Debugging with timed automata mutations. In: Bondavalli, A., Di Giandomenico, F.D. (eds.) SAFECOMP 2014. LNCS, vol. 8666, pp. 49–64. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10506-2_4

    Chapter  Google Scholar 

  2. Aichernig, B.K., Jöbstl, E., Tiran, S.: Model-based mutation testing via symbolic refinement checking. Sci. Comput. Program. 97(P4), 383–404 (2015). https://doi.org/10.1016/j.scico.2014.05.004

    Article  Google Scholar 

  3. Aichernig, B.K., Lorber, F., Ničković, D.: Time for mutants—model-based mutation testing with timed automata. In: Veanes, M., Viganò, L. (eds.) TAP 2013. LNCS, vol. 7942, pp. 20–38. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38916-0_2

    Chapter  Google Scholar 

  4. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2), 183–235 (1994). https://doi.org/10.1016/0304-3975(94)90010-8

    Article  MathSciNet  MATH  Google Scholar 

  5. Alur, R., Fix, L., Henzinger, T.A.: Event-clock automata: a determinizable class of timed automata. A determinizable classof timed automata. Theoret. Comput. Sci. 211(1–2), 253–273 (1999). https://doi.org/10.1016/S0304-3975(97)00173-4

    Article  MathSciNet  MATH  Google Scholar 

  6. Alur, R., Henzinger, T.A., Vardi, M.Y.: Parametric real-time reasoning. In: Kosaraju, S.R., Johnson, D.S., Aggarwal, A. (eds.) STOC, pp. 592–601. ACM, New York (1993). https://doi.org/10.1145/167088.167242

  7. André, É.: What’s decidable about parametric timed automata? Int. J. Softw. Tools Technol. Transf. 21(2), 203–219 (2019). https://doi.org/10.1007/s10009-017-0467-0

    Article  Google Scholar 

  8. André, É., Arcaini, P., Gargantini, A., Radavelli, M.: Repairing timed automata clock guards through abstraction and testing. arXiv:1907.02133 (2019)

  9. André, É., Chatain, T., Encrenaz, E., Fribourg, L.: An inverse method for parametric timed automata. Int. J. Found. Comput. Sci. 20(5), 819–836 (2009). https://doi.org/10.1142/S0129054109006905

    Article  MathSciNet  MATH  Google Scholar 

  10. André, É., Fribourg, L., Kühne, U., Soulat, R.: IMITATOR 2.5: a tool for analyzing robustness in scheduling problems. In: Giannakopoulou, D., Méry, D. (eds.) FM 2012. LNCS, vol. 7436, pp. 33–36. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32759-9_6

    Chapter  Google Scholar 

  11. André, É., Hasuo, I., Waga, M.: Offline timed pattern matching under uncertainty. In: Lin, A.W., Sun, J. (eds.) ICECCS, pp. 10–20. IEEE CPS (2018). https://doi.org/10.1109/ICECCS2018.2018.00010

  12. André, É., Lin, S.-W.: Learning-based compositional parameter synthesis for event-recording automata. In: Bouajjani, A., Silva, A. (eds.) FORTE 2017. LNCS, vol. 10321, pp. 17–32. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-60225-7_2

    Chapter  Google Scholar 

  13. Angluin, D.: Learning regular sets from queries and counterexamples. Inf. Comput. 75(2), 87–106 (1987). https://doi.org/10.1016/0890-5401(87)90052-6

    Article  MathSciNet  MATH  Google Scholar 

  14. Arcaini, P., Gargantini, A., Radavelli, M.: Achieving change requirements of feature models by an evolutionary approach. J. Syst. Softw. 150, 64–76 (2019). https://doi.org/10.1016/j.jss.2019.01.045

    Article  Google Scholar 

  15. Bengtsson, J., Yi, W.: Timed automata: semantics, algorithms and tools. In: Desel, J., Reisig, W., Rozenberg, G. (eds.) ACPN 2003. LNCS, vol. 3098, pp. 87–124. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27755-2_3

    Chapter  MATH  Google Scholar 

  16. Grinchtein, O., Jonsson, B., Leucker, M.: Learning of event-recording automata. Theoret. Comput. Sci. 411(47), 4029–4054 (2010). https://doi.org/10.1016/j.tcs.2010.07.008

    Article  MathSciNet  MATH  Google Scholar 

  17. Hessel, A., Larsen, K.G., Mikucionis, M., Nielsen, B., Pettersson, P., Skou, A.: Testing real-time systems using UPPAAL. In: Hierons, R.M., Bowen, J.P., Harman, M. (eds.) Formal Methods and Testing. LNCS, vol. 4949, pp. 77–117. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-78917-8_3

    Chapter  Google Scholar 

  18. Hune, T., Romijn, J., Stoelinga, M., Vaandrager, F.W.: Linear parametric model checking of timed automata. J. Logic Algebraic Program. 52–53, 183–220 (2002). https://doi.org/10.1016/S1567-8326(02)00037-1

    Article  MathSciNet  MATH  Google Scholar 

  19. Jovanović, A., Lime, D., Roux, O.H.: Integer parameter synthesis for real-time systems. IEEE Trans. Softw. Eng. 41(5), 445–461 (2015). https://doi.org/10.1109/TSE.2014.2357445

    Article  Google Scholar 

  20. Lin, S.W., André, É., Liu, Y., Sun, J., Dong, J.S.: Learning assumptions for compositional verification of timed systems. Trans. Softw. Eng. 40(2), 137–153 (2014). https://doi.org/10.1109/TSE.2013.57

    Article  Google Scholar 

  21. Luthmann, L., Gerecht, T., Stephan, A., Bürdek, J., Lochau, M.: Minimum/maximum delay testing of product lines with unbounded parametric real-time constraints. J. Syst. Softw. 149, 535–553 (2019). https://doi.org/10.1016/j.jss.2018.12.028

    Article  Google Scholar 

  22. Papadakis, M., Kintis, M., Zhang, J., Jia, Y., Le Traon, Y., Harman, M.: Mutation testing advances: an analysis and survey. In: Advances in Computers. Elsevier (2018). https://doi.org/10.1016/bs.adcom.2018.03.015

    Google Scholar 

  23. Prud’homme, C., Fages, J.G., Lorca, X.: Choco Documentation. TASC - LS2N CNRS UMR 6241, COSLING S.A.S. (2017). http://www.choco-solver.org

  24. Schrijver, A.: Theory of Linear and Integer Programming. Wiley-Interscience Series in Discrete Mathematics and Optimization. Wiley, New York (1999)

    MATH  Google Scholar 

  25. Springintveld, J., Vaandrager, F., D’Argenio, P.R.: Testing timed automata. Theoret. Comput. Sci. 254(1–2), 225–257 (2001). https://doi.org/10.1016/S0304-3975(99)00134-6

    Article  MathSciNet  MATH  Google Scholar 

  26. Wang, T., Sun, J., Liu, Y., Wang, X., Li, S.: Are timed automata bad for a specification language? Language inclusion checking for timed automata. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 310–325. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_21

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Radavelli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

André, É., Arcaini, P., Gargantini, A., Radavelli, M. (2019). Repairing Timed Automata Clock Guards through Abstraction and Testing. In: Beyer, D., Keller, C. (eds) Tests and Proofs. TAP 2019. Lecture Notes in Computer Science(), vol 11823. Springer, Cham. https://doi.org/10.1007/978-3-030-31157-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-31157-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-31156-8

  • Online ISBN: 978-3-030-31157-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics