Skip to main content

Virtual Thin Slice: 3D Conditional GAN-based Super-Resolution for CT Slice Interval

  • Conference paper
  • First Online:
Book cover Machine Learning for Medical Image Reconstruction (MLMIR 2019)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 11905))

Abstract

Many CT slice images are stored with large slice intervals to reduce storage size in clinical practice. This leads to low resolution perpendicular to the slice images (i.e., z-axis), which is insufficient for 3D visualization or image analysis. In this paper, we present a novel architecture based on conditional Generative Adversarial Networks (cGANs) with the goal of generating high resolution images of main body parts including head, chest, abdomen and legs. However, GANs are known to have a difficulty with generating a diversity of patterns due to a phenomena known as mode collapse. To overcome the lack of generated pattern variety, we propose to condition the discriminator on the different body parts. Furthermore, our generator networks are extended to be three dimensional fully convolutional neural networks, allowing for the generation of high resolution images from arbitrary fields of view. In our verification tests, we show that the proposed method obtains the best scores by PSNR/SSIM metrics and Visual Turing Test, allowing for accurate reproduction of the principle anatomy in high resolution. We expect that the proposed method contribute to effective utilization of the existing vast amounts of thick CT images stored in hospitals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Blau, Y., Michaeli, T.: The perception-distortion tradeoff. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6228–6237 (2018)

    Google Scholar 

  2. Chen, Y., Shi, F., Christodoulou, A.G., Xie, Y., Zhou, Z., Li, D.: Efficient and accurate MRI super-resolution using a generative adversarial network and 3D multi-level densely connected network. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 91–99. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_11

    Chapter  Google Scholar 

  3. Dong, C., Loy, C.C., He, K., Tang, X.: Learning a deep convolutional network for image super-resolution. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 184–199. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_13

    Chapter  Google Scholar 

  4. Duchon, C.E.: Lanczos filtering in one and two dimensions. J. Appl. Meteorol. 18(8), 1016–1022 (1979)

    Article  Google Scholar 

  5. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems, pp. 2672–2680 (2014)

    Google Scholar 

  6. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

  7. Isola, P., Zhu, J.Y., Zhou, T., Efros, A.A.: Image-to-image translation with conditional adversarial networks. arXiv preprint (2017)

    Google Scholar 

  8. Ledig, C., et al.: Photo-realistic single image super-resolution using a generative adversarial network. arXiv preprint (2017)

    Google Scholar 

  9. Metz, L., Poole, B., Pfau, D., Sohl-Dickstein, J.: Unrolled generative adversarial networks. arXiv preprint arXiv:1611.02163 (2016)

  10. Mirza, M., Osindero, S.: Conditional generative adversarial nets. arXiv preprint arXiv:1411.1784 (2014)

  11. Radford, A., Metz, L., Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)

  12. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  13. Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment: from error visibility to structural similarity. IEEE Trans. Image Process. 13(4), 600–612 (2004)

    Article  Google Scholar 

  14. Yang, C.-Y., Ma, C., Yang, M.-H.: Single-image super-resolution: a benchmark. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8692, pp. 372–386. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10593-2_25

    Chapter  Google Scholar 

  15. Zhang, H., Goodfellow, I., Metaxas, D., Odena, A.: Self-attention generative adversarial networks. arXiv preprint arXiv:1805.08318 (2018)

Download references

Acknowledgements

We acknowledge using the Reedbush-L (SGI Rackable C2112-4GP3/C1102-GP8) HPC system in the Information Technology Center, The University of Tokyo for the GPU computation required in this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Akira Kudo .

Editor information

Editors and Affiliations

Appendix

Appendix

We include a variety of additional generated images from proposed VTS and other methods in Fig. 6.

Fig. 6.
figure 6

Results using bicubic, SRCNN [3], pix2pix [7], VTS (ours) and corresponding ground truth thin slice image.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kudo, A., Kitamura, Y., Li, Y., Iizuka, S., Simo-Serra, E. (2019). Virtual Thin Slice: 3D Conditional GAN-based Super-Resolution for CT Slice Interval. In: Knoll, F., Maier, A., Rueckert, D., Ye, J. (eds) Machine Learning for Medical Image Reconstruction. MLMIR 2019. Lecture Notes in Computer Science(), vol 11905. Springer, Cham. https://doi.org/10.1007/978-3-030-33843-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-33843-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-33842-8

  • Online ISBN: 978-3-030-33843-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics