Skip to main content

The Impact of Magnetic Nanoparticles on Microbial Community Structure and Function in Rhizospheric Soils

  • Living reference work entry
  • First Online:
Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites
  • 36 Accesses

Abstract

Iron plays a vital role in sustaining life. It is essential for many microbial and plant enzymes and also for biosynthesis of chlorophyll. However, iron is unavailable as it produces goethite and hematite in soil. Some microbes have the ability to produce siderophore, an iron-chelating biomolecule, and thus solubilize iron and make it available for microbial and plant growth. However, there are constraints to this in certain soils, and iron is needed to be supplied in available form. Recent advancement in nanobiotechnology has exciting applications in the field of agriculture, e.g., application of nanofertilizer. Several such nanofertilizers like Ag, Zn, Cu, and Fe are reported to increase plant growth on application. The effect of magnetic nanoparticles on various agricultural crops have revealed increased C and N cycling, enriched antibiotic resistance genes, increased urease and invertase activities, etc. In contrast, some reports also revealed oxidative stress in the microbial community, reduced nitrogen mineralization efficiency, and soil community. Some workers have also suggested a change in community structure. The chapter focuses on the effects of magnetic nanofertilizer on the microbial community of rhizospheric soil, a less explored and not yet fully understood area.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Arora NK, Khare E, Oh JH, Kang SC, Maheshwari DK (2008) Diverse mechanisms adopted by fluorescent Pseudomonas PGC2 during the inhibition of Rhizoctonia solani and Phytophthora capsici. World J Microbiol Biotechnol 24(4):581–585. https://doi.org/10.1007/s11274-007-9505-5

    Article  Google Scholar 

  • Auffan M, Achouak W, Rose J, Roncato MA, Chaneac C, Waite DT, Masion A, Woicik JC, Wiesner MR, Bottero JY (2008) Relation between the redox state of iron-based nanoparticles and their cytotoxicity toward Escherichia coli. Environ Sci Technol 42:6730–6735

    Article  CAS  Google Scholar 

  • Banerjee S, Kirkby CA, Schmutter D, Bissett A, Kirkegaard JA, Richardson AE (2016) Network analysis reveals functional redundancy and keystone taxa amongst bacterial and fungal communities during organic matter decomposition in an arable soil. Soil Biol Biochem 97:188–198

    Article  CAS  Google Scholar 

  • Barret M, Morrissey JP, O’Gara F (2011) Functional genomics analysis of plant growth-promoting rhizobacterial traits involved in rhizosphere competence. Biol Fertil Soils 47:729–743

    Article  CAS  Google Scholar 

  • Ben-Moshe T, Frenk S, Dror I, Minz D, Berkowitz B (2013) Effects of metal oxide nanoparticles on soil properties. Chemosphere 90:640–646. PubMed: 23040650

    Article  CAS  Google Scholar 

  • Bent E, Tuzun S, Chanway CP (2001) Alterations in plant growth and in root hormone levels of lodgepole pines inoculated with rhizobacteria. Can J Microbiol 47:793–800

    Article  CAS  Google Scholar 

  • Bondarenko O, Juganson K, Ivask A, Kasemets K, Mortimer M et al (2013) Toxicity of Ag, CuO and ZnO nanoparticles to selected environmentally relevant test organisms and mammalian cells in vitro: a critical review. Arch Toxicol 87:1181–1200

    Article  CAS  Google Scholar 

  • Boutchuen A, Dell Z, Aich N, Arvid MM, Abdollah A, Soubantika P (2019) Increased plant growth with hematite nanoparticle fertilizer drop and determining nanoparticle uptake in plants using multimodal approach. J Nanomater 2019:Article ID 6890572. https://doi.org/10.1155/2019/6890572

    Article  CAS  Google Scholar 

  • Burke DJ, Pietrasiak N, Situ SF, Abenojar EC, Porche M, Kraj P, Lakliang Y, Samia AC (2015) Iron oxide and titanium dioxide nanoparticle effects on plant performance and root associated microbes. Int J Mol Sci 16(10):23630–23650. https://doi.org/10.3390/ijms161023630

    Article  CAS  Google Scholar 

  • Calvarro LM, de Santiago-Martín A, Gómez JQ, González-Huecas C, Quintana JR et al (2014) Biological activity in metal-contaminated calcareous agricultural soils: the role of the organic matter composition and the particle size distribution. Environ Sci Pollut Res 21:6176–6187

    Article  CAS  Google Scholar 

  • Cao J, Feng Y, Lin X, Wang J (2016) Arbuscular mycorrhizal fungi alleviate the negative effects of iron oxide nanoparticles on bacterial community in rhizospheric soils. Front Environ Sci 4:10. https://doi.org/10.3389/fenvs.2016.00010

    Article  Google Scholar 

  • Capek I (2004) Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv Coll Inter Sci 110(1-2):49–74. https://doi.org/10.1016/j.cis.2004.02.003. PMID: 15142823.

  • Cawoy H, Mariutto M, Henry G, Fisher C, Vasilyeva N, Thonart P et al (2014) Plant defense stimulation by natural isolates of Bacillus depends on efficient surfactin production. Mol Plant-Microbe Interact 27:87–100. https://doi.org/10.1094/MPMI-09-13-0262-R

    Article  CAS  Google Scholar 

  • Chenniappan C, Narayanasamy M, Daniel G, Ramaraj G, Ponnusamy P, Sekar J, Vaiyapuri P (2019) Biocontrol efficiency of native plant growth promoting rhizobacteria against rhizome rot disease of turmeric. Biol Control 129:55–64. https://doi.org/10.1016/j.biocontrol.2018.07.002

    Article  CAS  Google Scholar 

  • Cieschi MT, Polyakov AY, Lebedev VA, Volkov DS, Pankratov DA, Veligzhanin AA, Perminova IV, Lucena JJ (2019) Eco-friendly iron-humic nanofertilizers synthesis for the prevention of iron chlorosis in soybean (Glycine max) grown in calcareous soil. Front Plant Sci 10:413. https://doi.org/10.3389/fpls.2019.00413

    Article  Google Scholar 

  • Coll C, Notter D, Gottschalk F, Sun T, Som C, Nowack B (2016) Probabilistic environmental risk assessment of five nanomaterials (nano-TiO2, nano-Ag, nano-ZnO, CNT, and fullerenes). Nanotoxicology 10:4

    Article  CAS  Google Scholar 

  • Coyte KZ, Schluter J, Foster KR (2015) The ecology of the microbiome: networks, competition, and stability. Science 350:663–666

    Article  CAS  Google Scholar 

  • Fierer N, Breitbart M, Nulton J, Salomon P, Lozupone C, Jones R, Robeson M, Edwards RE, Felts B, Rayhawk S, Knight R, Rohwer F, Jackson RB (2007) Metagenomic and small-subunit rRNA analyses reveal the genetic diversity of bacteria, archaea, fungi and viruses in soil. Appl Environ Microbiol 73(21):7059–7066

    Article  CAS  Google Scholar 

  • Flores-Felix JD, Menendez E, Rivera LP (2013) Use of Rhizobium leguminosarum as a otential biofertilizer for Lactuca sativa and Daucus carota crops. J Plant Nutr Soil Sci 176:876–882

    Article  CAS  Google Scholar 

  • Frazier TP, Burklew CE, Zhang B (2014) Titanium dioxide nanoparticles affect the growth and microRNA expression of tobacco (Nicotiana tabacum). Funct Integr Genomics 14:75–83

    Article  CAS  Google Scholar 

  • Frenk S, Ben-Moshe T, Dror I, Berkowitz B, Minz D (2013) Effect of metal oxide nanoparticles on microbial community structure and function in two different soil types. PLoS One 8(12):e84441. https://doi.org/10.1371/journal.pone.0084441

    Article  CAS  Google Scholar 

  • Garcia-Fraile P, Carro L, Robledo M, Ramírez-Bahena M, Flores-Félix JD, Fernández M, Mateos P, Rivas R, Igual J, Martínez-Molina E, Peix A, Velazquez E (2012) Rhizobium promotes non-legumes growth and quality in several production steps: towards a biofertilization of edible raw vegetables healthy for humans. PLoS One 7:e38122. https://doi.org/10.1371/journal.pone.0038122

    Article  CAS  Google Scholar 

  • Ge Y, Schimel JP, Holden PA (2011) Evidence for negative effects of TiO2 and ZnO nanoparticles on soil bacterial communities. Environ Sci Technol 45:1659–1664

    Article  CAS  Google Scholar 

  • Govindarajan M, Balandreau J, Kwon SW (2007) Effects of the inoculation of Burkholderia vietnamensis and related endophytic diazotrophic bacteria on grain yield of rice. Microb Ecol 55:21–37

    Article  Google Scholar 

  • Hackl E, Zechmeister-Boltenstern S, Bodrossy L, Sessitsch A (2004) Comparison of diversities and compositions of bacterial populations inhabitingnaturalforestsoils. Appl Environ Microbiol 70:5057–5065. https://doi.org/10.1128/AEM.70.9.5057-5065.2004

    Article  CAS  Google Scholar 

  • Halfeld-Vieira BA, Vieira JR, Jr Romeiro RS, Silva HSA, Mc BP (2006) Induction of systemic resistance in tomato by autochthonus phylloplane resident Bacillus cereus. Pesq Agrop Brasileira 41:1247–1252. https://doi.org/10.1590/S0100-204X2006000800006

    Article  Google Scholar 

  • Han HS, Lee KD (2005) Phosphate and potassium solubilizing bacteria effect on mineral uptake, soil availability and growth of Eggplant. Res J Agric Biol Sci 1:176–180

    Google Scholar 

  • Han HS, Supanjani S, Lee KD (2006) Effect of co-inoculation with phosphate and potassium solubilizing bacteria on mineral uptake and growth of pepper and cucumber. Plant Soil Environ 52:130–136

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ren H, Zhang Y, Gu N et al (2011) The impact of iron oxide magnetic nanoparticles on the soil bacterial community. J Soils Sediments 11:1408–1417

    Article  CAS  Google Scholar 

  • He S, Feng Y, Ni J, Sun Y, Xue L, Feng Y, Yu Y, Lin X, Yang L (2016) Different responses of soil microbial metabolic activity to silver and iron oxide nanoparticles. Chemosphere 147:195–202. https://doi.org/10.1016/j.chemosphere.2015.12.055

    Article  CAS  Google Scholar 

  • Heggelund LR, Diez-Ortiz M, Lofts S, Lahive E, Jurkschat K, Wojnarowicz J, Svendsen C (2014) Soil pH effects on the comparative toxicity of dissolved zinc, nonnano and nano ZnO to the earthworm Eisenia fetida. Nanotoxicology 8:559–572

    Article  CAS  Google Scholar 

  • Hong J, Rico CM, Zhao L, Adeleye AS, Keller AA, Peralta-Videa JR, GardeaTorresdey JL (2015) Toxic effects of copper-based nanoparticles or compounds to lettuce (Lactuca sativa) and alfalfa (Medicago sativa). Environ Sci Process Impact 17:177–185

    Article  CAS  Google Scholar 

  • Huber D (2005) Synthesis, properties and application of iron nanoparticles. Small 1:482–501

    Article  CAS  Google Scholar 

  • Josko I, Oleszczuk P, Futa B (2014) The effect of inorganic nanoparticles (ZnO, Cr2O3, CuO and Ni) and their bulk counterparts on enzyme activities in different soils. Geoderma 232:528–537

    Article  CAS  Google Scholar 

  • Kahru A, Dubourguier H-C, Blinova I, Ivask A, Kasemets K (2008) Biotests and biosensors for ecotoxicology of metal oxide nanoparticles: a minireview. Sensors 8:5153–5170. https://doi.org/10.3390/s8085153

    Article  CAS  Google Scholar 

  • Kalyanaraman R, Yoo S, Krupashankara MS, Sudarshan TS, Dowding RJ (1998) Nanostruct Mater 10:1379

    Article  CAS  Google Scholar 

  • Kao CM, Chen SC, Chen YS (2003) Detection of Burkholderia pseudomallei in rice fields with PCR-based technique. Folia Microbiol 48:521–524

    Article  CAS  Google Scholar 

  • Kashyap PL, Xiang X, Heiden P (2015) Chitosan nanoparticle based delivery systems for sustainable agriculture. Int J Biol Macromol 77:36–51

    Article  CAS  Google Scholar 

  • Kelly SA, Havrilla CM, Brady TC, Abramo KH, Levin ED (1998) Oxidative stress in toxicology: established mammalian and emerging piscine model systems. Environ Health Perspect 106:375–384. https://doi.org/10.1289/ehp.98106375

    Article  CAS  Google Scholar 

  • Klaine SJ, Alvarez PJJ, Batley GE, Fernandes TF, Handy RD, Lyon DY, Mahendra S, McLaughlin MJ, Lead JR (2008) Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ Toxicol Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Kumar H, Bajpai VK, Dubey RC (2010) Wilt disease management and enhancement of growth and yield of Cajanus cajan (L) var. Manak by bacterial combinations amended with chemical fertilizer. Crop Protect 29:591–598

    Article  Google Scholar 

  • Layeghifard M, Hwang DM, Guttman DS (2017) Disentangling interactions in the microbiome: a network perspective. Trends Microbiol 25:217–228

    Article  CAS  Google Scholar 

  • Lee J, Mahendra S, Alvarez PJJ (2010) Nanomaterials in the construction industry: a review of their applications and environmental health and safety considerations. ACS Nano 4:3580–3590

    Article  CAS  Google Scholar 

  • Lester E, Blood P, Denyer J, Giddings D, Azzopardi B, Poliakoff MJ (2006) Reaction engineering: The supercritical water hydrothermal synthesis of nano-particles. Supercrit Fluids 37: 209–214. https://doi.org/10.1016/j.supflu.2005.08.011.

  • Li Q, Chen X, Zhuang J, Chen X (2016) Decontaminating soil organic pollutants with manufactured nanoparticles. Environ Sci Pollut Res 23(12):11533–11548

    Article  CAS  Google Scholar 

  • Liu R, Lal R (2015) Potentials of engineered nanoparticles as fertilizers for increasing agronomic productions. Sci Total Environ 514:131–139

    Article  CAS  Google Scholar 

  • Liu D, Lian B, Dong H (2012) Isolation of Paenibacillus sp. and assessment of its potential for enhancing mineral weathering. J Geom 29:413–421

    Article  CAS  Google Scholar 

  • Lugtenberg B, Kamilova F (2009) Plant-growth-promoting Rhizobacteria. Annu Rev Microbiol 63:541–556

    Article  CAS  Google Scholar 

  • Matilla MA, Espinosa-Urgel M, Rodríguez-Herva JJ, Ramos JL, Ramos-González MI (2007) Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere. Genome Biol 8:R179

    Article  CAS  Google Scholar 

  • Minz D, Ofek M, Hadar Y (2013) Plant rhizosphere microbial communities. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin/Heidelberg. https://doi.org/10.1007/978-3-642-30123-0_38

    Chapter  Google Scholar 

  • Muñoz-Rojas J, Caballero-Mellado J (2003) Population dynamics of Gluconacetobacter diazotrophicus in sugarcane cultivars and its effect on plant growth. Microb Ecol 46:454–464

    Article  Google Scholar 

  • Nair PMG, Chung IM (2015) Study on the correlation between copper oxide nanoparticles induced growth suppression and enhanced lignifications in Indian mustard (Brassica juncea L). Ecotoxicol Environ Saf 113:302–313

    Article  CAS  Google Scholar 

  • Nair PMG, Kim SH, Chung IM (2014) Copper oxide nanoparticle toxicity in mung bean (Vigna radiata L.) seedlings: physiological and molecular level responses of in vitro grown plants. Acta Physiol Plant 36:2947–2958

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150(1):5–22

    Article  CAS  Google Scholar 

  • O’Donnell AG, Seasman M, Macrae A, Waite I, Davies JT (2001) Plants and fertilisers as drivers of change in microbial community structure and function in soils. Plant Soil 232:135–145

    Article  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    Article  Google Scholar 

  • Pallavi, Mehta CM, Srivastava R, Arora S, Sharma AK (2016) Impact assessment of silver nanoparticles on plant growth and soil bacterial diversity. 3 Biotech 6:254. https://doi.org/10.1007/s13205-016-0567-7

    Article  CAS  Google Scholar 

  • Perez JM, O’Loughin T, Simeone FJ, Weissleder R, Josephson L (2002) DNA-based magnetic nanoparticle assembly acts as a magnetic relaxation nanoswitch allowing screening of DNA cleaving agents. J Am Chem Soc 124:2856–2857

    Article  CAS  Google Scholar 

  • Prasad N (2012) Chambal fertilizers and chemicals limited. Soil fertility status of north-western states of India. (https://www.chambalfertilisers.com/ pdf/ annual/ SoilFertilityBook Apr 1812 OPf.pdf)

    Google Scholar 

  • Priester JH, Moritz SC, Espinosa K, Ge Y, Wang Y, Nisbet RM, Schimel JP, Goggi SA, Gardea-Torresdey JL, Holden PA (2017) Damage assessment for soybean cultivated in soil with either CeO2 or ZnO manufactured nanomaterials. Sci Total Environ 579:1756–1768

    Google Scholar 

  • Qafoku NP (2010) Terrestrial nanoparticles and their controls on soil-/geo-processes and reactions. Adv Agron 107:33–91. https://doi.org/10.1016/S0065-2113(10)07002-1

    Article  CAS  Google Scholar 

  • Radzki W, Gutierrez FJ, Algar E (2013) Bacterial siderophores efficiently provide iron to iron-starved tomato plants in hydroponics culture. Antonie Van Leeuwenhoek 104:321–330

    Article  CAS  Google Scholar 

  • Rashid M, Shahzad T, Shahid M et al (2017) Toxicity of iron oxide nanoparticles to grass litter decomposition in a sandy soil. Sci Rep 7:41965. https://doi.org/10.1038/srep41965

    Article  CAS  Google Scholar 

  • Rathore P (2015) A review on approaches to develop plant growth promoting rhizobacteria. Int J Recent Sci Res 5(2):403–407

    Google Scholar 

  • Roh Y, Lauf RJ, McMillan AD, Zhang C, Rawn CJ, Bai J, Phelps TJ (2001) Microbial synthesis and characterization of metal-substituted magnetites. Solid State Commun 118(10):529–534

    Article  CAS  Google Scholar 

  • Rosenberg E, Koren O, Reshef L, Efrony R, Zilberg-Rosenberg I (2007) The role of microorganisms in coral health, disease and evolution. Nat Rev Microbiol 5:355–362

    Article  CAS  Google Scholar 

  • Rudrappa T, Czymmek KJ, Paré PW, Bais HP (2008) Root-secreted malic acid recruits beneficial soil bacteria. Plant Physiol 148:1547–1556

    Article  CAS  Google Scholar 

  • Sadowsky MJ, Schortemeyer M (1997) Soil microbial responses to increased concentrations of atmospheric CO2. Glob Change Biol 3:217–224

    Article  Google Scholar 

  • Sangeeth KP, Bhai RS, Srinivasan V (2012) Paenibacillus glucanolyticus, a promising potassium solubilizing bacterium isolated from black pepper (Piper nigrum L.) rhizosphere. J. Spices Aromat. Crops 21:118–124

    Google Scholar 

  • Schmidt J, Kent A, Brisson V, Gaudin A (2019) Agricultural management and plant selection interactively affect rhizosphere microbial community structure and nitrogen cycling. Microbiome 7:146. https://doi.org/10.1186/s40168-019-0756-9

    Article  Google Scholar 

  • Shankramma K, Yallappa S, Shivanna MB, Manjanna J (2016) Fe2O3 magnetic nanoparticles to enhance S. lycopersicum (tomato) plant growth and their biomineralization. Appl Nanosci 6:983–990. https://doi.org/10.1007/s13204-015-0510-y

    Article  CAS  Google Scholar 

  • Shaw AK, Hossain Z (2013) Impact of nano-CuO stress on rice (Oryza sativa L.) seedlings. Chemosphere 93:906–915

    Article  CAS  Google Scholar 

  • Singh D, Kumar A (2016) Impact of irrigation using water containing CuO and ZnO nanoparticles on Spinach oleracea grown in soil media. Bull Environ Contam Toxicol 97:548–553

    Article  CAS  Google Scholar 

  • Singh RK, Singh P, Li HB, Qi-Qi S, Guo DJ, Solanki MK, Verma KK, Malviya MK, Song XP, Lakshmanan P, Yang LT, Li YR (2020) Diversity of nitrogen-fixing rhizobacteria associated with sugarcane: a comprehensive study of plant-microbe interactions for growth enhancement in Saccharum spp. BMC Plant Biol 20:220. https://doi.org/10.1186/s12870-020-02400-9

    Article  CAS  Google Scholar 

  • Suresh AK, Pelletier DA, Doktycz MJ (2013) Relating nanomaterial properties and microbial toxicity. Nano 5:463–474

    CAS  Google Scholar 

  • Sutariya BP, Vyas TK, Faldu PR, Patel KG, Vala AK (2020) A microcosm study on effect of iron nanoparticles on Paddy (Oryza sativa) growth. J Inorg Organomet Polym. https://doi.org/10.1007/s10904-020-01866-2

  • Tang A, Haruna AO, Ab Majid NM (2020) Potential PGPR properties of cellulolytic, nitrogen-fixing, and phosphate-solubilizing bacteria of a rehabilitated tropical forest soil. Microorganisms 8(3):442. https://doi.org/10.1101/351916. bioRxiv 351916

    Article  CAS  Google Scholar 

  • Taniguchi N (1974) On the basic concept of nanotechnology. In: Proceedings of the international conference on production engineering, Tokyo, pp 18–23

    Google Scholar 

  • Tavakoli A, Sohrabi M, Kargari A (2007) A review of methods for synthesis of nanostructured metals with emphasis on iron compounds. Chem Pap 61:151–170

    Article  CAS  Google Scholar 

  • Tian H, Kah M, Kariman K (2019) Are nanoparticles a threat to mycorrhizal and rhizobial symbioses? A critical review. Front Microbiol 10:1660. https://doi.org/10.3389/fmicb.2019.01660

    Article  Google Scholar 

  • Tiede K, Hanssen SF, Westerhoff P, Fern GJ, Hankin SM, Aitken RJ, Chaudhry Q, Boxall AB (2016) How important is drinking water exposure for the risks of engineered nanoparticles to consumers? Nanotoxicology 10(1):102–110

    CAS  Google Scholar 

  • Tripathi S, Champagne D, Tufenkji N (2012) Transport behavior of selected nanoparticles with different surface coatings in granular porous media coated with Pseudomonas aeruginosa biofilm. Environ Sci Technol 46(13):6942–6949

    Article  CAS  Google Scholar 

  • Tripathi DK, Singh S, Singh S, Srivastava PK, Singh VP, Singh S, Prasad SM, Singh PK, Dubey NK, Pandey AC, Chauhan DK (2017) Nitric oxide alleviates silver nanoparticles (AgNPs)-induced phytotoxicity in Pisum sativum seedlings. Plant Physiol Biochem 110:167–177

    Article  CAS  Google Scholar 

  • Vadnerker PS, Vyas TK, Kapadia C, Gandhi A (2018) Multifaceted plant growth promoting potentials of Pseudomonas aeruginosa AP isolated from Dandi, Gujarat, India. Int J Chem Stud 6(6):1146–1151

    CAS  Google Scholar 

  • van de Mortel JE, de Vos RC, Dekkers E, Pineda A, Guillod L, Bouwmeester K, van Loon JJA, Dicke M, Raaijmakers JM (2012) Metabolic and transcriptomic changes induced in Arabidopsis by the rhizobacterium Pseudomonas fluorescens SS101. Plant Physiol 160:2173–2188. https://doi.org/10.1104/pp.112.207324

    Article  CAS  Google Scholar 

  • Vannini C, Domingo G, Onelli E, De Mattia F, Bruni I, Marsoni M, Bracale M (2014) Phytotoxic and genotoxic effects of silver nanoparticles exposure on germinating wheat seedlings. J Plant Physiol 171:1142–1148

    Article  CAS  Google Scholar 

  • Waalewijn-Kool PL, Ortiz MD, Van Straalen NM, van Gestel CA (2013) Sorption, dissolution and pH determine the long-term equilibration and toxicity of coated and uncoated ZnO nanoparticles in soil. Environ Pollut 178:59–64

    Article  CAS  Google Scholar 

  • Yoon SJ, Kwak JI, Lee WM, Holden PA, An YJ (2014) Zinc oxide nanoparticles delay soybean development: a standard soil microcosm study. Ecotoxicol Environ Saf 100:131–137

    Article  CAS  Google Scholar 

  • Yoshimura M, Somiya S (1999) Hydrothermal synthesis of crystallized nano-particles or rate earth-doped zirconia and hafnia. Mater Chem Phys 61(1):1–8

    Article  CAS  Google Scholar 

  • You T, Liu D, Chen J, Yang Z, Dou R, Gao X, Wang L (2017) Effects of metal oxide nanoparticles on soil enzyme activities and bacterial communities in two different soil types. J Soils Sediments. https://doi.org/10.1007/s11368-017-1716-2

  • Young JPW, Haukka KE (1996) Diversity and phylogeny of rhizobia. New Phytol 133:87–94

    Article  Google Scholar 

  • Yuan J, Chen Y, Li H, Lu J, Zhao H, Liu M, Nechitaylo GS, Glushchenko NN (2018) New insights into the cellular responses to iron nanoparticles in Capsicum annuum. Sci Rep 8(1):3228. https://doi.org/10.1038/s41598-017-18055-w

    Article  CAS  Google Scholar 

  • Zhou D-M, Jin S-Y, Wang Y-J, Wang P, Weng N-Y, Wang Y (2012) Assessing the Impact of iron-based nanoparticles on pH, dissolved organic carbon, and nutrient availability in Soils. Soil Sediment Contam 21:101–114. https://doi.org/10.1080/15320383.2012.636778

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anjana K. Vala .

Section Editor information

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Vyas, T.K., Vala, A.K. (2022). The Impact of Magnetic Nanoparticles on Microbial Community Structure and Function in Rhizospheric Soils. In: Handbook of Magnetic Hybrid Nanoalloys and their Nanocomposites. Springer, Cham. https://doi.org/10.1007/978-3-030-34007-0_44-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-34007-0_44-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-34007-0

  • Online ISBN: 978-3-030-34007-0

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics