Skip to main content

Single Level Feature-to-Feature Forecasting with Deformable Convolutions

  • Conference paper
  • First Online:
Pattern Recognition (DAGM GCPR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11824))

Included in the following conference series:

Abstract

Future anticipation is of vital importance in autonomous driving and other decision-making systems. We present a method to anticipate semantic segmentation of future frames in driving scenarios based on feature-to-feature forecasting. Our method is based on a semantic segmentation model without lateral connections within the upsampling path. Such design ensures that the forecasting addresses only the most abstract features on a very coarse resolution. We further propose to express feature-to-feature forecasting with deformable convolutions. This increases the modelling power due to being able to represent different motion patterns within a single feature map. Experiments show that our models with deformable convolutions outperform their regular and dilated counterparts while minimally increasing the number of parameters. Our method achieves state of the art performance on the Cityscapes validation set when forecasting nine timesteps into the future.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bhattacharyya, A., Fritz, M., Schiele, B.: Bayesian prediction of future street scenes using synthetic likelihoods. arXiv preprint arXiv:1810.00746 (2018)

  2. Chen, K., et al.: mmdetection. https://github.com/open-mmlab/mmdetection (2018)

  3. Chen, L.C., Papandreou, G., Kokkinos, I., Murphy, K., Yuille, A.L.: Deeplab: semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Trans. Pattern Analysis Mach. Intell. 40(4), 834–848 (2018)

    Article  Google Scholar 

  4. Cordts, M., et al.: The cityscapes dataset for semantic urban scene understanding. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3213–3223 (2016)

    Google Scholar 

  5. Dai, J., et al.: Deformable convolutional networks. In: ICCV, pp. 764–773 (2017)

    Google Scholar 

  6. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: a large-scale hierarchical image database. In: 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp. 248–255. IEEE (2009)

    Google Scholar 

  7. Feichtenhofer, C., Pinz, A., Zisserman, A.: Convolutional two-stream network fusion for video action recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2016, Las Vegas, NV, USA, 27–30 June 2016, pp. 1933–1941 (2016)

    Google Scholar 

  8. He, K., Gkioxari, G., Dollár, P., Girshick, R.: Mask r-cnn. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2961–2969 (2017)

    Google Scholar 

  9. Jaderberg, M., Simonyan, K., Zisserman, A., Kavukcuoglu, K.: Spatial transformer networks. In: NIPS, pp. 2017–2025 (2015)

    Google Scholar 

  10. Jin, X., et al.: Predicting scene parsing and motion dynamics in the future. In: Advances in Neural Information Processing Systems, pp. 6915–6924 (2017)

    Google Scholar 

  11. Kalchbrenner, N., et al.: Video pixel networks. In: Proceedings of the 34th International Conference on Machine Learning-Volume 70, pp. 1771–1779 (2017). JMLR.org

    Google Scholar 

  12. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. arXiv preprint arXiv:1412.6980 (2014)

  13. Kirillov, A., He, K., Girshick, R., Rother, C., Dollár, P.: Panoptic segmentation. arXiv preprint arXiv:1801.00868 (2018)

  14. Krešo, I., Krapac, J., Šegvić, S.: Efficient ladder-style densenets for semantic segmentation of large images. arXiv preprint arXiv:1905.05661 (2019)

  15. LeCun, Y., Bengio, Y., et al.: Convolutional networks for images, speech, and time series. Handb. Brain Theory Neural Networks 3361(10), 1995 (1995)

    Google Scholar 

  16. Lin, T.Y., Dollár, P., Girshick, R., He, K., Hariharan, B., Belongie, S.: Feature pyramid networks for object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2117–2125 (2017)

    Google Scholar 

  17. Luc, P., Couprie, C., Lecun, Y., Verbeek, J.: Predicting future instance segmentation by forecasting convolutional features. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 584–599 (2018)

    Google Scholar 

  18. Luc, P., Neverova, N., Couprie, C., Verbeek, J., LeCun, Y.: Predicting deeper into the future of semantic segmentation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 648–657 (2017)

    Google Scholar 

  19. Luo, W., Li, Y., Urtasun, R., Zemel, R.: Understanding the effective receptive field in deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 4898–4906 (2016)

    Google Scholar 

  20. Mathieu, M., Couprie, C., LeCun, Y.: Deep multi-scale video prediction beyond mean square error. arXiv preprint arXiv:1511.05440 (2015)

  21. Nabavi, S.S., Rochan, M., Wang, Y.: Future semantic segmentation with convolutional LSTM. In: BMVC (2018)

    Google Scholar 

  22. Oršić, M., Krešo, I., Bevandić, P., Šegvić, S.: In defense of pre-trained imagenet architectures for real-time semantic segmentation of road-driving images. arXiv preprint arXiv:1903.08469 (2019)

  23. Sun, D., Yang, X., Liu, M.Y., Kautz, J.: Pwc-net: CNNs for optical flow using pyramid, warping, and cost volume. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 8934–8943 (2018)

    Google Scholar 

  24. Terwilliger, A.M., Brazil, G., Liu, X.: Recurrent flow-guided semantic forecasting. arXiv preprint arXiv:1809.08318 (2018)

  25. Vondrick, C., Pirsiavash, H., Torralba, A.: Anticipating the future by watching unlabeled video. arXiv preprint arXiv:1504.08023 2 (2015)

  26. Vukotić, V., Pintea, S.-L., Raymond, C., Gravier, G., van Gemert, J.C.: One-step time-dependent future video frame prediction with a convolutional encoder-decoder neural network. In: Battiato, S., Gallo, G., Schettini, R., Stanco, F. (eds.) ICIAP 2017. LNCS, vol. 10484, pp. 140–151. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-68560-1_13

    Chapter  Google Scholar 

  27. Xingjian, S., Chen, Z., Wang, H., Yeung, D.Y., Wong, W.K., Woo, W.c.: Convolutional LSTM network: a machine learning approach for precipitation nowcasting. In: Advances in Neural Information Processing Systems, pp. 802–810 (2015)

    Google Scholar 

  28. Yang, M., Yu, K., Zhang, C., Li, Z., Yang, K.: Denseaspp for semantic segmentation in street scenes. In: CVPR, pp. 3684–3692 (2018)

    Google Scholar 

  29. Yu, F., Koltun, V.: Multi-scale context aggregation by dilated convolutions. arXiv preprint arXiv:1511.07122 (2015)

  30. Zhao, H., Shi, J., Qi, X., Wang, X., Jia, J.: Pyramid scene parsing network. In: The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), July 2017

    Google Scholar 

  31. Zhu, X., Hu, H., Lin, S., Dai, J.: Deformable convnets v2: more deformable, better results. arXiv preprint arXiv:1811.11168 (2018)

Download references

Acknowledgment

This work has been funded by Rimac Automobili. This work has been partially supported by European Regional Development Fund (DATACROSS) under grant KK.01.1.1.01.0009. We thank Pauline Luc and Jakob Verbeek for useful discussions during early stages of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Josip Šarić .

Editor information

Editors and Affiliations

1 Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (pdf 8541 KB)

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Šarić, J., Oršić, M., Antunović, T., Vražić, S., Šegvić, S. (2019). Single Level Feature-to-Feature Forecasting with Deformable Convolutions. In: Fink, G., Frintrop, S., Jiang, X. (eds) Pattern Recognition. DAGM GCPR 2019. Lecture Notes in Computer Science(), vol 11824. Springer, Cham. https://doi.org/10.1007/978-3-030-33676-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33676-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33675-2

  • Online ISBN: 978-3-030-33676-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics