Skip to main content

Agriculture: Wireless Sensor Network Theory

  • Chapter
  • First Online:
Emerging Technologies in Agriculture, Livestock, and Climate
  • 361 Accesses

Abstract

This chapter provides the Internet of Things (IoTs)-based Smart Agriculture System. The system aims at improving agricultural production in Botswana by remotely monitoring farms of all types using the Internet of Things (IoTs). The system uses sensors to monitor different parameters for these living things to ensure that a proper environment is maintained at all times. This chapter gives a detailed explanation of the data loggers which transmit data wirelessly to a central point located on the farm. The central location is referred to as a gateway, and it is where the farm employees can visualize and analyze data. The on-farm network of sensors and gateway is linked to an online server through General Packet Radio Service (GPRS) and Satellite to allow for remote online data acquisition (DAQ). In this chapter, low cost and reliable wireless data acquisition system are implemented in real time at the banana field. The moisture stress, reducing the usage of excessive water, rapid growth of the weeds is achieved with the implementation of sensor-based site-specific irrigation. Internet of Things-based remote control of irrigation can also be achieved in the system. The implemented system can be used to transfer the fertilizer and other chemicals to the field with the help of adding new sensors and valves.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abd El-kader SM, El-Basioni BMM (2013) Precision farming in Egypt using wireless sensor network technology. Egyptian Informatics Journal 14:221–233

    Article  Google Scholar 

  • Aiello G, Giovinoa I, Valloneb M, Cataniab P, Argentoa A (2018) A decision support system based on multisensor data fusion for sustainable greenhouse management. Journal of Cleaner Production 172:4057–4065

    Article  Google Scholar 

  • Bewley JM, Russell RA, Dolecheck KA, Borchers MR (2015) Precision what have we learned. In: Halachmi I (ed) Precision Livestock Farming Applications-Making Sense of Sensors to Support Farm Management. Wageningen Academic Publishers, Wageningen, pp 13–24

    Chapter  Google Scholar 

  • Bhuyan B, Sarma HK, Sarma N (2014) A survey on middleware for wireless sensor networks. J Wireless Network Communication 4(1):7–17

    Google Scholar 

  • Brown B, Nuberg I, Llewellyn R (2018) Stepwise frameworks for understanding the utilisation of conservation agriculture in Africa. Agr Syst 153:11–22

    Article  Google Scholar 

  • Cao CM, Xia P, Zhu ZQ (2007) Application of wireless data transmission to the automatic control of water saving irrigation. Transactions on Chinese Society of Agricultural Engineering 21(2):127–130

    Google Scholar 

  • Capello F, Toja M, Trapani, N (2016) A real-time monitoring service based on industrial internet of things to manage agrifood logistics. 6th International Conference on Information Systems, Logistics and Supply Chain, pp. 1–8

    Google Scholar 

  • Chaudhary DD, Nayse SP, Waghmare LM (2011) Application of wireless sensor networks for greenhouse parameter control in precision agriculture. International Journal of Wireless & Mobile Networks (IJWMN) 3:140–149

    Article  Google Scholar 

  • Chi M, Plaza A, Benediktsson JA, Sun Z, Shen J, Zhu Y (2016) Big data for remote sensing: challenges and opportunities. Proc IEEE 104(11):2207–2219

    Article  Google Scholar 

  • Chong C, Kumar SP (2003) Sensor networks: evolution, opportunities, and challenges. Proc IEEE 91(8):1247–1256

    Article  Google Scholar 

  • Collinson MP (2000). A History of Farming Systems Research Cabi Press, Oxford

    Google Scholar 

  • Danuri MSNM, Shahibi MS (2015). The Development of Farm Management Information System for Smallholder Farmers in Malaysia. Proceeding of IC-ITS 2015, International Conference on Information Technology & Society 8–9 June 2015, Kuala Lumpur, Malaysia

    Google Scholar 

  • Fang S, Da Xu L, Zhu Y, Ahati J, Pei H, Yan J, Liu Z (2014) An integrated system for regional environmental Monitoring and management based on internet of things. IEEE Transactions on Industrial Informatics 10(2):1596–1605

    Article  Google Scholar 

  • Fountas S, Carli G, Sørensen CG, Tsiropoulos Z, Cavalaris C, Vatsanidou A, Liakos B, Canavari M, Wiebensohn J, Tisserye B (2015) Farm management information systems: current situation and future perspectives. Comput Electron Agric 115:40–50

    Article  Google Scholar 

  • Fourati MA, Chebbi W, Kamoun A (2014) Development of a web-based weather station for irrigation scheduling. Third IEEE International Colloquium in Information Science and Technology (CIST), Tetouan, pp. 37–42

    Google Scholar 

  • Fox L, Pimhidzai O (2013) Household non-farm enterprises and structural transformation: evidence from Uganda. Paper presented at the UNU-WIDER Conference on Inclusive Growth in Africa, Helsinki

    Google Scholar 

  • Gaire R, Lefort L, Compton M, Falzon G, Lamb D, Taylor K (2013) Demonstration: semantic web enabled smart farm with GSN. http://ceur-ws.org/Vol-1035/iswc2013_demo_11.pdf

  • Gutiérrez PA, López-Granados F, Peña-Barragán JM, Jurado-Expósito M, Martíneza C (2008) Logistic regression product-unit neural networks for mapping Ridolfia segetum infestations in sunflower crop using multitemporal remote sensed data. Computers and Electronics in Agriculture. 64:293–306. https://doi.org/10.1016/j.compag.2008.06.001

    Article  Google Scholar 

  • Gutiérrez J, Villa-Medina JF, Nieto-Garibay A, Porta-Gándara MÁ (2014) Automated irrigation system using a wireless sensor network and GPRS module. IEEE Trans Instrum Meas 63(1):166–176

    Article  Google Scholar 

  • Haggblade S, Hazell P, Reardon T (2010) The rural non-farm economy: prospects for growth and poverty reduction. World Dev 38(10):1429–1441

    Article  Google Scholar 

  • Hashim N, Mazlan S, Aziz MA, Salleh A, Jaafar A, Mohamad N (2015) Agriculture monitoring system: a study. Jurnal Teknologi 77(1):53–59

    Article  Google Scholar 

  • Husemann C, Novkovic N (2014) Farm management information systems: A case study on a German multifunctional farm. Economics of Agriculture 61(2):175293

    Article  Google Scholar 

  • Kacira M, Sase S, Okushima L, Ling PP (2005) Plant response-based sensing for control strategies in sustainable greenhouse production. Journal of Agricultural Meteorology 61(1):15e22

    Article  Google Scholar 

  • Karim F, Karim F, frihida A (2017) Monitoring system using web of things in precision agriculture. Procedia Computer Science 110:402–409

    Article  Google Scholar 

  • Kassam A, Friedrich T, Derpsch R, Kienzle J (2015) Overview of the worldwide spread of conservation agriculture. Field Actions Science Reports [Online] 8

    Google Scholar 

  • Keshtgari M, Deljoo A (January 2012) A wireless sensor network solution for precision agriculture based on ZigBee technology. Wirel Sens Netw 4:25–30

    Article  Google Scholar 

  • Kittas C, Bartzanas T, Jaffrin A (2003) Temperature gradients in a partially shaded large greenhouse equipped with evaporative cooling pads. Biosyst Eng 85(1):87–94

    Article  Google Scholar 

  • Kodali RK, Rawat N, Boppana L (2014) WSN sensors for precision agriculture. 2014 IEEE Region 10 Symposium, Kuala Lumpur, pp. 651–656

    Google Scholar 

  • Kok R, Gauthier L (1986) Development of a prototype farm information management system. Computers and Electronics in Agriculture Vol 1:125–141

    Article  Google Scholar 

  • Laney D (2001) 3D data management: controlling data volume, velocity and variety. META Group Research Note, 6

    Google Scholar 

  • Lanjouw J, Lanjouw P (2001) The rural non-farm sector: issues and evidence from developing countries. Agric Econ 26(1):1–23

    Article  Google Scholar 

  • Lee J, Park GL, Kang MJ, Kwak HY, Lee SJ, Han J (2012) Middleware integration for ubiquitous sensor networks in agriculture. In: Murgante B et al (eds) Computational science and its applications – ICCSA 2012. ICCSA 2012. Lecture notes in computer science, vol 7335. Springer, Berlin, Heidelberg

    Google Scholar 

  • Li M, Chen G, Zhu Z (2013) Information service system of agriculture IoT. Automatika J control, Meas Electron Comput Commun 54:415–426

    Google Scholar 

  • Lokers R, Knapen R, Janssen S, Randen YV, Jansen J (2016) Analysis of big data technologies for use in agro-environmental science. Environ Model Softw 84:494–504

    Article  Google Scholar 

  • Luan Q, Fang X, Ye C, Liu Y (2015) An integrated service system for agricultural drought monitoring and forecasting and irrigation amount forecasting. 23rd IEEE International Conference on Geoinformatics, pp. 1–7

    Google Scholar 

  • Market and Research (2018) Botswana agric sector’s contribution to GDP declines—Report, [Online]. Available: http://apanews.net/en/news/botswana-agric-sectors-contribution-to-gdp-declines-report

  • Martin MA, Islam MM (2012) Overview of wireless sensor network. IntechOpen, London, pp 1–23

    Google Scholar 

  • Michael O, Gregory O (2017) Modelling the smart farm. Information Processing in Agriculture. 4. https://doi.org/10.1016/j.inpa.2017.05.001

    Article  Google Scholar 

  • Milovanovic S (2014) The role and potential of information technology in agricultural improvement. Ekonomika Poljoprivrede 61(2):471

    Article  Google Scholar 

  • Mohanraj I, Ashokumar K, Naren J (2016) Field monitoring and automation using IOT in agriculture domain. Procedia Computer Science 93:931–939

    Article  Google Scholar 

  • Mohd Kassim MR, Mat I, Harun AN (2014) Wireless Sensor Network in precision agriculture application. International Conference on Computer, Information and Telecommunication Systems (CITS), Jeju, pp. 1–5, 2014

    Google Scholar 

  • Muangprathub J, Boonnam N, Kajornkasirat S, Lekbangpong N, Wanichsombat A, Nillaor P (2019) IoT and agriculture data analysis for smart farm. Comput Electron Agric 156:467–474

    Article  Google Scholar 

  • Mupangwa W, Mutenje M, Thierfelder C, Nyagumbo I (2016) Are conservation agriculture (CA) systems productive and profitable options for smallholder farmers in different agro-ecoregions of Zimbabwe? Renewable Agric Food Syst pp 32(1):87–103

    Article  Google Scholar 

  • Nack F (2008–2009) An overview on wireless sensor networks. [Online]. Available: https://www.mi.fu-berlin.de/inf/groups/ag-tech/teaching/2008-09_WS/S_19565_Proseminar_Technische_Informatik/nack09verview.pdf

  • Nagler P, Naudé W (2017) Non-farm entrepreneurship in rural sub-Saharan Africa: new empirical evidence. Food Policy 67:175–191

    Article  Google Scholar 

  • Ndah HT, Schuler J, Uthes S, Zander P, Traore K, Gama MS, Nyagumbo I, Triomphe B, Sieber S, Corbeels M (2014) Adoption potential of conservation agriculture practices in sub-Saharan Africa: results from five case studies. Environ Manag 53:620–635

    Article  Google Scholar 

  • Ndzi DL, Harun A, Ramli FM, Kamarudin ML, Zakaria A, Shakaff AYM, Farook RS (2014) Wireless sensor network coverage measurement and planning in mixed crop farming. Comput Electron Agric 105:83–94

    Article  Google Scholar 

  • Nishina H (2015) Development of speaking plant approach technique for intelligent greenhouse. Agriculture and Agricultural Science Procedia 3:9–13

    Article  Google Scholar 

  • Norman DW (1995) The farming systems approach to development and appropriate technology generation (No. 10). Food & Agriculture Org

    Google Scholar 

  • O’Hare GMP, Muldoon C, O’Grady MJ, Collier RW, Murdoch O, Carr D (2012) Sensor web interaction. International Journal on Artificial Intelligence Tools 21(2):1240006

    Article  Google Scholar 

  • Pang Z, Chen Q, Han W, Zheng L (2015) Value-centric design of the Internet-of Things Solution for food supply chain: value creation. Sensor Portfolio and Information Fusion Inform Syst Front Vol 17:289–319

    Article  Google Scholar 

  • Paraforos D, Vassiliadis V, Kortenbruck D, Stamkopoulos K, Ziogas V, Sapounas AA, Griepentrog HW (2016) A farm management information system using future internet technologies. IFAC-PapersOnLine 49(16):324–329

    Article  Google Scholar 

  • Rajakumar D, Ramah K, Rathika S, Thiyagarajan G (2005) Automation in micro irrigation. Technology Innovation Management and Entrepreneurship Information Service, New Delhi

    Google Scholar 

  • Reardon T, Berdegue J, Barrett C, Stamoulis K (2006) Household income diversification into rural non-farm activities. Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Roham VS, Pawar GA, Patil AS, Rupnar PR (2015) Smart farm using wireless sensor network. International Journal of Computer Applications (0975–8887), National Conference on Advances in Computing NCAC 2015(\), pp. 8–11

    Google Scholar 

  • Savale O, Managave A, Ambekar D, Sathe S (2015) Internet of things in precision agriculture using wireless sensor networks. International Journal of Advanced Engineering & Innovative Technology (IJAEIT) 2(3)

    Google Scholar 

  • Shen WS, Liu G, Su Z, Su R, Zhang Y (2016) Design and implementation of livestock house environmental perception system based on wireless sensor networks. International Journal of Smart Home 10:69–78

    Article  Google Scholar 

  • Shock CC, David RJ, Shock CA, Kimberling CA (1999) Innovative, automatic, low-cost reading of Watermark soil moisture sensors. Proceedings of the International Irrigation Show, pp. 147–152

    Google Scholar 

  • Start D (2001) The rise and fall of the rural non-farm economy: poverty impacts and policy options. Dev Policy Rev 19(4):491–505

    Article  Google Scholar 

  • Talavera JM, Tobón LE, Gómez JA, Culman MA, Aranda JM, Parra DT, Quiroz LA, Hoyos A, Garreta LE (2017) Review of IoT applications in agro-industrial and environmental fields. Computers and Electronics in Agriculture 142(Part A):283–297

    Article  Google Scholar 

  • Thierfelder C, Bunderson W, Mupangwa W (2015) Evidence and lessons learned from long-term on-farm research on conservation agriculture Systems in Communities in Malawi and Zimbabwe. Environments 2:317–337

    Article  Google Scholar 

  • Thierfelder C, Matemba-Mutasa R, Bunderson WT, Mutenje M, Nyagumbo I, Mupangwa W (2016) Evaluating manual conservation agriculture systems in southern Africa. Agric Ecosyst Environ 222:112–124

    Article  Google Scholar 

  • Thiombiano L, Meshack M (2009) Scaling-up conservation agriculture in Africa: strategy and approaches. FAO, Addis Ababa

    Google Scholar 

  • Thompson SC (1976) Canfarm—a farm management information systems. Agric Administr Vol 3:181–192

    Google Scholar 

  • Tzounis A, Katsoulas N, Bartzanas T, Kittas C (2017) Internet of things in agriculture, recent advances and future challenges. Biosyst Eng 164:31–48

    Article  Google Scholar 

  • Valente R, Morais C, Serodio P, Mestre S, Pinto S, Cabral M (2007) A ZigBee sensor element for distributed monitoring of soil parameters in environmental monitoring, IEEE Conference on Sensors, pp. 135–138

    Google Scholar 

  • Verdouw CN, Beulens AJM, van der Vorst JGAJ (2013) Virtualisation of floricultural supply chains: a review from an internet of things perspective. Comput Electron Agric 99:160–175

    Article  Google Scholar 

  • Vories ED, Glover RE, Bryant KJ, Tacker PL ( 2003) Estimating the cost of delaying irrigation for mid-south cotton on clay soil, Proceedings of the 2003 Beltwide Cotton Conference National Cotton Council Memphis, pp. 656–661

    Google Scholar 

  • Wang MM, Cao JN, Li J, Dasi SK (2008) Middleware for wireless sensor networks: a survey. J Comput Sci Technol 23(3):305–306

    Article  Google Scholar 

  • Wark T, Corke P, Sikka P, Klingbeil L, Guo Y, Crossman C et al (2007) Transforming agriculture through pervasive wireless sensor networks. IEEE Pervasive Computing 6(2):50–57

    Article  Google Scholar 

  • Whitfield S, Dixon JL, Mulenga BP, Ngoma H (2015) Conceptualising farming systems for agricultural development research: cases from eastern and southern Africa. Agr Syst 133:54–62

    Article  Google Scholar 

  • Whitman EC (2005) SOSUS: The Secret Weapon of Undersea Surveillance. Undersea Warfare 7(2)

    Google Scholar 

  • Yang DT, Zhu X (2013) Modernization of agriculture and long-term growth. Journal of Monetary Economics 60(3):367–382

    Article  Google Scholar 

  • Zhao YD, Bai CX, Zhao B (2007) An automatic control system of precision irrigation for City greenbelt, Proceedings of Second IEEE Conference on Industrial Electronics and Applications

    Google Scholar 

  • Zhao J-c, Zhang J-f, Yu F, Guo J-x. The study and application of the IOT technology in agriculture. 3rd International Conference on Computer Science and Information Technology, Chengdu, pp. 462–465, 2010

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Yahya, A. (2020). Agriculture: Wireless Sensor Network Theory. In: Emerging Technologies in Agriculture, Livestock, and Climate. Springer, Cham. https://doi.org/10.1007/978-3-030-33487-1_1

Download citation

Publish with us

Policies and ethics