Skip to main content

Pathogenesis of Biomaterial-Associated Infection

  • Chapter
  • First Online:
Racing for the Surface

Abstract

Biomaterial infections associated with indwelling surgical devices are responsible for ~50% of all nosocomial infections. The development of orthopedic biomaterial-associated infections comes at great physical and emotional cost to patients, resulting in substantial economic costs to healthcare providers. Understanding of its pathogenesis has progressed greatly since the biofilm hypothesis was first proposed. However, the biofilm hypothesis only partially elucidates the pathogenesis of these infections. A greater appreciation of the mechanisms underpinning immune evasion by common pathogens has highlighted a previous underestimation of the role this behavior has in the development of these troublesome infections. Recognition of the importance of the immune system interaction in the pathogenesis of biomaterial-associated infections will not only update our paradigm of this condition but also help to identify and develop potential therapeutic targets. This review aims to provide an overview of the pathogenesis of biomaterial-associated infections. It focuses primarily on the development of bacterial biofilms and the immune-evasive behavior of the most common orthopedic pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Whitehouse JD, Friedman ND, Kirkland KB et al (2002) The impact of surgical-site infections following orthopedic surgery at a community hospital and a university hospital: adverse quality of life, excess length of stay, and extra cost. Infect Control Hosp Epidemiol 23:183–189. https://doi.org/10.1086/502033

    Article  PubMed  Google Scholar 

  2. Darouiche RO (2004) Treatment of infections associated with surgical implants. N Engl J Med 350:1422–1429. https://doi.org/10.1056/NEJMra035415

    Article  CAS  PubMed  Google Scholar 

  3. Fisman DN, Reilly DT, Karchmer AW, Goldie SJ (2001) Clinical effectiveness and cost-effectiveness of 2 management strategies for infected total hip arthroplasty in the elderly. Clin Infect Dis 32:419–430. https://doi.org/10.1086/318502

    Article  CAS  PubMed  Google Scholar 

  4. Natsuhara KM, Shelton TJ, Meehan JP, Lum ZC (2019) Mortality during total hip periprosthetic joint infection. J Arthroplast 34(7S):S337–S342. https://doi.org/10.1016/j.arth.2018.12.024

    Article  Google Scholar 

  5. Stanton T (2017) PJI and cancer: more similar than different? American Association of Orthopaedic Surgeons

    Google Scholar 

  6. British Orthopaedic Association (2015) Getting it right first time.. https://www.boa.ac.uk/pro-practice/getting-it-right-first-time/.

  7. Kamath AF, Ong KL, Lau E et al (2015) Quantifying the burden of revision total joint arthroplasty for periprosthetic infection. J Arthroplast 30:1492–1497. https://doi.org/10.1016/J.ARTH.2015.03.035

    Article  Google Scholar 

  8. Bozic KJ, Ries MD (2005) The impact of infection after total hip arthroplasty on hospital and surgeon resource utilization. J Bone Joint Surg Am 87:1746–1751. https://doi.org/10.2106/JBJS.D.02937

    Article  PubMed  Google Scholar 

  9. Public Health England (2016) Surveillance of surgical site infections in NHS hospitals in England. https://www.gov.uk/government/uploads/system/uploads/attachment_data/file/577418/Surgical_site_infections_NHS_hospitals_2015_to_2016.pdf. Accessed 2 Feb 2017

  10. Trampuz A, Widmer AF (2006) Infections associated with orthopedic implants. Curr Opin Infect Dis 19(4):349–356

    Article  CAS  PubMed  Google Scholar 

  11. Mills LA, Aitken SA, Simpson AHRW (2017) The risk of non-union per fracture: current myths and revised figures from a population of over 4 million adults. Acta Orthop 88:434–439. https://doi.org/10.1080/17453674.2017.1321351

    Article  PubMed  PubMed Central  Google Scholar 

  12. Tsang S, Aitken SA, Golay SK et al (2014) When does hip fracture surgery fail? Injury 45:1059–1065. https://doi.org/10.1016/j.injury.2014.03.019

    Article  CAS  PubMed  Google Scholar 

  13. Trampuz A, Zimmerli W (2006) Diagnosis and treatment of infections associated with fracture-fixation devices. Injury 37:S59–S66. https://doi.org/10.1016/J.INJURY.2006.04.010

    Article  PubMed  Google Scholar 

  14. Kurtz SM, Lau E, Schmier J et al (2008) Infection burden for hip and knee arthroplasty in the United States. J Arthroplast 23(7):984–991. https://doi.org/10.1016/j.arth.2007.10.017

    Article  Google Scholar 

  15. Kurtz S, Ong K, Lau E et al (2007) Projections of primary and revision hip and knee arthroplasty in the United States from 2005 to 2030. J Bone Jt Surg 89:780–785. https://doi.org/10.2106/JBJS.F.00222

    Article  Google Scholar 

  16. Miller AO, Henry MW, Brause BD (2017) 1—Prevention of joint infections. Management of Periprosthetic Joint Infections (PJIs), pp 3–23

    Google Scholar 

  17. Pandey R, Berendt AR, Athanasou NA (2000) Histological and microbiological findings in non-infected and infected revision arthroplasty tissues. The OSIRIS Collaborative Study Group. Oxford Skeletal Infection Research and Intervention Service. Arch Orthop Trauma Surg 120:570–574

    Article  CAS  PubMed  Google Scholar 

  18. Athwal GS, Holmes S, Diaz AP et al (2017) A rapid detection method for Propionibacterium acnes from surgical biopsies of the shoulder. J Shoulder Elb Surg 26:e162. https://doi.org/10.1016/j.jse.2016.12.037

    Article  Google Scholar 

  19. Achermann Y, Vogt M, Leunig M et al (2010) Improved diagnosis of periprosthetic joint infection by multiplex PCR of sonication fluid from removed implants. J Clin Microbiol 48:1208–1214. https://doi.org/10.1128/JCM.00006-10

    Article  PubMed  PubMed Central  Google Scholar 

  20. Bossard DA, Ledergerber B, Zingg PO et al (2016) Optimal length of cultivation time for isolation of Propionibacterium acnes in suspected bone and joint infections is more than 7 days. J Clin Microbiol 54(12):3043–3049. https://doi.org/10.1128/JCM.01435-16

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Darouiche RO, Darouiche RO (2001) Device-associated infections: a macroproblem that starts with microadherence. Clin Infect Dis 33:1567–1572. https://doi.org/10.1086/323130

    Article  CAS  PubMed  Google Scholar 

  22. Aalirezaie A, Anoushiravani A, Cashman J et al (2019) General assembly, prevention, host risk mitigation—local factors: proceedings of international consensus on orthopedic infections. J Arthroplast 34(2):S37–S41. https://doi.org/10.1016/j.arth.2018.09.051

    Article  Google Scholar 

  23. Zimmerli W, Waldvogel FA, Vaudaux P, Nydegger UE (1982) Pathogenesis of foreign body infection: description and characteristics of an animal model. J Infect Dis 146:487–497

    Article  CAS  PubMed  Google Scholar 

  24. Zimmerli W, Lew PD, Waldvogel FA (1984) Pathogenesis of foreign body infection. Evidence for a local granulocyte defect. J Clin Invest 73:1191–1200. https://doi.org/10.1172/JCI111305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Zimmerli W, Zak O, Vosbeck K (1985) Experimental hematogenous infection of subcutaneously implanted foreign bodies. Scand J Infect Dis 17:303–310

    Article  CAS  PubMed  Google Scholar 

  26. Lucas VS, Lytra V, Hassan T et al (2002) Comparison of lysis filtration and an automated blood culture system (BACTEC) for detection, quantification, and identification of odontogenic bacteremia in children. J Clin Microbiol 40:3416–3420. https://doi.org/10.1128/JCM.40.9.3416-3420.2002

    Article  PubMed  PubMed Central  Google Scholar 

  27. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. O’Neill J (2014) Antimicrobial resistance: tackling a crisis for the health and wealth of nations. https://amr-review.org/sites/default/files/AMR Review Paper - Tackling a crisis for the health and wealth of nations_1.pdf. Accessed 25-01-2019

  29. Davies S (2013) Antimicrobial resistance poses ‘catastrophic threat’, says Chief Medical Officer—GOV.UK. In: Dep. Heal. Soc. Care. https://www.gov.uk/government/news/antimicrobial-resistance-poses-catastrophic-threat-says-chief-medical-officer%2D%2D2. Accessed 11 Mar 2019

  30. Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol 2:95–108. https://doi.org/10.1038/nrmicro821

    Article  CAS  PubMed  Google Scholar 

  31. Costerton JW, Geesey GG, Cheng KJ (1978) How bacteria stick. Sci Am 238:86–95

    Article  CAS  PubMed  Google Scholar 

  32. Costerton JW, Irvin RT, Cheng KJ (1981) The bacterial glycocalyx in nature and disease. Annu Rev Microbiol 35:299–324. https://doi.org/10.1146/annurev.mi.35.100181.001503

    Article  CAS  PubMed  Google Scholar 

  33. Marrie TJ, Nelligan J, Costerton JW (1982) A scanning and transmission electron microscopic study of an infected endocardial pacemaker lead. Circulation 66:1339–1341

    Article  CAS  PubMed  Google Scholar 

  34. Gristina AG, Costerton JW (1984) Bacterial adherence and the glycocalyx and their role in musculoskeletal infection. Orthop Clin North Am 15:517–535

    CAS  PubMed  Google Scholar 

  35. Khoury A, Lam K, Ellis B, Costerton J (1992) Prevention and control of bacterial infections associated with medical devices. ASAIO J 38:174–178

    Article  Google Scholar 

  36. Nickel JC, Ruseska I, Wright JB, Costerton JW (1985) Tobramycin resistance of Pseudomonas aeruginosa cells growing as a biofilm on urinary catheter material. Antimicrob Agents Chemother 27:619–624

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Koo H, Allan RN, Howlin RP et al (2017) Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol 15:740–755. https://doi.org/10.1038/nrmicro.2017.99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Olson ME, Ceri H, Morck DW et al (2002) Biofilm bacteria: formation and comparative susceptibility to antibiotics. Can J Vet Res 66:86–92

    PubMed  PubMed Central  Google Scholar 

  39. Girard LP, Ceri H, Gibb AP et al (2010) MIC versus MBEC to determine the antibiotic sensitivity of staphylococcus aureus in peritoneal dialysis peritonitis. Perit Dial Int 30:652–656. https://doi.org/10.3747/pdi.2010.00010

    Article  PubMed  Google Scholar 

  40. Jensen ET, Kharazmi A, Lam K et al (1990) Human polymorphonuclear leukocyte response to Pseudomonas aeruginosa grown in biofilms. Infect Immun 58:2383–2385

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pier GB, Coleman F, Grout M et al (2001) Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901. https://doi.org/10.1128/IAI.69.3.1895-1901.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sauer K, Camper AK, Ehrlich GD et al (2002) Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J Bacteriol 184:1140–1154. https://doi.org/10.1128/JB.184.4.1140-1154.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Whitchurch CB, Tolker-Nielsen T, Ragas PC, Mattick JS (2002) Extracellular DNA required for bacterial biofilm formation. Science 295:1487–1487. https://doi.org/10.1126/science.295.5559.1487

    Article  CAS  PubMed  Google Scholar 

  44. Friedman L, Kolter R (2004) Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilm. Mol Microbiol 51:675–690. https://doi.org/10.1046/j.1365-2958.2003.03877.x

    Article  CAS  PubMed  Google Scholar 

  45. Ma L, Jackson KD, Landry RM et al (2006) Analysis of Pseudomonas aeruginosa conditional psl variants reveals roles for the psl polysaccharide in adhesion and maintaining biofilm structure postattachment. J Bacteriol 188:8213–8221. https://doi.org/10.1128/JB.01202-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Costerton JW (1999) Introduction to biofilm. Int J Antimicrob Agents 11:217–221. https://doi.org/10.1016/S0924-8579(99)00018-7

    Article  CAS  PubMed  Google Scholar 

  47. Stewart PS, Costerton JW (2001) Antibiotic resistance of bacteria in biofilms. Lancet 358:135–138

    Article  CAS  PubMed  Google Scholar 

  48. Flemming H-C, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8:623–633. https://doi.org/10.1038/nrmicro2415

    Article  CAS  PubMed  Google Scholar 

  49. Mann EE, Wozniak DJ (2012) Pseudomonas biofilm matrix composition and niche biology. FEMS Microbiol Rev 36:893–916. https://doi.org/10.1111/j.1574-6976.2011.00322.x

    Article  CAS  PubMed  Google Scholar 

  50. Beloin C, Renard S, Ghigo J-M, Lebeaux D (2014) Novel approaches to combat bacterial biofilms. Curr Opin Pharmacol 18:61–68. https://doi.org/10.1016/J.COPH.2014.09.005

    Article  CAS  PubMed  Google Scholar 

  51. Tandogan N, Abadian PN, Huo B, Goluch ED (2017) Characterization of bacterial adhesion and biofilm formation. In: Antimicrobial coatings and modifications on medical devices. Springer, Cham, pp 67–95

    Chapter  Google Scholar 

  52. Moormeier DE, Bayles KW (2017) Staphylococcus aureus biofilm: a complex developmental organism. Mol Microbiol 104(3):365–376. https://doi.org/10.1111/mmi.13634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pollitt EJG, Diggle SP (2017) Defining motility in the Staphylococci. Cell Mol Life Sci 74:2943–2958. https://doi.org/10.1007/s00018-017-2507-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Henrichsen J (1972) Bacterial surface translocation: a survey and a classification. Bacteriol Rev 36:478–503

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Rupp CJ, Fux CA, Stoodley P (2005) Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl Environ Microbiol 71:2175–2178. https://doi.org/10.1128/AEM.71.4.2175-2178.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Kaito C, Sekimizu K (2007) Colony spreading in Staphylococcus aureus. J Bacteriol 189:2553–2557. https://doi.org/10.1128/JB.01635-06

    Article  CAS  PubMed  Google Scholar 

  57. Cheung GYC, Joo H-S, Chatterjee SS, Otto M (2014) Phenol-soluble modulins—critical determinants of staphylococcal virulence. FEMS Microbiol Rev 38:698–719. https://doi.org/10.1111/1574-6976.12057

    Article  CAS  PubMed  Google Scholar 

  58. Wang R, Braughton KR, Kretschmer D et al (2007) Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 13:1510–1514. https://doi.org/10.1038/nm1656

    Article  CAS  PubMed  Google Scholar 

  59. Queck SY, Jameson-Lee M, Villaruz AE et al (2008) RNAIII-independent target gene control by the agr quorum-sensing system: insight into the evolution of virulence regulation in Staphylococcus aureus. Mol Cell 32:150–158. https://doi.org/10.1016/j.molcel.2008.08.005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Novick RP (2003) Autoinduction and signal transduction in the regulation of staphylococcal virulence. Mol Microbiol 48:1429–1449. https://doi.org/10.1046/j.1365-2958.2003.03526.x

    Article  CAS  PubMed  Google Scholar 

  61. Mitchell JG, Kogure K (2006) Bacterial motility: links to the environment and a driving force for microbial physics. FEMS Microbiol Ecol 55:3–16. https://doi.org/10.1111/j.1574-6941.2005.00003.x

    Article  CAS  PubMed  Google Scholar 

  62. Baird-Parker AC (1990) The staphylococci: an introduction. J Appl Bacteriol 69:1S–8S. https://doi.org/10.1111/j.1365-2672.1990.tb01793.x

    Article  Google Scholar 

  63. Pollitt EJG, Crusz SA, Diggle SP (2016) Staphylococcus aureus forms spreading dendrites that have characteristics of active motility. Sci Rep 5:17698. https://doi.org/10.1038/srep17698

    Article  CAS  Google Scholar 

  64. Berg HC, Anderson RA (1973) Bacteria swim by rotating their flagellar filaments. Nature 245:380–382. https://doi.org/10.1038/245380a0

    Article  CAS  PubMed  Google Scholar 

  65. Macnab RM (2003) How bacteria assemble flagella. Annu Rev Microbiol 57:77–100. https://doi.org/10.1146/annurev.micro.57.030502.090832

    Article  CAS  PubMed  Google Scholar 

  66. Macnab RM, Ornston MK (1977) Normal-to-curly flagellar transitions and their role in bacterial tumbling. Stabilization of an alternative quaternary structure by mechanical force. J Mol Biol 112:1–30

    Article  CAS  PubMed  Google Scholar 

  67. Silverman M, Simon M (1974) Flagellar rotation and the mechanism of bacterial motility. Nature 249:73–74. https://doi.org/10.1038/249073a0

    Article  CAS  PubMed  Google Scholar 

  68. Turner L, Ryu WS, Berg HC (2000) Real-time imaging of fluorescent flagellar filaments. J Bacteriol 182:2793–2801. https://doi.org/10.1128/JB.182.10.2793-2801.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berg HC (2003) The rotary motor of bacterial flagella. Annu Rev Biochem 72:19–54. https://doi.org/10.1146/annurev.biochem.72.121801.161737

    Article  CAS  PubMed  Google Scholar 

  70. Melville S, Craig L (2013) Type IV pili in Gram-positive bacteria. Microbiol Mol Biol Rev 77:323–341. https://doi.org/10.1128/MMBR.00063-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Reichenbach H (1981) Taxonomy of the gliding bacteria. Annu Rev Microbiol 35:339–364. https://doi.org/10.1146/annurev.mi.35.100181.002011

    Article  CAS  PubMed  Google Scholar 

  72. McBride MJ (2001) Bacterial gliding motility: multiple mechanisms for cell movement over surfaces. Annu Rev Microbiol 55:49–75. https://doi.org/10.1146/annurev.micro.55.1.49

    Article  CAS  PubMed  Google Scholar 

  73. Jarrell KF, McBride MJ (2008) The surprisingly diverse ways that prokaryotes move. Nat Rev Microbiol 6:466–476. https://doi.org/10.1038/nrmicro1900

    Article  CAS  PubMed  Google Scholar 

  74. Nan B, McBride MJ, Chen J et al (2014) Bacteria that glide with helical tracks. Curr Biol 24:R169–R173. https://doi.org/10.1016/J.CUB.2013.12.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schweinitzer T, Josenhans C (2010) Bacterial energy taxis: a global strategy? Arch Microbiol 192:507–520. https://doi.org/10.1007/s00203-010-0575-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Floyd KA, Eberly AR, Hadjifrangiskou M (2017) 3—Adhesion of bacteria to surfaces and biofilm formation on medical devices. Biofilms and Implantable Medical Devices, pp 47–95

    Google Scholar 

  77. Briegel A, Ortega DR, Tocheva EI et al (2009) Universal architecture of bacterial chemoreceptor arrays. Proc Natl Acad Sci U S A 106:17181–17186. https://doi.org/10.1073/pnas.0905181106

    Article  PubMed  PubMed Central  Google Scholar 

  78. Porter SL, Wadhams GH, Armitage JP (2011) Signal processing in complex chemotaxis pathways. Nat Rev Microbiol 9:153–165. https://doi.org/10.1038/nrmicro2505

    Article  CAS  PubMed  Google Scholar 

  79. Povolotsky TL, Hengge R (2015) Genome-based comparison of cyclic Di-GMP signaling in pathogenic and commensal Escherichia coli strains. J Bacteriol 198:111–126. https://doi.org/10.1128/JB.00520-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Pesavento C, Becker G, Sommerfeldt N et al (2008) Inverse regulatory coordination of motility and curli-mediated adhesion in Escherichia coli. Genes Dev 22:2434–2446. https://doi.org/10.1101/gad.475808

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Fang X, Gomelsky M (2010) A post-translational, c-di-GMP-dependent mechanism regulating flagellar motility. Mol Microbiol 76:1295–1305. https://doi.org/10.1111/j.1365-2958.2010.07179.x

    Article  CAS  PubMed  Google Scholar 

  82. Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struct Biol 17:755–760. https://doi.org/10.1016/j.sbi.2007.08.004

    Article  CAS  PubMed  Google Scholar 

  83. Miller MB, Bassler BL (2001) Quorum sensing in bacteria. Annu Rev Microbiol 55:165–199. https://doi.org/10.1146/annurev.micro.55.1.165

    Article  CAS  PubMed  Google Scholar 

  84. Henke JM, Bassler BL (2004) Bacterial social engagements. Trends Cell Biol 14:648–656. https://doi.org/10.1016/j.tcb.2004.09.012

    Article  CAS  PubMed  Google Scholar 

  85. Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–346. https://doi.org/10.1146/annurev.cellbio.21.012704.131001

    Article  CAS  PubMed  Google Scholar 

  86. Karatan E, Watnick P (2009) Signals, regulatory networks, and materials that build and break bacterial biofilms. Microbiol Mol Biol Rev 73:310–347. https://doi.org/10.1128/MMBR.00041-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Busscher HJ, van der Mei HC (2012) How do bacteria know they are on a surface and regulate their response to an adhering state? PLoS Pathog 8:e1002440. https://doi.org/10.1371/journal.ppat.1002440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Tuson HH, Weibel DB (2013) Bacteria-surface interactions. Soft Matter 9:4368–4380. https://doi.org/10.1039/C3SM27705D

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Dunne WM (2002) Bacterial adhesion: Seen any good biofilms lately? Clin Microbiol Rev 15:155–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franz S, Rammelt S, Scharnweber D, Simon JC (2011) Immune responses to implants—a review of the implications for the design of immunomodulatory biomaterials. Biomaterials 32:6692–6709. https://doi.org/10.1016/J.BIOMATERIALS.2011.05.078

    Article  CAS  PubMed  Google Scholar 

  91. Speziale P, Pietrocola G, Rindi S et al (2009) Structural and functional role of Staphylococcus aureus surface components recognizing adhesive matrix molecules of the host. Future Microbiol 4:1337–1352. https://doi.org/10.2217/fmb.09.102

    Article  CAS  PubMed  Google Scholar 

  92. Wilson CJ, Clegg RE, Leavesley DI, Pearcy MJ (2005) Mediation of biomaterial-cell interactions by adsorbed proteins: a review. Tissue Eng 11:1–18. https://doi.org/10.1089/ten.2005.11.1

    Article  CAS  PubMed  Google Scholar 

  93. Banerjee I, Pangule RC, Kane RS (2011) Antifouling coatings: recent developments in the design of surfaces that prevent fouling by proteins, bacteria, and marine organisms. Adv Mater 23:690–718. https://doi.org/10.1002/adma.201001215

    Article  CAS  PubMed  Google Scholar 

  94. Arciola CR, Campoccia D, Speziale P et al (2012) Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials 33:5967–5982. https://doi.org/10.1016/j.biomaterials.2012.05.031

    Article  CAS  PubMed  Google Scholar 

  95. Otto M (2009) Staphylococcus epidermidis—the “accidental” pathogen. Nat Rev Microbiol 7:555–567. https://doi.org/10.1038/nrmicro2182

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Paharik AE, Horswill AR (2016) The staphylococcal biofilm: adhesins, regulation, and host response. Microbiol Spectr 4(2). https://doi.org/10.1128/microbiolspec.VMBF-0022-2015

  97. Arciola CR, Campoccia D, Montanaro L (2018) Implant infections: adhesion, biofilm formation and immune evasion. Nat Rev Microbiol 16:397–409. https://doi.org/10.1038/s41579-018-0019-y

    Article  CAS  PubMed  Google Scholar 

  98. Ren Y, Wang C, Chen Z et al (2018) Emergent heterogeneous microenvironments in biofilms: substratum surface heterogeneity and bacterial adhesion force-sensing. FEMS Microbiol Rev 42:259–272. https://doi.org/10.1093/femsre/fuy001

    Article  CAS  PubMed  Google Scholar 

  99. Costerton JW, Lewandowski Z, Caldwell DE et al (1995) Microbial biofilms. Annu Rev Microbiol 49:711–745. https://doi.org/10.1146/annurev.mi.49.100195.003431

    Article  CAS  PubMed  Google Scholar 

  100. Petrova OE, Sauer K (2012) Sticky situations: key components that control bacterial surface attachment. J Bacteriol 194:2413–2425. https://doi.org/10.1128/JB.00003-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bos R, van der Mei HC, Busscher HJ (1999) Physico-chemistry of initial microbial adhesive interactions—its mechanisms and methods for study. FEMS Microbiol Rev 23:179–230. https://doi.org/10.1111/j.1574-6976.1999.tb00396.x

    Article  CAS  PubMed  Google Scholar 

  102. Ribeiro M, Monteiro FJ, Ferraz MP (2012) Infection of orthopedic implants with emphasis on bacterial adhesion process and techniques used in studying bacterial-material interactions. Biomatter 2:176–194. https://doi.org/10.4161/biom.22905

    Article  PubMed  PubMed Central  Google Scholar 

  103. Hermansson M (1999) The DLVO theory in microbial adhesion. Colloids Surf B 14:105–119. https://doi.org/10.1016/S0927-7765(99)00029-6

    Article  CAS  Google Scholar 

  104. Nguyen VT, Chia TWR, Turner MS et al (2011) Quantification of acid–base interactions based on contact angle measurement allows XDLVO predictions to attachment of Campylobacter jejuni but not Salmonella. J Microbiol Methods 86:89–96. https://doi.org/10.1016/J.MIMET.2011.04.005

    Article  CAS  PubMed  Google Scholar 

  105. Perni S, Preedy EC, Prokopovich P (2014) Success and failure of colloidal approaches in adhesion of microorganisms to surfaces. Adv Colloid Interf Sci 206:265–274. https://doi.org/10.1016/J.CIS.2013.11.008

    Article  CAS  Google Scholar 

  106. Silhavy TJ, Kahne D, Walker S (2010) The bacterial cell envelope. Cold Spring Harb Perspect Biol 2:a000414. https://doi.org/10.1101/cshperspect.a000414

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Gannon JT, Manilal VB, Alexander M (1991) Relationship between cell surface properties and transport of bacteria through soil. Appl Environ Microbiol 57:190–193

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. An YH, Friedman RJ (1998) Concise review of mechanisms of bacterial adhesion to biomaterial surfaces. J Biomed Mater Res 43:338–348. https://doi.org/10.1002/(SICI)1097-4636(199823)43:3<338::AID-JBM16>3.0.CO;2-B

    Article  CAS  PubMed  Google Scholar 

  109. Dufrêne YF, Martínez-Martín D, Medalsy I et al (2013) Multiparametric imaging of biological systems by force-distance curve–based AFM. Nat Methods 10:847–854. https://doi.org/10.1038/nmeth.2602

    Article  CAS  PubMed  Google Scholar 

  110. Martins BM, Locke JC (2015) Microbial individuality: how single-cell heterogeneity enables population level strategies. Curr Opin Microbiol 24:104–112. https://doi.org/10.1016/J.MIB.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  111. Kline KA, Fälker S, Dahlberg S et al (2009) Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5:580–592. https://doi.org/10.1016/J.CHOM.2009.05.011

    Article  CAS  PubMed  Google Scholar 

  112. Mandlik A, Swierczynski A, Das A, Ton-That H (2008) Pili in Gram-positive bacteria: assembly, involvement in colonization and biofilm development. Trends Microbiol 16:33–40. https://doi.org/10.1016/j.tim.2007.10.010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Hori K, Matsumoto S (2010) Bacterial adhesion: from mechanism to control. Biochem Eng J 48:424–434. https://doi.org/10.1016/J.BEJ.2009.11.014

    Article  CAS  Google Scholar 

  114. Heilmann C, Hussain M, Peters G, Gotz F (1997) Evidence for autolysin-mediated primary attachment of Staphylococcus epidermidis to a polystyrene surface. Mol Microbiol 24:1013–1024. https://doi.org/10.1046/j.1365-2958.1997.4101774.x

    Article  CAS  PubMed  Google Scholar 

  115. Hirschhausen N, Schlesier T, Schmidt MA et al (2010) A novel staphylococcal internalization mechanism involves the major autolysin Atl and heat shock cognate protein Hsc70 as host cell receptor. Cell Microbiol 12:1746–1764. https://doi.org/10.1111/j.1462-5822.2010.01506.x

    Article  CAS  PubMed  Google Scholar 

  116. Foster SJ (1995) Molecular characterization and functional analysis of the major autolysin of Staphylococcus aureus 8325/4. J Bacteriol 177:5723–5725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Bose JL, Lehman MK, Fey PD, Bayles KW (2012) Contribution of the Staphylococcus aureus Atl AM and GL murein hydrolase activities in cell division, autolysis, and biofilm formation. PLoS One 7:e42244. https://doi.org/10.1371/journal.pone.0042244

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Palmer J, Flint S, Brooks J (2007) Bacterial cell attachment, the beginning of a biofilm. J Ind Microbiol Biotechnol 34:577–588. https://doi.org/10.1007/s10295-007-0234-4

    Article  CAS  PubMed  Google Scholar 

  119. Renner LD, Weibel DB (2011) Physicochemical regulation of biofilm formation. MRS Bull 36:347–355. https://doi.org/10.1557/mrs.2011.65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Helbig R, Günther D, Friedrichs J et al (2016) The impact of structure dimensions on initial bacterial adhesion. Biomater Sci 4:1074–1078. https://doi.org/10.1039/C6BM00078A

    Article  CAS  PubMed  Google Scholar 

  121. James SA, Hilal N, Wright CJ (2017) Atomic force microscopy studies of bioprocess engineering surfaces—imaging, interactions and mechanical properties mediating bacterial adhesion. Biotechnol J 12:1600698. https://doi.org/10.1002/biot.201600698

    Article  CAS  Google Scholar 

  122. Hizal F, Rungraeng N, Lee J et al (2017) Nanoengineered superhydrophobic surfaces of aluminum with extremely low bacterial adhesivity. ACS Appl Mater Interfaces 9:12118–12129. https://doi.org/10.1021/acsami.7b01322

    Article  CAS  PubMed  Google Scholar 

  123. Bagherifard S, Hickey DJ, de Luca AC et al (2015) The influence of nanostructured features on bacterial adhesion and bone cell functions on severely shot peened 316L stainless steel. Biomaterials 73:185–197. https://doi.org/10.1016/J.BIOMATERIALS.2015.09.019

    Article  CAS  PubMed  Google Scholar 

  124. Ivanova EP, Truong VK, Webb HK et al (2011) Differential attraction and repulsion of Staphylococcus aureus and Pseudomonas aeruginosa on molecularly smooth titanium films. Sci Rep 1:165. https://doi.org/10.1038/srep00165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Geng J, Henry N (2011) Short time-scale bacterial adhesion dynamics. In: Linke D, Goldman A (eds) Bacterial adhesion. Springer, pp 315–331

    Google Scholar 

  126. Friedlander RS, Vlamakis H, Kim P et al (2013) Bacterial flagella explore microscale hummocks and hollows to increase adhesion. Proc Natl Acad Sci U S A 110:5624–5629. https://doi.org/10.1073/pnas.1219662110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Jaggessar A, Shahali H, Mathew A, Yarlagadda PKDV (2017) Bio-mimicking nano and micro-structured surface fabrication for antibacterial properties in medical implants. J Nanobiotechnol 15:64. https://doi.org/10.1186/s12951-017-0306-1

    Article  CAS  Google Scholar 

  128. Bruzaud J, Tarrade J, Celia E et al (2017) The design of superhydrophobic stainless steel surfaces by controlling nanostructures: a key parameter to reduce the implantation of pathogenic bacteria. Mater Sci Eng C 73:40–47. https://doi.org/10.1016/J.MSEC.2016.11.115

    Article  CAS  Google Scholar 

  129. Ellison C, Brun YV (2015) Mechanosensing: a regulation sensation. Curr Biol 25:R113–R115. https://doi.org/10.1016/j.cub.2014.12.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Persat A (2017) Bacterial mechanotransduction. Curr Opin Microbiol 36:1–6. https://doi.org/10.1016/J.MIB.2016.12.002

    Article  CAS  PubMed  Google Scholar 

  131. Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Int J Med Microbiol 300:148–154. https://doi.org/10.1016/J.IJMM.2009.10.001

    Article  CAS  PubMed  Google Scholar 

  132. Fedtke I, Mader D, Kohler T et al (2007) A Staphylococcus aureus ypfP mutant with strongly reduced lipoteichoic acid (LTA) content: LTA governs bacterial surface properties and autolysin activity. Mol Microbiol 65:1078–1091. https://doi.org/10.1111/j.1365-2958.2007.05854.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Sabaté Brescó M, Harris LG, Thompson K et al (2017) Pathogenic mechanisms and host interactions in staphylococcus epidermidis device-related infection. Front Microbiol 8:1401. https://doi.org/10.3389/fmicb.2017.01401

    Article  PubMed  PubMed Central  Google Scholar 

  134. Gotz F (2002) Staphylococcus and biofilms. Mol Microbiol 43:1367–1378. https://doi.org/10.1046/j.1365-2958.2002.02827.x

    Article  CAS  PubMed  Google Scholar 

  135. Arciola CR, Campoccia D, Ravaioli S, Montanaro L (2015) Polysaccharide intercellular adhesin in biofilm: structural and regulatory aspects. Front Cell Infect Microbiol 5:7. https://doi.org/10.3389/fcimb.2015.00007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vuong C, Voyich JM, Fischer ER et al (2004) Polysaccharide intercellular adhesin (PIA) protects Staphylococcus epidermidis against major components of the human innate immune system. Cell Microbiol 6:269–275

    Article  CAS  PubMed  Google Scholar 

  137. Arciola CR, Campoccia D, Gamberini S et al (2005) Antibiotic resistance in exopolysaccharide-forming Staphylococcus epidermidis clinical isolates from orthopaedic implant infections. Biomaterials 26:6530–6535. https://doi.org/10.1016/J.BIOMATERIALS.2005.04.031

    Article  CAS  PubMed  Google Scholar 

  138. Vuong C, Kidder JB, Jacobson ER et al (2005) Staphylococcus epidermidis polysaccharide intercellular adhesin production significantly increases during tricarboxylic acid cycle stress. J Bacteriol 187:2967–2973. https://doi.org/10.1128/JB.187.9.2967-2973.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Knobloch JK, Bartscht K, Sabottke A et al (2001) Biofilm formation by Staphylococcus epidermidis depends on functional RsbU, an activator of the sigB operon: differential activation mechanisms due to ethanol and salt stress. J Bacteriol 183:2624–2633. https://doi.org/10.1128/JB.183.8.2624-2633.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Ferreira A, Gray M, Wiedmann M, Boor KJ (2004) Comparative genomic analysis of the sigB operon in Listeria monocytogenes and in other Gram-positive bacteria. Curr Microbiol 48:39–46

    Article  CAS  PubMed  Google Scholar 

  141. Schaeffer CR, Hoang T-MN, Sudbeck CM et al (2016) Versatility of biofilm matrix molecules in Staphylococcus epidermidis clinical isolates and importance of polysaccharide intercellular adhesin expression during high shear stress. mSphere 1(5). https://doi.org/10.1128/mSphere.00165-16

  142. Ziebuhr W, Krimmer V, Rachid S et al (1999) A novel mechanism of phase variation of virulence in Staphylococcus epidermidis: evidence for control of the polysaccharide intercellular adhesin synthesis by alternating insertion and excision of the insertion sequence element IS256. Mol Microbiol 32:345–356. https://doi.org/10.1046/j.1365-2958.1999.01353.x

    Article  CAS  PubMed  Google Scholar 

  143. Kozitskaya S, Cho S-H, Dietrich K et al (2004) The bacterial insertion sequence element IS256 occurs preferentially in nosocomial Staphylococcus epidermidis isolates: association with biofilm formation and resistance to aminoglycosides. Infect Immun 72:1210–1215. https://doi.org/10.1128/IAI.72.2.1210-1215.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Patti JM, Allen BL, McGavin MJ, Hook M (1994) MSCRAMM-mediated adherence of microorganisms to host tissues. Annu Rev Microbiol 48:585–617. https://doi.org/10.1146/annurev.mi.48.100194.003101

    Article  CAS  PubMed  Google Scholar 

  145. Chavakis T, Wiechmann K, Preissner KT, Herrmann M (2005) Staphylococcus aureus interactions with the endothelium. The role of bacterial “Secretable Expanded Repertoire Adhesive Molecules” (SERAM) in disturbing host defense systems. Thromb Haemost 94:278–285. https://doi.org/10.1160/TH05-05-0306

    Article  CAS  PubMed  Google Scholar 

  146. Foster TJ, Geoghegan JA, Ganesh VK, Höök M (2014) Adhesion, invasion and evasion: the many functions of the surface proteins of Staphylococcus aureus. Nat Rev Microbiol 12:49–62. https://doi.org/10.1038/nrmicro3161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. O’Neill E, Pozzi C, Houston P et al (2008) A novel Staphylococcus aureus biofilm phenotype mediated by the fibronectin-binding proteins, FnBPA and FnBPB. J Bacteriol 190:3835–3850. https://doi.org/10.1128/JB.00167-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Geoghegan JA, Monk IR, O’Gara JP, Foster TJ (2013) Subdomains N2N3 of fibronectin binding protein A mediate Staphylococcus aureus biofilm formation and adherence to fibrinogen using distinct mechanisms. J Bacteriol 195:2675–2683. https://doi.org/10.1128/JB.02128-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Lauderdale KJ, Boles BR, Cheung AL, Horswill AR (2009) Interconnections between Sigma B, agr, and proteolytic activity in Staphylococcus aureus biofilm maturation. Infect Immun 77:1623–1635. https://doi.org/10.1128/IAI.01036-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Campoccia D, Speziale P, Ravaioli S et al (2009) The presence of both bone sialoprotein-binding protein gene and collagen adhesin gene as a typical virulence trait of the major epidemic cluster in isolates from orthopedic implant infections. Biomaterials 30:6621–6628. https://doi.org/10.1016/J.BIOMATERIALS.2009.08.032

    Article  CAS  PubMed  Google Scholar 

  151. Mao Y, Schwarzbauer JE (2005) Fibronectin fibrillogenesis, a cell-mediated matrix assembly process. Matrix Biol 24:389–399. https://doi.org/10.1016/J.MATBIO.2005.06.008

    Article  CAS  PubMed  Google Scholar 

  152. Arciola CR, Bustanji Y, Conti M et al (2003) Staphylococcus epidermidis–fibronectin binding and its inhibition by heparin. Biomaterials 24:3013–3019. https://doi.org/10.1016/S0142-9612(03)00133-9

    Article  CAS  PubMed  Google Scholar 

  153. Arciola CR, Campoccia D, Gamberini S et al (2004) Presence of fibrinogen-binding adhesin gene in Staphylococcus epidermidis isolates from central venous catheters-associated and orthopaedic implant-associated infections. Biomaterials 25:4825–4829. https://doi.org/10.1016/J.BIOMATERIALS.2003.11.056

    Article  CAS  PubMed  Google Scholar 

  154. Geoghegan JA, Foster TJ (2015) Cell wall-anchored surface proteins of Staphylococcus aureus: many proteins, multiple functions. In: Staphylococcus aureus. Springer, Cham, pp 95–120

    Chapter  Google Scholar 

  155. Foster TJ (2016) The remarkably multifunctional fibronectin binding proteins of Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 35:1923–1931. https://doi.org/10.1007/s10096-016-2763-0

    Article  CAS  PubMed  Google Scholar 

  156. Vengadesan K, Narayana SVL (2011) Structural biology of Gram-positive bacterial adhesins. Protein Sci 20:759–772. https://doi.org/10.1002/pro.613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  157. Clarke SR, Foster SJ (2006) Surface adhesins of Staphylococcus aureus. Adv Microb Physiol 51:187–224

    Article  CAS  PubMed  Google Scholar 

  158. Patti JM, Bremell T, Krajewska-Pietrasik D et al (1994) The Staphylococcus aureus collagen adhesin is a virulence determinant in experimental septic arthritis. Infect Immun 62:152–161

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Ní Eidhin D, Perkins S, Francois P et al (1998) Clumping factor B (ClfB), a new surface-located fibrinogen-binding adhesin of Staphylococcus aureus. Mol Microbiol 30:245–257. https://doi.org/10.1046/j.1365-2958.1998.01050.x

    Article  PubMed  Google Scholar 

  160. Herman-Bausier P, Formosa-Dague C, Feuillie C et al (2017) Forces guiding staphylococcal adhesion. J Struct Biol 197:65–69. https://doi.org/10.1016/J.JSB.2015.12.009

    Article  CAS  PubMed  Google Scholar 

  161. Farnsworth CW, Schott EM, Jensen SE et al (2017) Adaptive upregulation of Clumping Factor A (ClfA) by Staphylococcus aureus in the obese, type 2 diabetic host mediates increased virulence. Infect Immun 85(6):e01005-16. https://doi.org/10.1128/IAI.01005-16

    Article  PubMed  PubMed Central  Google Scholar 

  162. Wang Y, Cheng LI, Helfer DR et al (2017) Mouse model of hematogenous implant-related Staphylococcus aureus biofilm infection reveals therapeutic targets. Proc Natl Acad Sci U S A 114:E5094–E5102. https://doi.org/10.1073/pnas.1703427114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Wertheim HFL, Walsh E, Choudhurry R et al (2008) Key role for clumping factor B in Staphylococcus aureus nasal colonization of humans. PLoS Med 5:e17. https://doi.org/10.1371/journal.pmed.0050017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Hammer ND, Skaar EP (2011) Molecular mechanisms of Staphylococcus aureus iron acquisition. Annu Rev Microbiol 65:129–147. https://doi.org/10.1146/annurev-micro-090110-102851

    Article  CAS  PubMed  Google Scholar 

  165. Clarke SR, Mohamed R, Bian L et al (2007) The Staphylococcus aureus surface protein IsdA mediates resistance to innate defenses of human skin. Cell Host Microbe 1:199–212. https://doi.org/10.1016/J.CHOM.2007.04.005

    Article  CAS  PubMed  Google Scholar 

  166. Zapotoczna M, Jevnikar Z, Miajlovic H et al (2013) Iron-regulated surface determinant B (IsdB) promotes Staphylococcus aureus adherence to and internalization by non-phagocytic human cells. Cell Microbiol 15:1026–1041. https://doi.org/10.1111/cmi.12097

    Article  CAS  PubMed  Google Scholar 

  167. Missineo A, Di Poto A, Geoghegan JA et al (2014) IsdC from Staphylococcus lugdunensis induces biofilm formation under low-iron growth conditions. Infect Immun 82:2448–2459. https://doi.org/10.1128/IAI.01542-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Shopsin B, Gomez M, Montgomery SO et al (1999) Evaluation of protein A gene polymorphic region DNA sequencing for typing of Staphylococcus aureus strains. J Clin Microbiol 37:3556–3563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Muthukrishnan G, Quinn GA, Lamers RP et al (2011) Exoproteome of Staphylococcus aureus reveals putative determinants of nasal carriage. J Proteome Res 10:2064–2078. https://doi.org/10.1021/pr200029r

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Cole AL, Muthukrishnan G, Chong C et al (2016) Host innate inflammatory factors and staphylococcal protein A influence the duration of human Staphylococcus aureus nasal carriage. Mucosal Immunol 9:1537–1548. https://doi.org/10.1038/mi.2016.2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Gómez MI, Lee A, Reddy B et al (2004) Staphylococcus aureus protein A induces airway epithelial inflammatory responses by activating TNFR1. Nat Med 10:842–848. https://doi.org/10.1038/nm1079

    Article  CAS  PubMed  Google Scholar 

  172. Silverman GJ, Cary S, Graille M et al (2000) A B-cell superantigen that targets B-1 lymphocytes. Curr Top Microbiol Immunol 252:251–263

    CAS  PubMed  Google Scholar 

  173. Graille M, Stura EA, Corper AL et al (2000) Crystal structure of a Staphylococcus aureus protein A domain complexed with the Fab fragment of a human IgM antibody: structural basis for recognition of B-cell receptors and superantigen activity. Proc Natl Acad Sci U S A 97:5399–5404

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Ricklin D, Tzekou A, Garcia BL et al (2009) A molecular insight into complement evasion by the staphylococcal complement inhibitor protein family. J Immunol 183:2565–2574. https://doi.org/10.4049/jimmunol.0901443

    Article  CAS  PubMed  Google Scholar 

  175. Merino N, Toledo-Arana A, Vergara-Irigaray M et al (2009) Protein A-mediated multicellular behavior in Staphylococcus aureus. J Bacteriol 191:832–843. https://doi.org/10.1128/JB.01222-08

    Article  CAS  PubMed  Google Scholar 

  176. Mendoza Bertelli A, Delpino MV, Lattar S et al (2016) Staphylococcus aureus protein A enhances osteoclastogenesis via TNFR1 and EGFR signaling. Biochim Biophys Acta 1862:1975–1983. https://doi.org/10.1016/J.BBADIS.2016.07.016

    Article  CAS  PubMed  Google Scholar 

  177. Claro T, Widaa A, McDonnell C et al (2013) Staphylococcus aureus protein A binding to osteoblast tumour necrosis factor receptor 1 results in activation of nuclear factor kappa B and release of interleukin-6 in bone infection. Microbiology 159:147–154. https://doi.org/10.1099/mic.0.063016-0

    Article  CAS  PubMed  Google Scholar 

  178. Claro T, Widaa A, O’Seaghdha M et al (2011) Staphylococcus aureus protein A binds to osteoblasts and triggers signals that weaken bone in osteomyelitis. PLoS One 6:e18748. https://doi.org/10.1371/journal.pone.0018748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Widaa A, Claro T, Foster TJ et al (2012) Staphylococcus aureus protein A plays a critical role in mediating bone destruction and bone loss in osteomyelitis. PLoS One 7:e40586. https://doi.org/10.1371/journal.pone.0040586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  180. Flemming HC, Wingender J, Szewzyk U et al (2016) Biofilms: an emergent form of bacterial life. Nat Rev Microbiol 14(9):563–575. https://doi.org/10.1038/nrmicro.2016.94

    Article  CAS  PubMed  Google Scholar 

  181. Formosa-Dague C, Feuillie C, Beaussart A et al (2016) Sticky matrix: adhesion mechanism of the staphylococcal polysaccharide intercellular adhesin. ACS Nano 10:3443–3452. https://doi.org/10.1021/acsnano.5b07515

    Article  CAS  PubMed  Google Scholar 

  182. Petersen FC, Tao L, Scheie AA (2005) DNA binding-uptake system: a link between cell-to-cell communication and biofilm formation. J Bacteriol 187:4392–4400. https://doi.org/10.1128/JB.187.13.4392-4400.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Qin Z, Ou Y, Yang L et al (2007) Role of autolysin-mediated DNA release in biofilm formation of Staphylococcus epidermidis. Microbiology 153:2083–2092. https://doi.org/10.1099/mic.0.2007/006031-0

    Article  CAS  PubMed  Google Scholar 

  184. Steinberger RE, Holden PA (2005) Extracellular DNA in single- and multiple-species unsaturated biofilms. Appl Environ Microbiol 71:5404–5410. https://doi.org/10.1128/AEM.71.9.5404-5410.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Vilain S, Pretorius JM, Theron J, Brözel VS (2009) DNA as an adhesin: bacillus cereus requires extracellular DNA to form biofilms. Appl Environ Microbiol 75:2861–2868. https://doi.org/10.1128/AEM.01317-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  186. Das T, Sharma PK, Busscher HJ et al (2010) Role of extracellular DNA in initial bacterial adhesion and surface aggregation. Appl Environ Microbiol 76:3405–3408. https://doi.org/10.1128/AEM.03119-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Okshevsky M, Meyer RL (2015) The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilms. Crit Rev Microbiol 41:341–352. https://doi.org/10.3109/1040841X.2013.841639

    Article  CAS  PubMed  Google Scholar 

  188. Absolom DR, Lamberti FV, Policova Z et al (1983) Surface thermodynamics of bacterial adhesion. Appl Environ Microbiol 46:90–97

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Dickson JS, Koohmaraie M (1989) Cell surface charge characteristics and their relationship to bacterial attachment to meat surfaces. Appl Environ Microbiol 55:832–836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  190. van Loosdrecht MC, Lyklema J, Norde W et al (1987) Electrophoretic mobility and hydrophobicity as a measured to predict the initial steps of bacterial adhesion. Appl Environ Microbiol 53:1898–1901

    Article  PubMed  PubMed Central  Google Scholar 

  191. Arnold JW, Bailey GW (2000) Surface finishes on stainless steel reduce bacterial attachment and early biofilm formation: scanning electron and atomic force microscopy study. Poult Sci 79:1839–1845

    Article  CAS  PubMed  Google Scholar 

  192. Das T, Sharma PK, Krom BP et al (2011) Role of eDNA on the adhesion forces between Streptococcus mutans and substratum surfaces: influence of ionic strength and substratum hydrophobicity. Langmuir 27:10113–10118. https://doi.org/10.1021/la202013m

    Article  CAS  PubMed  Google Scholar 

  193. Petrova OE, Sauer K (2016) Escaping the biofilm in more than one way: desorption, detachment or dispersion. Curr Opin Microbiol 30:67–78. https://doi.org/10.1016/j.mib.2016.01.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Berne C, Ducret A, Hardy GG, Brun YV (2015) Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr 3(4). https://doi.org/10.1128/microbiolspec.MB-0018-2015

  195. Lee CK, de Anda J, Baker AE et al (2018) Multigenerational memory and adaptive adhesion in early bacterial biofilm communities. Proc Natl Acad Sci U S A 115:4471–4476. https://doi.org/10.1073/pnas.1720071115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Klausen M, Heydorn A, Ragas P et al (2003) Biofilm formation by Pseudomonas aeruginosa wild type, flagella and type IV pili mutants. Mol Microbiol 48:1511–1524

    Article  CAS  PubMed  Google Scholar 

  197. Houry A, Briandet R, Aymerich S, Gohar M (2010) Involvement of motility and flagella in Bacillus cereus biofilm formation. Microbiology 156:1009–1018. https://doi.org/10.1099/mic.0.034827-0

    Article  CAS  PubMed  Google Scholar 

  198. Hall-Stoodley L, Stoodley P (2002) Developmental regulation of microbial biofilms. Curr Opin Biotechnol 13:228–233

    Article  CAS  PubMed  Google Scholar 

  199. Kjelleberg S, Molin S (2002) Is there a role for quorum sensing signals in bacterial biofilms? Curr Opin Microbiol 5:254–258

    Article  CAS  PubMed  Google Scholar 

  200. Davies DG, Parsek MR, Pearson JP et al (1998) The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295–298. https://doi.org/10.1126/SCIENCE.280.5361.295

    Article  CAS  PubMed  Google Scholar 

  201. Heydorn A, Ersbøll B, Kato J et al (2002) Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68:2008–2017. https://doi.org/10.1128/AEM.68.4.2008-2017.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Purevdorj B, Costerton JW, Stoodley P (2002) Influence of hydrodynamics and cell signaling on the structure and behavior of Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 68:4457–4464. https://doi.org/10.1128/AEM.68.9.4457-4464.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Stoodley P, Jørgensen F, Williams P, Lappin-Scott HM (1999) Biofilms: the good, the bad, and the ugly. BioLine, Cardiff, UK

    Google Scholar 

  204. Gristina AG, Naylor P, Myrvik Q (1988) Infections from biomaterials and implants: a race for the surface. Med Prog Technol 14:205–224

    PubMed  Google Scholar 

  205. Subbiahdoss G, Kuijer R, Grijpma DW et al (2009) Microbial biofilm growth vs. tissue integration: “the race for the surface” experimentally studied. Acta Biomater 5:1399–1404. https://doi.org/10.1016/J.ACTBIO.2008.12.011

    Article  CAS  PubMed  Google Scholar 

  206. Stones DH, Krachler AM (2016) Against the tide: the role of bacterial adhesion in host colonization. Biochem Soc Trans 44:1571–1580. https://doi.org/10.1042/BST20160186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Gristina AG (1987) Biomaterial-centered infection: microbial adhesion versus tissue integration. Science 237:1588–1595. https://doi.org/10.1126/science.3629258

    Article  CAS  PubMed  Google Scholar 

  208. Roberts AEL, Kragh KN, Bjarnsholt T, Diggle SP (2015) The limitations of in vitro experimentation in understanding biofilms and chronic infection. J Mol Biol 427:3646–3661. https://doi.org/10.1016/j.jmb.2015.09.002

    Article  CAS  PubMed  Google Scholar 

  209. Tolker-Nielsen T (2015) Biofilm development. Microbiol Spectr 3(2):MB-0001-2014. https://doi.org/10.1128/microbiolspec.MB-0001-2014

    Article  CAS  PubMed  Google Scholar 

  210. Redfield RJ (2002) Is quorum sensing a side effect of diffusion sensing? Trends Microbiol 10:365–370. https://doi.org/10.1016/S0966-842X(02)02400-9

    Article  CAS  PubMed  Google Scholar 

  211. Hobley L, Harkins C, MacPhee CE, Stanley-Wall NR (2015) Giving structure to the biofilm matrix: an overview of individual strategies and emerging common themes. FEMS Microbiol Rev 39:649–669. https://doi.org/10.1093/femsre/fuv015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  212. Xavier JB, Foster KR (2007) Cooperation and conflict in microbial biofilms. Proc Natl Acad Sci U S A 104:876–881. https://doi.org/10.1073/pnas.0607651104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Boles BR, Thoendel M, Roth AJ, Horswill AR (2010) Identification of genes involved in polysaccharide-independent Staphylococcus aureus biofilm formation. PLoS One 5:e10146. https://doi.org/10.1371/journal.pone.0010146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Moormeier DE, Endres JL, Mann EE et al (2013) Use of microfluidic technology to analyze gene expression during Staphylococcus aureus biofilm formation reveals distinct physiological niches. Appl Environ Microbiol 79:3413–3424. https://doi.org/10.1128/AEM.00395-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Landini P (2009) Cross-talk mechanisms in biofilm formation and responses to environmental and physiological stress in Escherichia coli. Res Microbiol 160:259–266. https://doi.org/10.1016/J.RESMIC.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  216. Beenken KE, Spencer H, Griffin LM, Smeltzer MS (2012) Impact of extracellular nuclease production on the biofilm phenotype of Staphylococcus aureus under in vitro and in vivo conditions. Infect Immun 80:1634–1638. https://doi.org/10.1128/IAI.06134-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  217. Periasamy S, Joo H-S, Duong AC et al (2012) How Staphylococcus aureus biofilms develop their characteristic structure. Proc Natl Acad Sci 109(4):1281–1286. https://doi.org/10.1073/pnas.1115006109

    Article  PubMed  PubMed Central  Google Scholar 

  218. Huseby MJ, Kruse AC, Digre J et al (2010) Beta toxin catalyzes formation of nucleoprotein matrix in staphylococcal biofilms. Proc Natl Acad Sci U S A 107:14407–14412. https://doi.org/10.1073/pnas.0911032107

    Article  PubMed  PubMed Central  Google Scholar 

  219. Pavlovsky L, Younger JG, Solomon MJ (2013) In situ rheology of Staphylococcus epidermidis bacterial biofilms. Soft Matter 9:122–131. https://doi.org/10.1039/C2SM27005F

    Article  CAS  PubMed  Google Scholar 

  220. Ganesan M, Stewart EJ, Szafranski J et al (2013) Molar mass, entanglement, and associations of the biofilm polysaccharide of Staphylococcus epidermidis. Biomacromolecules 14:1474–1481. https://doi.org/10.1021/bm400149a

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Steinberg N, Kolodkin-Gal I (2015) The matrix reloaded: probing the extracellular matrix synchronizes bacterial communities. J Bacteriol 197:2092–2103. https://doi.org/10.1128/JB.02516-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  222. Zogaj X, Nimtz M, Rohde M et al (2001) The multicellular morphotypes of Salmonella typhimurium and Escherichia coli produce cellulose as the second component of the extracellular matrix. Mol Microbiol 39:1452–1463

    Article  CAS  PubMed  Google Scholar 

  223. Hung C, Zhou Y, Pinkner JS et al (2013) Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4:e00645–e00613. https://doi.org/10.1128/mBio.00645-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. McCrate OA, Zhou X, Reichhardt C, Cegelski L (2013) Sum of the parts: composition and architecture of the bacterial extracellular matrix. J Mol Biol 425:4286–4294. https://doi.org/10.1016/j.jmb.2013.06.022

    Article  CAS  PubMed  Google Scholar 

  225. Sutherland IW (2001) Biofilm exopolysaccharides: a strong and sticky framework. Microbiology 147:3–9. https://doi.org/10.1099/00221287-147-1-3

    Article  CAS  PubMed  Google Scholar 

  226. Branda SS, Vik A, Friedman L, Kolter R (2005) Biofilms: the matrix revisited. Trends Microbiol 13:20–26. https://doi.org/10.1016/j.tim.2004.11.006

    Article  CAS  PubMed  Google Scholar 

  227. Izano EA, Amarante MA, Kher WB, Kaplan JB (2008) Differential roles of poly-N-acetylglucosamine surface polysaccharide and extracellular DNA in Staphylococcus aureus and Staphylococcus epidermidis biofilms. Appl Environ Microbiol 74:470–476. https://doi.org/10.1128/AEM.02073-07

    Article  CAS  PubMed  Google Scholar 

  228. Tetz GV, Artemenko NK, Tetz VV (2009) Effect of DNase and antibiotics on biofilm characteristics. Antimicrob Agents Chemother 53:1204–1209. https://doi.org/10.1128/AAC.00471-08

    Article  CAS  PubMed  Google Scholar 

  229. Koo H, Xiao J, Klein MI, Jeon JG (2010) Exopolysaccharides produced by Streptococcus mutans glucosyltransferases modulate the establishment of microcolonies within multispecies biofilms. J Bacteriol 192:3024–3032. https://doi.org/10.1128/JB.01649-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Bokranz W, Wang X, Tschäpe H, Römling U (2005) Expression of cellulose and curli fimbriae by Escherichia coli isolated from the gastrointestinal tract. J Med Microbiol 54:1171–1182. https://doi.org/10.1099/jmm.0.46064-0

    Article  CAS  PubMed  Google Scholar 

  231. Thomas VC, Hiromasa Y, Harms N et al (2009) A fratricidal mechanism is responsible for eDNA release and contributes to biofilm development of Enterococcus faecalis. Mol Microbiol 72:1022–1036. https://doi.org/10.1111/j.1365-2958.2009.06703.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Rice KC, Mann EE, Endres JL et al (2007) The cidA murein hydrolase regulator contributes to DNA release and biofilm development in Staphylococcus aureus. Proc Natl Acad Sci U S A 104:8113–8118. https://doi.org/10.1073/pnas.0610226104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Foulston L, Elsholz AKW, DeFrancesco AS, Losick R (2014) The extracellular matrix of Staphylococcus aureus biofilms comprises cytoplasmic proteins that associate with the cell surface in response to decreasing pH. MBio 5:e01667–e01614. https://doi.org/10.1128/mBio.01667-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  234. Schwartz K, Syed AK, Stephenson RE et al (2012) Functional amyloids composed of phenol soluble modulins stabilize Staphylococcus aureus biofilms. PLoS Pathog 8:e1002744. https://doi.org/10.1371/journal.ppat.1002744

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  235. Roberson EB, Firestone MK (1992) Relationship between desiccation and exopolysaccharide production in a soil Pseudomonas sp. Appl Environ Microbiol 58:1284–1291

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  236. van Hullebusch ED, Zandvoort MH, Lens PNL (2003) Metal immobilisation by biofilms: mechanisms and analytical tools. Rev Environ Sci Bio/Technol 2:9–33. https://doi.org/10.1023/B:RESB.0000022995.48330.55

    Article  Google Scholar 

  237. Wuertz S, Spaeth R, Hinderberger A et al (2001) A new method for extraction of extracellular polymeric substances from biofilms and activated sludge suitable for direct quantification of sorbed metals. Water Sci Technol 43:25–31

    Article  CAS  PubMed  Google Scholar 

  238. Frølund B, Palmgren R, Keiding K, Nielsen PH (1996) Extraction of extracellular polymers from activated sludge using a cation exchange resin. Water Res 30:1749–1758. https://doi.org/10.1016/0043-1354(95)00323-1

    Article  Google Scholar 

  239. Wingender J, Strathmann M, Rode A et al (2001) Isolation and biochemical characterization of extracellular polymeric substances from Pseudomonas aeruginosa. Methods Enzymol 336:302–314. https://doi.org/10.1016/S0076-6879(01)36597-7

    Article  CAS  PubMed  Google Scholar 

  240. Maira-Litrán T, Kropec A, Abeygunawardana C et al (2002) Immunochemical properties of the staphylococcal poly-N-acetylglucosamine surface polysaccharide. Infect Immun 70:4433–4440. https://doi.org/10.1128/IAI.70.8.4433-4440.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  241. Gökçen A, Vilcinskas A, Wiesner J (2013) Methods to identify enzymes that degrade the main extracellular polysaccharide component of Staphylococcus epidermidis biofilms. Virulence 4:260. https://doi.org/10.4161/VIRU.23560

    Article  PubMed  PubMed Central  Google Scholar 

  242. Lin MH, Shu JC, Lin LP et al (2015) Elucidating the crucial role of poly N-acetylglucosamine from Staphylococcus aureus in cellular adhesion and pathogenesis. PLoS One 10:e0124216. https://doi.org/10.1371/journal.pone.0124216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Cerca F, França Â, Guimarães R et al (2011) Modulation of poly-N-acetylglucosamine accumulation within mature Staphylococcus epidermidis biofilms grown in excess glucose. Microbiol Immunol 55:673–682. https://doi.org/10.1111/j.1348-0421.2011.00368.x

    Article  CAS  PubMed  Google Scholar 

  244. Lasa I, Penadés JR (2006) Bap: a family of surface proteins involved in biofilm formation. Res Microbiol 157:99–107. https://doi.org/10.1016/J.RESMIC.2005.11.003

    Article  CAS  PubMed  Google Scholar 

  245. Schwartz K, Boles BR (2013) Microbial amyloids—functions and interactions within the host. Curr Opin Microbiol 16:93–99. https://doi.org/10.1016/j.mib.2012.12.001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  246. DePas WH, Chapman MR (2012) Microbial manipulation of the amyloid fold. Res Microbiol 163:592–606. https://doi.org/10.1016/j.resmic.2012.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  247. Shewmaker F, McGlinchey RP, Wickner RB (2011) Structural insights into functional and pathological amyloid. J Biol Chem 286:16533–16540. https://doi.org/10.1074/jbc.R111.227108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Chapman MR, Robinson LS, Pinkner JS et al (2002) Role of Escherichia coli curli operons in directing amyloid fiber formation. Science 295:851–855. https://doi.org/10.1126/science.1067484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Dueholm MS, Petersen SV, Sønderkaer M et al (2010) Functional amyloid in Pseudomonas. Mol Microbiol 77(4):1009–1020. https://doi.org/10.1111/j.1365-2958.2010.07269.x

    Article  CAS  PubMed  Google Scholar 

  250. Bieler S, Estrada L, Lagos R et al (2005) Amyloid formation modulates the biological activity of a bacterial protein. J Biol Chem 280:26880–26885. https://doi.org/10.1074/jbc.M502031200

    Article  CAS  PubMed  Google Scholar 

  251. Oli MW, Otoo HN, Crowley PJ et al (2012) Functional amyloid formation by Streptococcus mutans. Microbiology 158:2903–2916. https://doi.org/10.1099/mic.0.060855-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Alteri CJ, Xicohténcatl-Cortes J, Hess S et al (2007) Mycobacterium tuberculosis produces pili during human infection. Proc Natl Acad Sci U S A 104:5145–5150. https://doi.org/10.1073/pnas.0602304104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Schwartz K, Sekedat MD, Syed AK et al (2014) The AgrD N-terminal leader peptide of Staphylococcus aureus has cytolytic and amyloidogenic properties. Infect Immun 82:3837–3844. https://doi.org/10.1128/IAI.02111-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Otzen D, Nielsen PH (2008) We find them here, we find them there: Functional bacterial amyloid. Cell Mol Life Sci 65:910–927. https://doi.org/10.1007/s00018-007-7404-4

    Article  CAS  PubMed  Google Scholar 

  255. Wang R, Khan BA, Cheung GYC et al (2011) Staphylococcus epidermidis surfactant peptides promote biofilm maturation and dissemination of biofilm-associated infection in mice. J Clin Invest 121:238–248. https://doi.org/10.1172/JCI42520

    Article  CAS  PubMed  Google Scholar 

  256. Tsompanidou E, Sibbald MJJB, Chlebowicz MA et al (2011) Requirement of the agr locus for colony spreading of Staphylococcus aureus. J Bacteriol 193:1267–1272. https://doi.org/10.1128/JB.01276-10

    Article  CAS  PubMed  Google Scholar 

  257. Schwartz K, Ganesan M, Payne DE et al (2016) Extracellular DNA facilitates the formation of functional amyloids in Staphylococcus aureus biofilms. Mol Microbiol 99:123–134. https://doi.org/10.1111/mmi.13219

    Article  CAS  PubMed  Google Scholar 

  258. Wingender J, Neu TR, Flemming H-C (1999) Microbial extracellular polymeric substances: characterization, structure, and function. Springer, Heidelberg

    Book  Google Scholar 

  259. Montanaro L, Poggi A, Visai L et al (2011) Extracellular DNA in Biofilms. Int J Artif Organs 34:824–831. https://doi.org/10.5301/ijao.5000051

    Article  CAS  PubMed  Google Scholar 

  260. Thurlow LR, Hanke ML, Fritz T et al (2011) Staphylococcus aureus biofilms prevent macrophage phagocytosis and attenuate inflammation in vivo. J Immunol 186:6585–6596. https://doi.org/10.4049/jimmunol.1002794

    Article  CAS  PubMed  Google Scholar 

  261. Vorkapic D, Pressler K, Schild S (2016) Multifaceted roles of extracellular DNA in bacterial physiology. Curr Genet 62(1):71–79

    Article  CAS  PubMed  Google Scholar 

  262. Chiang W-C, Nilsson M, Jensen PØ et al (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57:2352–2361. https://doi.org/10.1128/AAC.00001-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  263. Gloag ES, Turnbull L, Huang A et al (2013) Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci U S A 110:11541–11546. https://doi.org/10.1073/pnas.1218898110

    Article  PubMed  PubMed Central  Google Scholar 

  264. Thomas VC, Hancock LE (2009) Suicide and fratricide in bacterial biofilms. Int J Artif Organs 32:537–544

    Article  CAS  PubMed  Google Scholar 

  265. Nedelcu AM, Driscoll WW, Durand PM et al (2011) On the paradigm of alturistic suicide in the unicellular world. Evolution (N Y) 65:3–20. https://doi.org/10.1111/j.1558-5646.2010.01103.x

    Article  Google Scholar 

  266. Molin S, Tolker-Nielsen T (2003) Gene transfer occurs with enhanced efficiency in biofilms and induces enhanced stabilisation of the biofilm structure. Curr Opin Biotechnol 14:255–261. https://doi.org/10.1016/S0958-1669(03)00036-3

    Article  CAS  PubMed  Google Scholar 

  267. Biswas R, Voggu L, Simon UK et al (2006) Activity of the major staphylococcal autolysin Atl. FEMS Microbiol Lett 259:260–268. https://doi.org/10.1111/j.1574-6968.2006.00281.x

    Article  CAS  PubMed  Google Scholar 

  268. Oshida T, Sugai M, Komatsuzawa H et al (1995) A Staphylococcus aureus autolysin that has an N-acetylmuramoyl-L-alanine amidase domain and an endo-beta-N-acetylglucosaminidase domain: cloning, sequence analysis, and characterization. Proc Natl Acad Sci U S A 92:285–289

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  269. Mann EE, Rice KC, Boles BR et al (2009) Modulation of eDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One 4:e5822. https://doi.org/10.1371/journal.pone.0005822

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Webb JS, Thompson LS, James S et al (2003) Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol 185:4585–4592. https://doi.org/10.1128/JB.185.15.4585-4592.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Stoodley P, Debeer D, Lewandowski Z (1994) Liquid flow in biofilm systems. Appl Environ Microbiol 60:2711–2716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  272. Conrad A, Kontro M, Keinänen MM et al (2003) Fatty acids of lipid fractions in extracellular polymeric substances of activated sludge flocs. Lipids 38:1093–1105. https://doi.org/10.1007/s11745-006-1165-y

    Article  CAS  PubMed  Google Scholar 

  273. Matsuyama T, Nakagawa Y (1996) Surface-active exolipids: analysis of absolute chemical structures and biological functions. J Microbiol Methods 25:165–175. https://doi.org/10.1016/0167-7012(95)00109-3

    Article  CAS  Google Scholar 

  274. Sand W, Gehrke T (2006) Extracellular polymeric substances mediate bioleaching/biocorrosion via interfacial processes involving iron(III) ions and acidophilic bacteria. Res Microbiol 157:49–56. https://doi.org/10.1016/J.RESMIC.2005.07.012

    Article  CAS  PubMed  Google Scholar 

  275. Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants. minireview. Environ Microbiol 3:229–236. https://doi.org/10.1046/j.1462-2920.2001.00190.x

    Article  CAS  PubMed  Google Scholar 

  276. Boles BR, Thoendel M, Singh PK (2004) Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci 101(47):16630–16635. https://doi.org/10.1073/pnas.0407460101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. Peterson BW, He Y, Ren Y et al (2015) Viscoelasticity of biofilms and their recalcitrance to mechanical and chemical challenges. FEMS Microbiol Rev 39:234–245. https://doi.org/10.1093/femsre/fuu008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  278. Körstgens V, Flemming HC, Wingender J, Borchard W (2001) Influence of calcium ions on the mechanical properties of a model biofilm of mucoid Pseudomonas aeruginosa. Water Sci Technol 43:49–57

    Article  PubMed  Google Scholar 

  279. Hohne DN, Younger JG, Solomon MJ (2009) Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 25:7743–7751. https://doi.org/10.1021/la803413x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  280. Shaw T, Winston M, Rupp CJ et al (2004) Commonality of elastic relaxation times in biofilms. Phys Rev Lett 93:098102. https://doi.org/10.1103/PhysRevLett.93.098102

    Article  CAS  PubMed  Google Scholar 

  281. Høiby N, Ciofu O, Johansen HK et al (2011) The clinical impact of bacterial biofilms. Int J Oral Sci 3:55–65. https://doi.org/10.4248/IJOS11026

    Article  PubMed  PubMed Central  Google Scholar 

  282. Patel JD, Colton E, Ebert M, Anderson JM (2012) Gene expression during S. epidermidis biofilm formation on biomaterials. J Biomed Mater Res Part A 100A:2863–2869. https://doi.org/10.1002/jbm.a.34221

    Article  CAS  Google Scholar 

  283. Vandecasteele SJ, Peetermans WE, Merckx R, Eldere JV (2003) Expression of biofilm-associated genes in Staphylococcus epidermidis during in vitro and in vivo foreign body infections. J Infect Dis 188:730–737. https://doi.org/10.1086/377452

    Article  CAS  PubMed  Google Scholar 

  284. Rohde H, Burdelski C, Bartscht K et al (2005) Induction of Staphylococcus epidermidis biofilm formation via proteolytic processing of the accumulation-associated protein by staphylococcal and host proteases. Mol Microbiol 55:1883–1895. https://doi.org/10.1111/j.1365-2958.2005.04515.x

    Article  CAS  PubMed  Google Scholar 

  285. Hussain M, Herrmann M, von Eiff C et al (1997) A 140-kilodalton extracellular protein is essential for the accumulation of Staphylococcus epidermidis strains on surfaces. Infect Immun 65:519–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  286. Boles BR, Horswill AR (2008) agr-mediated dispersal of Staphylococcus aureus biofilms. PLoS Pathog 4:e1000052. https://doi.org/10.1371/journal.ppat.1000052

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  287. LaSarre B, Federle MJ (2013) Exploiting quorum sensing to confuse bacterial pathogens. Microbiol Mol Biol Rev 77:73–111. https://doi.org/10.1128/MMBR.00046-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  288. Kleerebezem M, Quadri LE, Kuipers OP, de Vos WM (1997) Quorum sensing by peptide pheromones and two-component signal-transduction systems in Gram-positive bacteria. Mol Microbiol 24:895–904

    Article  CAS  PubMed  Google Scholar 

  289. Janzon L, Arvidson S (1990) The role of the delta-lysin gene (hld) in the regulation of virulence genes by the accessory gene regulator (agr) in Staphylococcus aureus. EMBO J 9:1391–1399

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  290. Morfeldt E, Taylor D, von Gabain A, Arvidson S (1995) Activation of alpha-toxin translation in Staphylococcus aureus by the trans-encoded antisense RNA, RNAIII. EMBO J 14:4569–4577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  291. Otto M, Süßmuth R, Vuong C et al (1999) Inhibition of virulence factor expression in Staphylococcus aureus by the Staphylococcus epidermidis agr pheromone and derivatives. FEBS Lett 450:257–262. https://doi.org/10.1016/S0014-5793(99)00514-1

    Article  CAS  PubMed  Google Scholar 

  292. Mayville P, Ji G, Beavis R et al (1999) Structure-activity analysis of synthetic autoinducing thiolactone peptides from Staphylococcus aureus responsible for virulence. Proc Natl Acad Sci U S A 96:1218–1223

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  293. Ji G, Beavis R, Novick RP (1997) Bacterial interference caused by autoinducing peptide variants. Science 276:2027–2030. https://doi.org/10.1126/SCIENCE.276.5321.2027

    Article  CAS  PubMed  Google Scholar 

  294. Bjarnsholt T, Jensen PØ, Burmølle M et al (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383. https://doi.org/10.1099/mic.0.27463-0

    Article  CAS  PubMed  Google Scholar 

  295. Hassett DJ, Ma J-F, Elkins JG et al (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34:1082–1093. https://doi.org/10.1046/j.1365-2958.1999.01672.x

    Article  CAS  PubMed  Google Scholar 

  296. Xue T, Ni J, Shang F et al (2015) Autoinducer-2 increases biofilm formation via an ica- and bhp-dependent manner in Staphylococcus epidermidis RP62A. Microbes Infect 17:345–352. https://doi.org/10.1016/J.MICINF.2015.01.003

    Article  CAS  PubMed  Google Scholar 

  297. Yu D, Zhao L, Xue T, Sun B (2012) Staphylococcus aureus autoinducer-2 quorum sensing decreases biofilm formation in an icaR-dependent manner. BMC Microbiol 12:288. https://doi.org/10.1186/1471-2180-12-288

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  298. Boles BR, Horswill AR (2011) Staphylococcal biofilm disassembly. Trends Microbiol 19(9):449–455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  299. Stoodley P, Cargo R, Rupp CJ et al (2002) Biofilm material properties as related to shear-induced deformation and detachment phenomena. J Ind Microbiol Biotechnol 29:361–367. https://doi.org/10.1038/sj.jim.7000282

    Article  CAS  PubMed  Google Scholar 

  300. Boyd A, Chakrabarty AM (1994) Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol 60:2355–2359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  301. Kaplan JB, Ragunath C, Ramasubbu N, Fine DH (2003) Detachment of Actinobacillus actinomycetemcomitans biofilm cells by an endogenous beta-hexosaminidase activity. J Bacteriol 185:4693–4698. https://doi.org/10.1128/JB.185.16.4693-4698.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  302. Lee SF, Li YH, Bowden GH (1996) Detachment of Streptococcus mutans biofilm cells by an endogenous enzymatic activity. Infect Immun 64:1035–1038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  303. Gjermansen M, Nilsson M, Yang L, Tolker-Nielsen T (2010) Characterization of starvation-induced dispersion in Pseudomonas putida biofilms: genetic elements and molecular mechanisms. Mol Microbiol 75:815–826. https://doi.org/10.1111/j.1365-2958.2009.06793.x

    Article  CAS  PubMed  Google Scholar 

  304. Sauer K, Cullen MC, Rickard AH et al (2004) Characterization of nutrient-induced dispersion in Pseudomonas aeruginosa PAO1 biofilm. J Bacteriol 186:7312–7326. https://doi.org/10.1128/JB.186.21.7312-7326.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  305. Anderl JN, Zahller J, Roe F, Stewart PS (2003) Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 47:1251–1256. https://doi.org/10.1128/AAC.47.4.1251-1256.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  306. Walters MC, Roe F, Bugnicourt A et al (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47:317–323. https://doi.org/10.1128/aac.47.1.317-323.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  307. Barraud N, Hassett DJ, Hwang S-H et al (2006) Involvement of nitric oxide in biofilm dispersal of Pseudomonas aeruginosa. J Bacteriol 188:7344–7353. https://doi.org/10.1128/JB.00779-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  308. Peschel A, Otto M (2013) Phenol-soluble modulins and staphylococcal infection. Nat Rev Microbiol 11:667–673. https://doi.org/10.1038/nrmicro3110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  309. Novick RP, Ross HF, Projan SJ et al (1993) Synthesis of staphylococcal virulence factors is controlled by a regulatory RNA molecule. EMBO J 12:3967–3975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  310. Lina G, Jarraud S, Ji G et al (1998) Transmembrane topology and histidine protein kinase activity of AgrC, the agr signal receptor in Staphylococcus aureus. Mol Microbiol 28:655–662

    Article  CAS  PubMed  Google Scholar 

  311. Novick RP, Geisinger E (2008) Quorum sensing in staphylococci. Annu Rev Genet 42:541–564. https://doi.org/10.1146/annurev.genet.42.110807.091640

    Article  CAS  PubMed  Google Scholar 

  312. Lister JL, Horswill AR, Geoghegan JA (2014) Staphylococcus aureus biofilms: recent developments in biofilm dispersal. Front Cell Infect Microbiol 4:1–9. https://doi.org/10.3389/fcimb.2014.00178

    Article  Google Scholar 

  313. Le KY, Dastgheyb S, Ho TV et al (2014) Molecular determinants of staphylococcal biofilm dispersal and structuring. Front Cell Infect Microbiol 4:1–7. https://doi.org/10.3389/fcimb.2014.00167

    Article  CAS  Google Scholar 

  314. Vuong C, Saenz HL, Götz F, Otto M (2000) Impact of the agr quorum-sensing system on adherence to polystyrene in Staphylococcus aureus. J Infect Dis 182:1688–1693. https://doi.org/10.1086/317606

    Article  CAS  PubMed  Google Scholar 

  315. Vuong C, Kocianova S, Yao Y et al (2004) Increased colonization of indwelling medical devices by quorum-sensing mutants of Staphylococcus epidermidis in vivo. J Infect Dis 190(8):1498–1505. https://doi.org/10.1086/424487

    Article  PubMed  Google Scholar 

  316. Balasubramanian D, Ohneck EA, Chapman J et al (2016) Staphylococcus aureus coordinates leukocidin expression and pathogenesis by sensing metabolic fluxes via RpiRc. MBio 7(3). https://doi.org/10.1128/mBio.00818-16

  317. Patel JD, Krupka T, Anderson JM (2007) iNOS-mediated generation of reactive oxygen and nitrogen species by biomaterial-adherent neutrophils. J Biomed Mater Res Part A 80A:381–390. https://doi.org/10.1002/jbm.a.30907

    Article  CAS  Google Scholar 

  318. Scherr TD, Hanke ML, Huang O et al (2015) Staphylococcus aureus biofilms induce macrophage dysfunction through leukocidin AB and alpha-toxin. MBio 6:e01021–e01015. https://doi.org/10.1128/mBio.01021-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  319. Mah TFC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  320. Lewis K (2001) Riddle of biofilm resistance. Antimicrob Agents Chemother 45:999–1007. https://doi.org/10.1128/AAC.45.4.999-1007.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  321. Chuard C, Vaudaux PE, Proctor RA, Lew DP (1997) Decreased susceptibility to antibiotic killing of a stable small colony variant of Staphylococcus aureus in fluid phase and on fibronectin-coated surfaces. J Antimicrob Chemother 39:603–608

    Article  CAS  PubMed  Google Scholar 

  322. Szomolay B, Klapper I, Dockery J, Stewart PS (2005) Adaptive responses to antimicrobial agents in biofilms. Environ Microbiol 7:1186–1191. https://doi.org/10.1111/j.1462-2920.2005.00797.x

    Article  CAS  PubMed  Google Scholar 

  323. Campanac C, Pineau L, Payard A et al (2002) Interactions between biocide cationic agents and bacterial biofilms. Antimicrob Agents Chemother 46:1469–1474. https://doi.org/10.1128/AAC.46.5.1469-1474.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  324. Nichols WW, Dorrington SM, Slack MP, Walmsley HL (1988) Inhibition of tobramycin diffusion by binding to alginate. Antimicrob Agents Chemother 32:518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  325. Kaplan D, Christiaen D, Arad SM (1987) Chelating properties of extracellular polysaccharides from Chlorella spp. Appl Environ Microbiol 53:2953–2956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  326. McLean RJ, Beauchemin D, Clapham L, Beveridge TJ (1990) Metal-binding characteristics of the gamma-glutamyl capsular polymer of Bacillus licheniformis ATCC 9945. Appl Environ Microbiol 56:3671–3677

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  327. Mittelman MW, Geesey GG (1985) Copper-binding characteristics of exopolymers from a freshwater-sediment bacterium. Appl Environ Microbiol 49:846–851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  328. Teitzel GM, Parsek MR (2003) Heavy metal resistance of biofilm and planktonic Pseudomonas aeruginosa. Appl Environ Microbiol 69:2313–2320. https://doi.org/10.1128/AEM.69.4.2313-2320.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  329. Pepi M, Borra M, Tamburrino S et al (2016) A Bacillus sp. isolated from sediments of the Sarno River mouth, Gulf of Naples (Italy) produces a biofilm biosorbing Pb(II). Sci Total Environ 562:588–595. https://doi.org/10.1016/j.scitotenv.2016.04.097

    Article  CAS  PubMed  Google Scholar 

  330. Singh R, Ray P, Das A, Sharma M (2010) Penetration of antibiotics through Staphylococcus aureus and Staphylococcus epidermidis biofilms. J Antimicrob Chemother 65:1955–1958. https://doi.org/10.1093/jac/dkq257

    Article  CAS  PubMed  Google Scholar 

  331. Stewart PS, Davison WM, Steenbergen JN (2009) Daptomycin rapidly penetrates a Staphylococcus epidermidis biofilm. Antimicrob Agents Chemother 53:3505–3507. https://doi.org/10.1128/AAC.01728-08

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  332. Zheng Z, Stewart PS (2002) Penetration of rifampin through Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother 46:900–903. https://doi.org/10.1128/AAC.46.3.900-903.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  333. Mathur T, Singhal S, Khan S et al (2005) Adverse effect of staphylococci slime on in vitro activity of glycopeptides. Jpn J Infect Dis 58:353–357

    CAS  PubMed  Google Scholar 

  334. Farber BF, Kaplan MH, Clogston AG (1990) Staphylococcus epidermidis extracted slime inhibits the antimicrobial action of glycopeptide antibiotics. J Infect Dis 16121517:37–40

    Article  Google Scholar 

  335. Parsons JB, Rock CO (2013) Bacterial lipids: metabolism and membrane homeostasis. Prog Lipid Res 52:249–276. https://doi.org/10.1016/j.plipres.2013.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Dubois-Brissonnet F (2019) Characterization of bacterial membrane fatty acid profiles for biofilm cells. In: Bridier A (ed) Foodborne bacterial pathogens: methods and protocols. Humana Press, New York, NY, pp 165–170

    Chapter  Google Scholar 

  337. Denich T, Beaudette L, Lee H, Trevors J (2003) Effect of selected environmental and physico-chemical factors on bacterial cytoplasmic membranes. J Microbiol Methods 52:149–182. https://doi.org/10.1016/S0167-7012(02)00155-0

    Article  CAS  PubMed  Google Scholar 

  338. Loffhagen N, Härtig C, Geyer W et al (2007) Competition betweencis, trans and cyclopropane fatty acid formation and its impact on membrane fluidity. Eng Life Sci 7:67–74. https://doi.org/10.1002/elsc.200620168

    Article  CAS  Google Scholar 

  339. Delcour AH (2009) Outer membrane permeability and antibiotic resistance. Biochim Biophys Acta 1794:808–816. https://doi.org/10.1016/j.bbapap.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  340. Sailer FC, Meberg BM, Young KD (2003) beta-Lactam induction of colanic acid gene expression in Escherichia coli. FEMS Microbiol Lett 226:245–249

    Article  CAS  PubMed  Google Scholar 

  341. Bagge N, Schuster M, Hentzer M et al (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and beta-lactamase and alginate production. Antimicrob Agents Chemother 48:1175–1187. https://doi.org/10.1128/AAC.48.4.1175-1187.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  342. Rachid S, Ohlsen K, Witte W et al (2000) Effect of subinhibitory antibiotic concentrations on polysaccharide intercellular adhesin expression in biofilm-forming Staphylococcus epidermidis. Antimicrob Agents Chemother 44:3357–3363. https://doi.org/10.1128/AAC.44.12.3357-3363.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Borriello G, Richards L, Ehrlich GD, Stewart PS (2006) Arginine or nitrate enhances antibiotic susceptibility of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 50:382–384. https://doi.org/10.1128/AAC.50.1.382-384.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  344. Wood TK, Knabel SJ, Kwan BW (2013) Bacterial persister cell formation and dormancy. Appl Environ Microbiol 79:7116–7121. https://doi.org/10.1128/AEM.02636-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  345. McConoughey SJ, Howlin R, Granger JF et al (2014) Biofilms in periprosthetic orthopedic infections. Future Microbiol 9:987–1007. https://doi.org/10.2217/FMB.14.64

    Article  CAS  PubMed  Google Scholar 

  346. Field TR, White A, Elborn JS, Tunney MM (2005) Effect of oxygen limitation on the in vitro antimicrobial susceptibility of clinical isolates of Pseudomonas aeruginosa grown planktonically and as biofilms. Eur J Clin Microbiol Infect Dis 24:677–687. https://doi.org/10.1007/s10096-005-0031-9

    Article  CAS  PubMed  Google Scholar 

  347. Schembri MA, Kjaergaard K, Klemm P (2003) Global gene expression in Escherichia coli biofilms. Mol Microbiol 48:253–267

    Article  CAS  PubMed  Google Scholar 

  348. Xu KD, Stewart PS, Xia F et al (1998) Spatial physiological heterogeneity in Pseudomonas aeruginosa biofilm is determined by oxygen availability. Appl Environ Microbiol 64:4035–4039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  349. Bernier SP, Lebeaux D, DeFrancesco AS et al (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9:e1003144. https://doi.org/10.1371/journal.pgen.1003144

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  350. Conlon BP, Nakayasu ES, Fleck LE et al (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503:365–370. https://doi.org/10.1038/nature12790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  351. Conlon BP, Rowe SE, Lewis K (2015) Persister cells in biofilm associated infections. In: Advances in experimental medicine and biology. Springer, Cham, pp 1–9

    Google Scholar 

  352. Ling LL, Schneider T, Peoples AJ et al (2015) A new antibiotic kills pathogens without detectable resistance. Nature 517:455–459. https://doi.org/10.1038/nature14098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  353. Conlon BP, Rowe SE, Gandt AB et al (2016) Persister formation in Staphylococcus aureus is associated with ATP depletion. Nat Microbiol 1:16051. https://doi.org/10.1038/nmicrobiol.2016.51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  354. Peacock SJ, Paterson GK (2015) Mechanisms of methicillin resistance in Staphylococcus aureus. Annu Rev Biochem 84:577–601. https://doi.org/10.1146/annurev-biochem-060614-034516

    Article  CAS  PubMed  Google Scholar 

  355. Lobritz MA, Belenky P, Porter CBM et al (2015) Antibiotic efficacy is linked to bacterial cellular respiration. Proc Natl Acad Sci U S A 112:8173–8180. https://doi.org/10.1073/pnas.1509743112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  356. Sun J, Chen X, Chen J, Han B (2017) Metabolic profile of biofilm-coated Staphylococcus aureus. J Chinese Inst Food Sci Technol 17: 258–264

    Google Scholar 

  357. Schelli K, Rutowski J, Roubidoux J, Zhu J (2017) Staphylococcus aureus methicillin resistance detected by HPLC-MS/MS targeted metabolic profiling. J Chromatogr B Analyt Technol Biomed Life Sci 1047:124–130. https://doi.org/10.1016/j.jchromb.2016.05.052

    Article  CAS  PubMed  Google Scholar 

  358. Zhong F, Xu M, Bruno RS et al (2017) Targeted high performance liquid chromatography tandem mass spectrometry-based metabolomics differentiates metabolic syndrome from obesity. Exp Biol Med 242:773–780. https://doi.org/10.1177/1535370217694098

    Article  CAS  Google Scholar 

  359. Xu M, Zhong F, Zhu J (2017) Evaluating metabolic response to light exposure in Lactobacillus species via targeted metabolic profiling. J Microbiol Methods 133:14–19. https://doi.org/10.1016/J.MIMET.2016.12.008

    Article  CAS  PubMed  Google Scholar 

  360. Stipetic LH, Dalby MJ, Davies RL et al (2016) A novel metabolomic approach used for the comparison of Staphylococcus aureus planktonic cells and biofilm samples. Metabolomics 12:75. https://doi.org/10.1007/s11306-016-1002-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  361. Resch A, Rosenstein R, Nerz C, Götz F (2005) Differential gene expression profiling of Staphylococcus aureus cultivated under biofilm and planktonic conditions. Appl Environ Microbiol 71:2663–2676. https://doi.org/10.1128/AEM.71.5.2663-2676.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  362. Beenken KE, Dunman PM, McAleese F et al (2004) Global gene expression in Staphylococcus aureus biofilms. J Bacteriol 186:4665–4684. https://doi.org/10.1128/JB.186.14.4665-4684.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  363. Resch A, Leicht S, Saric M et al (2006) Comparative proteome analysis of Staphylococcus aureus biofilm and planktonic cells and correlation with transcriptome profiling. Proteomics 6:1867–1877. https://doi.org/10.1002/pmic.200500531

    Article  PubMed  Google Scholar 

  364. Zhu Y, Weiss EC, Otto M et al (2007) Staphylococcus aureus biofilm metabolism and the influence of arginine on polysaccharide intercellular adhesin synthesis, biofilm formation, and pathogenesis. Infect Immun 75:4219–4226. https://doi.org/10.1128/IAI.00509-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  365. Thomas VC, Sadykov MR, Chaudhari SS et al (2014) A central role for carbon-overflow pathways in the modulation of bacterial cell death. PLoS Pathog 10:e1004205. https://doi.org/10.1371/journal.ppat.1004205

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  366. Raff MC (1992) Social controls on cell survival and cell death. Nature 356:397–400. https://doi.org/10.1038/356397a0

    Article  CAS  PubMed  Google Scholar 

  367. Savage VJ, Chopra I, O’Neill AJ (2013) Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob Agents Chemother 57:1968–1970. https://doi.org/10.1128/AAC.02008-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  368. Nguyen D, Joshi-Datar A, Lepine F et al (2011) Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334:982–986. https://doi.org/10.1126/science.1211037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  369. Amato SM, Fazen CH, Henry TC et al (2014) The role of metabolism in bacterial persistence. Front Microbiol 5:70. https://doi.org/10.3389/fmicb.2014.00070

    Article  PubMed  PubMed Central  Google Scholar 

  370. de la Fuente-Núñez C, Reffuveille F, Haney EF et al (2014) Broad-spectrum anti-biofilm peptide that targets a cellular stress response. PLoS Pathog 10(5):e1004152. https://doi.org/10.1371/journal.ppat.1004152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  371. Reffuveille F, de la Fuente-Núñez C, Mansour S, Hancock REW (2014) A broad-spectrum antibiofilm peptide enhances antibiotic action against bacterial biofilms. Antimicrob Agents Chemother 58:5363–5371. https://doi.org/10.1128/AAC.03163-14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  372. Anderson GG, O’Toole GA (2008) Innate and induced resistance mechanisms of bacterial biofilms. Curr Top Microbiol Immunol 322:85–105

    CAS  PubMed  Google Scholar 

  373. Whiteley M, Bangera MG, Bumgarner RE et al (2001) Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864. https://doi.org/10.1038/35101627

    Article  CAS  PubMed  Google Scholar 

  374. Elkins JG, Hassett DJ, Stewart PS et al (1999) Protective role of catalase in Pseudomonas aeruginosa biofilm resistance to hydrogen peroxide. Appl Environ Microbiol 65:4594–4600

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  375. Kohanski MA, Dwyer DJ, Hayete B et al (2007) A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130:797–810. https://doi.org/10.1016/j.cell.2007.06.049

    Article  CAS  PubMed  Google Scholar 

  376. Dall GF, Tsang STJ, Gwynne PJ et al (2018) Unexpected synergistic and antagonistic antibiotic activity against Staphylococcus biofilms. J Antimicrob Chemother 73:1830–1840. https://doi.org/10.1093/jac/dky087

    Article  CAS  PubMed  Google Scholar 

  377. Herbert S, Bera A, Nerz C et al (2007) Molecular basis of resistance to muramidase and cationic antimicrobial peptide activity of lysozyme in staphylococci. PLoS Pathog 3:e102. https://doi.org/10.1371/journal.ppat.0030102

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  378. Weidenmaier C, Peschel A, Kempf VAJ et al (2005) DltABCD- and MprF-mediated cell envelope modifications of Staphylococcus aureus confer resistance to platelet microbicidal proteins and contribute to virulence in a rabbit endocarditis model. Infect Immun 73:8033–8038. https://doi.org/10.1128/IAI.73.12.8033-8038.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  379. Kelley WL, Lew DP, Renzoni A (2012) Antimicrobial peptide exposure and reduced susceptibility to daptomycin: insights into a complex genetic puzzle. J Infect Dis 206:1153–1156. https://doi.org/10.1093/infdis/jis485

    Article  CAS  PubMed  Google Scholar 

  380. Cui L, Lian J-Q, Neoh H-M et al (2005) DNA microarray-based identification of genes associated with glycopeptide resistance in Staphylococcus aureus. Antimicrob Agents Chemother 49:3404–3413. https://doi.org/10.1128/AAC.49.8.3404-3413.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  381. Tsuji BT, Rybak MJ (2005) Short-course gentamicin in combination with daptomycin or vancomycin against Staphylococcus aureus in an in vitro pharmacodynamic model with simulated endocardial vegetations. Antimicrob Agents Chemother 49:2735–2745. https://doi.org/10.1128/AAC.49.7.2735-2745.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  382. Yang S-JS-J, Bayer AS, Mishra NN et al (2012) The Staphylococcus aureus two-component regulatory system, GraRS, senses and confers resistance to selected cationic antimicrobial peptides. Infect Immun 80:74–81. https://doi.org/10.1128/IAI.05669-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  383. Mataraci E, Dosler S (2012) In vitro activities of antibiotics and antimicrobial cationic peptides alone and in combination against methicillin-resistant Staphylococcus aureus biofilms. Antimicrob Agents Chemother 56:6366–6371. https://doi.org/10.1128/AAC.01180-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  384. Dosler S, Mataraci E (2013) In vitro pharmacokinetics of antimicrobial cationic peptides alone and in combination with antibiotics against methicillin resistant Staphylococcus aureus biofilms. Peptides 49:53–58. https://doi.org/10.1016/J.PEPTIDES.2013.08.008

    Article  CAS  PubMed  Google Scholar 

  385. Bigger J (1944) Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244:497–500. https://doi.org/10.1016/S0140-6736(00)74210-3

    Article  Google Scholar 

  386. Rowe SE, Conlon BP, Keren I, Lewis K (2016) Persisters: methods for isolation and identifying contributing factors—a review. In: Bacterial persistence. Humana Press, New York, NY, pp 17–28

    Chapter  Google Scholar 

  387. Lewis K (2005) Persister cells and the riddle of biofilm survival. Biochemistry (Mosc) 70:267–274. https://doi.org/10.1007/s10541-005-0111-6

    Article  CAS  Google Scholar 

  388. Lewis K (2010) Persister cells. Annu Rev Microbiol 64:357–372. https://doi.org/10.1146/annurev.micro.112408.134306

    Article  CAS  PubMed  Google Scholar 

  389. Fisher RA, Gollan B, Helaine S (2017) Persistent bacterial infections and persister cells. Nat Rev Microbiol 15:453–464. https://doi.org/10.1038/nrmicro.2017.42

    Article  CAS  PubMed  Google Scholar 

  390. Michiels JE, Van den Bergh B, Verstraeten N, Michiels J (2016) Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 29:76–89. https://doi.org/10.1016/j.drup.2016.10.002

    Article  PubMed  Google Scholar 

  391. França A, Carvalhais V, Vilanova M et al (2016) Characterization of an in vitro fed-batch model to obtain cells released from S. epidermidis biofilms. AMB Express 6:23. https://doi.org/10.1186/s13568-016-0197-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  392. Brauner A, Fridman O, Gefen O, Balaban NQ (2016) Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 14:320–330. https://doi.org/10.1038/nrmicro.2016.34

    Article  CAS  PubMed  Google Scholar 

  393. Waters EM, Rowe SSE, O’Gara JPJ et al (2016) Convergence of Staphylococcus aureus persister and biofilm research: can biofilms be defined as communities of adherent persister cells? PLoS Pathog 12:e1006012. https://doi.org/10.1371/journal.ppat.1006012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  394. Pedersen K, Christensen SK, Gerdes K (2002) Rapid induction and reversal of a bacteriostatic condition by controlled expression of toxins and antitoxins. Mol Microbiol 45:501–510

    Article  CAS  PubMed  Google Scholar 

  395. Keren I, Shah D, Spoering A et al (2004) Specialized persister cells and the mechanism of multidrug tolerance in Escherichia coli. J Bacteriol 186:8172–8180. https://doi.org/10.1128/JB.186.24.8172-8180.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  396. Allison KR, Brynildsen MP, Collins JJ (2011) Metabolite-enabled eradication of bacterial persisters by aminoglycosides. Nature 473:216–220. https://doi.org/10.1038/nature10069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  397. Mina EG, Marques CNH (2016) Interaction of Staphylococcus aureus persister cells with the host when in a persister state and following awakening. Sci Rep 6:31342. https://doi.org/10.1038/srep31342

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  398. Shah D, Zhang Z, Khodursky A et al (2006) Persisters: a distinct physiological state of E. coli. BMC Microbiol 6:53. https://doi.org/10.1186/1471-2180-6-53

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  399. Roberts ME, Stewart PS (2005) Modelling protection from antimicrobial agents in biofilms through the formation of persister cells. Microbiology 151:75–80. https://doi.org/10.1099/mic.0.27385-0

    Article  CAS  PubMed  Google Scholar 

  400. Keren I, Kaldalu N, Spoering A et al (2004) Persister cells and tolerance to antimicrobials. FEMS Microbiol Lett 230:13–18

    Article  CAS  PubMed  Google Scholar 

  401. Bartlett AH, Hulten KG (2010) Staphylococcus aureus pathogenesis: secretion systems, adhesins, and invasins. Pediatr Infect Dis J 29:860–861. https://doi.org/10.1097/INF.0b013e3181ef2477

    Article  PubMed  Google Scholar 

  402. Otto M (2010) Basis of virulence in community-associated methicillin-resistant Staphylococcus aureus. Annu Rev Microbiol 64:143–162. https://doi.org/10.1146/annurev.micro.112408.134309

    Article  CAS  PubMed  Google Scholar 

  403. Yoong P, Torres VJ (2013) The effects of Staphylococcus aureus leukotoxins on the host: cell lysis and beyond. Curr Opin Microbiol 16:63–69. https://doi.org/10.1016/j.mib.2013.01.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  404. DuMont AL, Yoong P, Day CJ et al (2013) Staphylococcus aureus LukAB cytotoxin kills human neutrophils by targeting the CD11b subunit of the integrin Mac-1. Proc Natl Acad Sci U S A 110:10794–10799. https://doi.org/10.1073/pnas.1305121110

    Article  PubMed  PubMed Central  Google Scholar 

  405. Reyes-Robles T, Alonzo F, Kozhaya L et al (2013) Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14:453–459. https://doi.org/10.1016/j.chom.2013.09.005

    Article  CAS  PubMed  Google Scholar 

  406. Spaan AN, Vrieling M, Wallet P et al (2014) The staphylococcal toxins γ-haemolysin AB and CB differentially target phagocytes by employing specific chemokine receptors. Nat Commun 5:5438. https://doi.org/10.1038/ncomms6438

    Article  CAS  PubMed  Google Scholar 

  407. Melehani JH, James DBA, DuMont AL et al (2015) Staphylococcus aureus leukocidin A/B (LukAB) kills human monocytes via host NLRP3 and ASC when extracellular, but not intracellular. PLoS Pathog 11:e1004970. https://doi.org/10.1371/journal.ppat.1004970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  408. Rigby KM, DeLeo FR (2012) Neutrophils in innate host defense against Staphylococcus aureus infections. Semin Immunopathol 34:237–259. https://doi.org/10.1007/s00281-011-0295-3

    Article  CAS  PubMed  Google Scholar 

  409. Papayannopoulos V, Zychlinsky A (2009) NETs: a new strategy for using old weapons. Trends Immunol 30:513–521. https://doi.org/10.1016/j.it.2009.07.011

    Article  CAS  PubMed  Google Scholar 

  410. Cassat JE, Hammer ND, Campbell JP et al (2013) A secreted bacterial protease tailors the Staphylococcus aureus virulence repertoire to modulate bone remodeling during osteomyelitis. Cell Host Microbe 13:759–772. https://doi.org/10.1016/j.chom.2013.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  411. Brady RA, Leid JG, Camper AK et al (2006) Identification of Staphylococcus aureus proteins recognized by the antibody-mediated immune response to a biofilm infection. Infect Immun 74:3415–3426. https://doi.org/10.1128/IAI.00392-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  412. Flammier S, Rasigade J-P, Badiou C et al (2016) Human monocyte-derived osteoclasts are targeted by staphylococcal pore-forming toxins and superantigens. PLoS One 11:e0150693. https://doi.org/10.1371/journal.pone.0150693

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  413. Weidenmaier C, Peschel A (2008) Teichoic acids and related cell-wall glycopolymers in Gram-positive physiology and host interactions. Nat Rev Microbiol 6:276–287. https://doi.org/10.1038/nrmicro1861

    Article  CAS  PubMed  Google Scholar 

  414. Vandenesch F, Lina G, Henry T (2012) Staphylococcus aureus hemolysins, bi-component leukocidins, and cytolytic peptides: a redundant arsenal of membrane-damaging virulence factors? Front Cell Infect Microbiol 2:12. https://doi.org/10.3389/fcimb.2012.00012

    Article  PubMed  PubMed Central  Google Scholar 

  415. Gouaux E, Hobaugh M, Song L (1997) Alpha-Hemolysin, gamma-hemolysin, and leukocidin from Staphylococcus aureus: distant in sequence but similar in structure. Protein Sci 6:2631–2635. https://doi.org/10.1002/pro.5560061216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  416. de Haas CJC, Veldkamp KE, Peschel A et al (2004) Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial antiinflammatory agent. J Exp Med 199:687–695. https://doi.org/10.1084/jem.20031636

    Article  PubMed  PubMed Central  Google Scholar 

  417. Liu GY, Nizet V (2009) Color me bad: microbial pigments as virulence factors. Trends Microbiol 17:406–413. https://doi.org/10.1016/j.tim.2009.06.006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  418. Clauditz A, Resch A, Wieland K-P et al (2006) Staphyloxanthin plays a role in the fitness of Staphylococcus aureus and its ability to cope with oxidative stress. Infect Immun 74:4950–4953. https://doi.org/10.1128/IAI.00204-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  419. Bera A, Herbert S, Jakob A et al (2005) Why are pathogenic staphylococci so lysozyme resistant? The peptidoglycan O-acetyltransferase OatA is the major determinant for lysozyme resistance of Staphylococcus aureus. Mol Microbiol 55:778–787. https://doi.org/10.1111/j.1365-2958.2004.04446.x

    Article  CAS  PubMed  Google Scholar 

  420. Moynihan PJ, Clarke AJ (2011) O-Acetylated peptidoglycan: controlling the activity of bacterial autolysins and lytic enzymes of innate immune systems. Int J Biochem Cell Biol 43:1655–1659. https://doi.org/10.1016/J.BIOCEL.2011.08.007

    Article  CAS  PubMed  Google Scholar 

  421. Scherr TD, Roux CM, Hanke ML et al (2013) Global transcriptome analysis of Staphylococcus aureus biofilms in response to innate immune cells. Infect Immun 81:4363–4376. https://doi.org/10.1128/IAI.00819-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  422. Thammavongsa V, Missiakas D, Schneewind O (2013) Staphylococcus aureus degrades neutrophil extracellular traps to promote immune cell death. Science 342(6160):863–866. https://doi.org/10.1126/science.1240667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  423. Cheng AG, DeDent AC, Schneewind O, Missiakas D (2011) A play in four acts: Staphylococcus aureus abscess formation. Trends Microbiol 19:225–232. https://doi.org/10.1016/J.TIM.2011.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  424. Gries CM, Kielian T (2017) Staphylococcal biofilms and immune polarization during prosthetic joint infection. J Am Acad Orthop Surg 25:20–24. https://doi.org/10.5435/JAAOS-D-16-00636

    Article  Google Scholar 

  425. Scherr TD, Heim CE, Morrison JM, Kielian T (2014) Hiding in plain sight: interplay between staphylococcal biofilms and host immunity. Front Immunol 5:37. https://doi.org/10.3389/fimmu.2014.00037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  426. Heim CE, Vidlak D, Odvody J et al (2018) Human prosthetic joint infections are associated with myeloid-derived suppressor cells (MDSCs): implications for infection persistence. J Orthop Res 36(6):1605–1613. https://doi.org/10.1002/jor.23806

    Article  CAS  PubMed  Google Scholar 

  427. Heim CE, Vidlak D, Scherr TD et al (2014) Myeloid-derived suppressor cells contribute to Staphylococcus aureus orthopedic biofilm infection. J Immunol 192(8):3778–3792. https://doi.org/10.4049/jimmunol.1303408

    Article  CAS  PubMed  Google Scholar 

  428. Heim CE, Vidlak D, Scherr TD et al (2015) IL-12 promotes myeloid-derived suppressor cell recruitment and bacterial persistence during Staphylococcus aureus orthopedic implant infection. J Immunol 194(8):3861–3872. https://doi.org/10.4049/jimmunol.1402689

    Article  CAS  PubMed  Google Scholar 

  429. Heim CE, Vidlak D, Kielian T (2015) Interleukin-10 production by myeloid-derived suppressor cells contributes to bacterial persistence during Staphylococcus aureus orthopedic biofilm infection. J Leukoc Biol 98:1003–1013. https://doi.org/10.1189/jlb.4VMA0315-125RR

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  430. Peng K-T, Hsieh C-C, Huang T-Y et al (2017) Staphylococcus aureus biofilm elicits the expansion, activation and polarization of myeloid-derived suppressor cells in vivo and in vitro. PLoS One 12:e0183271. https://doi.org/10.1371/journal.pone.0183271

    Article  PubMed  PubMed Central  Google Scholar 

  431. Cheung GYC, Rigby K, Wang R et al (2010) Staphylococcus epidermidis strategies to avoid killing by human neutrophils. PLoS Pathog 6(10):e1001133. https://doi.org/10.1371/journal.ppat.1001133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  432. Foster TJ (2005) Immune evasion by staphylococci. Nat Rev Microbiol 3(12):948–958

    Article  CAS  PubMed  Google Scholar 

  433. Donaldson K, Murphy FA, Duffin R, Poland CA (2010) Asbestos, carbon nanotubes and the pleural mesothelium: a review of the hypothesis regarding the role of long fibre retention in the parietal pleura, inflammation and mesothelioma. Part Fibre Toxicol 7:5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  434. Leid JG, Shirtliff ME, Costerton JW, Stoodley P (2002) Human leukocytes adhere to, penetrate, and respond to Staphylococcus aureus biofilms. Infect Immun 70(11):6339–6345. https://doi.org/10.1128/IAI.70.11.6339-6345.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  435. Hanke ML, Angle A, Kielian T (2012) MyD88-dependent signaling influences fibrosis and alternative macrophage activation during Staphylococcus aureus biofilm infection. PLoS One 7:e42476. https://doi.org/10.1371/journal.pone.0042476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  436. Bröker B, Mrochen D, Péton V et al (2016) The T cell response to Staphylococcus aureus. Pathogens 5:31. https://doi.org/10.3390/pathogens5010031

    Article  CAS  PubMed Central  Google Scholar 

  437. Jensen LK, Jensen HE, Koch J et al (2015) Specific antibodies to Staphylococcus aureus biofilm are present in serum from pigs with osteomyelitis. In Vivo 29:555–560

    CAS  PubMed  Google Scholar 

  438. Peck A, Mellins ED (2010) Precarious balance: Th17 cells in host defense. Infect Immun 78(1):32–38

    Article  CAS  PubMed  Google Scholar 

  439. Prabhakara R, Harro JM, Leid JG et al (2011) Suppression of the inflammatory immune response prevents the development of chronic biofilm infection due to methicillin-resistant Staphylococcus aureus. Infect Immun 79(12):5010–5018. https://doi.org/10.1128/IAI.05571-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  440. Hanke ML, Kielian T (2012) Deciphering mechanisms of staphylococcal biofilm evasion of host immunity. Front Cell Infect Microbiol 2:62. https://doi.org/10.3389/fcimb.2012.00062

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  441. Benoit M, Desnues B, Mege J-L (2008) Macrophage polarization in bacterial infections. J Immunol 181:3733–3739. https://doi.org/10.4049/JIMMUNOL.181.6.3733

    Article  CAS  PubMed  Google Scholar 

  442. Mbalaviele G, Novack DV, Schett G, Teitelbaum SL (2017) Inflammatory osteolysis: a conspiracy against bone. J Clin Invest 127:2030–2039. https://doi.org/10.1172/JCI93356

    Article  PubMed  PubMed Central  Google Scholar 

  443. Schnaith A, Kashkar H, Leggio SA et al (2007) Staphylococcus aureus subvert autophagy for induction of caspase-independent host cell death. J Biol Chem 282:2695–2706. https://doi.org/10.1074/jbc.M609784200

    Article  CAS  PubMed  Google Scholar 

  444. Kubica M, Guzik K, Koziel J et al (2008) A potential new pathway for Staphylococcus aureus dissemination: the silent survival of S. aureus phagocytosed by human monocyte-derived macrophages. PLoS One 1:1–16

    Google Scholar 

  445. Tuchscherr L, Medina E, Hussain M et al (2011) Staphylococcus aureus phenotype switching: an effective bacterial strategy to escape host immune response and establish a chronic infection. EMBO Mol Med 3:129–141. https://doi.org/10.1002/emmm.201000115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  446. Hamza T, Li B (2014) Differential responses of osteoblasts and macrophages upon Staphylococcus aureus infection. BMC Microbiol 14:207. https://doi.org/10.1186/s12866-014-0207-5

    Article  PubMed  PubMed Central  Google Scholar 

  447. Vesga O, Groeschel MC, Otten MF et al (1996) Staphylococcus aureus small colony variants are induced by the endothelial cell intracellular milieu. J Infect Dis 173:739–742

    Article  CAS  PubMed  Google Scholar 

  448. von Eiff C, Becker K, Metze D et al (2001) Intracellular persistence of Staphylococcus aureus small-colony variants within keratinocytes: a cause for antibiotic treatment failure in a patient with Darier’s disease. Clin Infect Dis 32:1643–1647. https://doi.org/10.1086/320519

    Article  Google Scholar 

  449. Clement S, Vaudaux P, Francois P et al (2005) Evidence of an intracellular reservoir in the nasal mucosa of patients with recurrent Staphylococcus aureus rhinosinusitis. J Infect Dis 192:1023–1028. https://doi.org/10.1086/432735

    Article  PubMed  Google Scholar 

  450. Flannagan RS, Jaumouillé V, Grinstein S (2012) The cell biology of phagocytosis. Annu Rev Pathol Mech Dis 7:61–98. https://doi.org/10.1146/annurev-pathol-011811-132445

    Article  CAS  Google Scholar 

  451. Fairn GD, Grinstein S (2012) How nascent phagosomes mature to become phagolysosomes. Trends Immunol 33(8):397–405

    Article  CAS  PubMed  Google Scholar 

  452. Dossett JH, Kronvall G, Williams RC, Quie PG (1969) Antiphagocytic effects of staphylococcal protein A. J Immunol 103:1405–1410

    CAS  PubMed  Google Scholar 

  453. Ko Y-P, Kuipers A, Freitag CM et al (2013) Phagocytosis escape by a Staphylococcus aureus protein that connects complement and coagulation proteins at the bacterial surface. PLoS Pathog 9:e1003816. https://doi.org/10.1371/journal.ppat.1003816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  454. Müller S, Faulhaber A, Sieber C et al (2014) The endolysosomal cysteine cathepsins L and K are involved in macrophage-mediated clearance of Staphylococcus aureus and the concomitant cytokine induction. FASEB J 28:162–175. https://doi.org/10.1096/fj.13-232272

    Article  CAS  PubMed  Google Scholar 

  455. Grosz M, Kolter J, Paprotka K et al (2014) Cytoplasmic replication of Staphylococcus aureus upon phagosomal escape triggered by phenol-soluble modulin α. Cell Microbiol 16:451–465. https://doi.org/10.1111/cmi.12233

    Article  CAS  PubMed  Google Scholar 

  456. Strobel M, Pförtner H, Tuchscherr L et al (2016) Post-invasion events after infection with Staphylococcus aureus are strongly dependent on both the host cell type and the infecting S. aureus strain. Clin Microbiol Infect 22:799–809. https://doi.org/10.1016/j.cmi.2016.06.020

    Article  CAS  PubMed  Google Scholar 

  457. Giese B, Glowinski F, Paprotka K et al (2011) Expression of δ-toxin by Staphylococcus aureus mediates escape from phago-endosomes of human epithelial and endothelial cells in the presence of β-toxin. Cell Microbiol 13:316–329. https://doi.org/10.1111/j.1462-5822.2010.01538.x

    Article  CAS  PubMed  Google Scholar 

  458. Koziel J, Maciag-Gudowska A, Mikolajczyk T et al (2009) Phagocytosis of Staphylococcus aureus by macrophages exerts cytoprotective effects manifested by the upregulation of antiapoptotic factors. PLoS One 4:e5210. https://doi.org/10.1371/journal.pone.0005210

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  459. Jubrail J, Morris P, Bewley MA et al (2016) Inability to sustain intraphagolysosomal killing of Staphylococcus aureus predisposes to bacterial persistence in macrophages. Cell Microbiol 18:80–96. https://doi.org/10.1111/cmi.12485

    Article  CAS  PubMed  Google Scholar 

  460. Noore J, Noore A, Li B (2013) Cationic antimicrobial peptide LL-37 Is effective against both extra- and intracellular Staphylococcus aureus. Antimicrob Agents Chemother 57:1283–1290. https://doi.org/10.1128/AAC.01650-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  461. Campoccia D, Testoni F, Ravaioli S et al (2016) Orthopedic implant infections: incompetence of Staphylococcus epidermidis, Staphylococcus lugdunensis, and Enterococcus faecalis to invade osteoblasts. J Biomed Mater Res Part A 104(3):788–801. https://doi.org/10.1002/jbm.a.35564

    Article  CAS  Google Scholar 

  462. Josse J, Velard F, Gangloff SC (2015) Staphylococcus aureus vs. osteoblast: relationship and consequences in osteomyelitis. Front Cell Infect Microbiol 5:85. https://doi.org/10.3389/fcimb.2015.00085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  463. Fowler T, Wann ER, Joh D et al (2000) Cellular invasion by Staphylococcus aureus involves a fibronectin bridge between the bacterial fibro-nectin-binding MSCRAMMs and host cell b1 integrins. Eur J Cell Biol 79(10):672–679

    Article  CAS  PubMed  Google Scholar 

  464. Alexander EH, Rivera A, Marriott I et al (2003) Staphylococcus aureus-induced tumor necrosis factor-related apoptosis-inducing ligand expression mediates apoptosis and caspase-8 activation in infected osteoblasts. BMC Microbiol 3:1–11

    Article  Google Scholar 

  465. Bui LMGG, Conlon BPP, Kidd SPP (2017) Antibiotic tolerance and the alternative lifestyles of Staphylococcus aureus. Essays Biochem 61:71–79. https://doi.org/10.1042/EBC20160061

    Article  PubMed  Google Scholar 

  466. Proctor RA, von Eiff C, Kahl BC et al (2006) Small colony variants: a pathogenic form of bacteria that facilitates persistent and recurrent infections. Nat Rev Microbiol 4:295–305. https://doi.org/10.1038/nrmicro1384

    Article  CAS  PubMed  Google Scholar 

  467. Tuchscherr L, Heitmann V, Hussain M et al (2010) Staphylococcus aureus small-colony variants are adapted phenotypes for intracellular persistence. J Infect Dis 202:1031–1040. https://doi.org/10.1086/656047

    Article  PubMed  Google Scholar 

  468. Sendi P, Rohrbach M, Graber P et al (2006) Staphylococcus aureus small colony variants in prosthetic joint infection. Clin Infect Dis 43:961–967. https://doi.org/10.1086/507633

    Article  PubMed  Google Scholar 

  469. Garzoni C, Kelley WL (2009) Staphylococcus aureus: new evidence for intracellular persistence. Trends Microbiol 17:59–65. https://doi.org/10.1016/J.TIM.2008.11.005

    Article  CAS  PubMed  Google Scholar 

  470. Reilly SS, Hudson MC, Kellam JF, Ramp WK (2000) In vivo internalization of Staphylococcus aureus by embryonic chick osteoblasts. Bone 26(1):63–70. https://doi.org/10.1016/S8756-3282(99)00239-2

    Article  CAS  PubMed  Google Scholar 

  471. Hamza T, Dietz M, Pham D et al (2013) Intra-cellular Staphylococcus aureus alone causes infection in vivo. Eur Cell Mater 25:341–350; discussion 350

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  472. de Mesy Bentley KL, Trombetta R, Nishitani K et al (2017) Evidence of Staphylococcus aureus deformation, proliferation, and migration in canaliculi of live cortical bone in murine models of osteomyelitis. J Bone Miner Res 32:985–990. https://doi.org/10.1002/jbmr.3055

    Article  CAS  PubMed  Google Scholar 

  473. Maali Y, Martins-Simões P, Valour F et al (2016) Pathophysiological mechanisms of Staphylococcus non-aureus bone and joint infection: Interspecies homogeneity and specific behavior of S. pseudintermedius. Front Microbiol 7:1063. https://doi.org/10.3389/fmicb.2016.01063

    Article  PubMed  PubMed Central  Google Scholar 

  474. Haddad FS (2018) Next generation sequencing: is this the moment? Bone Joint J 100–B:125–126. https://doi.org/10.1302/0301-620X.100B2.BJJ-2018-0057

    Article  PubMed  Google Scholar 

  475. Tarabichi M, Shohat N, Goswami K, Parvizi J (2018) Can next generation sequencing play a role in detecting pathogens in synovial fluid? Bone Joint J 100–B:127–133. https://doi.org/10.1302/0301-620X.100B2.BJJ-2017-0531.R2

    Article  PubMed  Google Scholar 

  476. Allegranzi B, Bischoff P, de Jonge S et al (2016) New WHO recommendations on preoperative measures for surgical site infection prevention: an evidence-based global perspective. Lancet Infect Dis 11:1–12. https://doi.org/10.1016/S1473-3099(16)30398-X

    Article  Google Scholar 

  477. Tsang STJ, McHugh MP, Guerendiain D et al (2018) Evaluation of Staphylococcus aureus eradication therapy in orthopaedic surgery. J Med Microbiol 67(6):893–901. https://doi.org/10.1099/jmm.0.000731

    Article  CAS  PubMed  Google Scholar 

  478. Bode LGM, Kluytmans JAJW, Wertheim HFL et al (2010) Preventing surgical-site infections in nasal carriers of Staphylococcus aureus. N Engl J Med 362:9–17. https://doi.org/10.1056/NEJMoa0808939

    Article  CAS  PubMed  Google Scholar 

  479. Maclean M, Booth M, Anderson J et al (2013) Continuous decontamination of an intensive care isolation room during patient occupancy using 405 nm light technology. J Infect Prev 14:176–181. https://doi.org/10.1177/1757177413483646

    Article  Google Scholar 

  480. Gwynne PJ, Gallagher MP (2018) Light as a broad-spectrum antimicrobial. Front Microbiol 9:119. https://doi.org/10.3389/fmicb.2018.00119

    Article  PubMed  PubMed Central  Google Scholar 

  481. Hook AL, Chang C-Y, Yang J et al (2012) Combinatorial discovery of polymers resistant to bacterial attachment. Nat Biotechnol 30:868–875. https://doi.org/10.1038/nbt.2316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  482. Bhattacharya M, Wozniak DJ, Stoodley P, Hall-Stoodley L (2015) Prevention and treatment of Staphylococcus aureus biofilms. Expert Rev Anti-Infect Ther 13:1499. https://doi.org/10.1586/14787210.2015.1100533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  483. Kucharíková S, Gerits E, De Brucker K et al (2016) Covalent immobilization of antimicrobial agents on titanium prevents Staphylococcus aureus and Candida albicans colonization and biofilm formation. J Antimicrob Chemother 71:936–945. https://doi.org/10.1093/jac/dkv437

    Article  CAS  PubMed  Google Scholar 

  484. Knetsch MLW, Koole LH (2011) New strategies in the development of antimicrobial coatings: the example of increasing usage of silver and silver nanoparticles. Polymers (Basel) 3:340–366. https://doi.org/10.3390/polym3010340

    Article  CAS  Google Scholar 

  485. Alt V (2017) Antimicrobial coated implants in trauma and orthopaedics—a clinical review and risk-benefit analysis. Injury 48:599–607. https://doi.org/10.1016/J.INJURY.2016.12.011

    Article  PubMed  Google Scholar 

  486. Barraud N, Buson A, Jarolimek W, Rice SA (2013) Mannitol enhances antibiotic sensitivity of persister bacteria in Pseudomonas aeruginosa biofilms. PLoS One 8:e84220. https://doi.org/10.1371/journal.pone.0084220

    Article  PubMed  PubMed Central  Google Scholar 

  487. Lebeaux D, Chauhan A, Létoffé S et al (2014) pH-Mediated potentiation of aminoglycosides kills bacterial persisters and eradicates in vivo biofilms. J Infect Dis 210:1357–1366. https://doi.org/10.1093/infdis/jiu286

    Article  PubMed  Google Scholar 

  488. Prax M, Mechler L, Weidenmaier C, Bertram R (2016) Glucose augments killing efficiency of daptomycin challenged Staphylococcus aureus persisters. PLoS One 11:e0150907. https://doi.org/10.1371/journal.pone.0150907

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  489. Königs AM, Flemming H-C, Wingender J (2015) Nanosilver induces a non-culturable but metabolically active state in Pseudomonas aeruginosa. Front Microbiol 06:395. https://doi.org/10.3389/fmicb.2015.00395

    Article  Google Scholar 

  490. Hogan S, O’Gara JP, O’Neill E (2018) Novel treatment of Staphylococcus aureus device-related infections using fibrinolytic agents. Antimicrob Agents Chemother 62:e02008–e02017. https://doi.org/10.1128/AAC.02008-17

    Article  PubMed  PubMed Central  Google Scholar 

  491. Hogan S, Zapotoczna M, Stevens NT et al (2017) Potential use of targeted enzymatic agents in the treatment of Staphylococcus aureus biofilm-related infections. J Hosp Infect 96:177–182. https://doi.org/10.1016/J.JHIN.2017.02.008

    Article  CAS  PubMed  Google Scholar 

  492. Ricciardi BF, Muthukrishnan G, Masters E et al (2018) Staphylococcus aureus evasion of host immunity in the setting of prosthetic joint infection: biofilm and beyond. Curr Rev Musculoskelet Med 11(3):389–400. https://doi.org/10.1007/s12178-018-9501-4

    Article  PubMed  PubMed Central  Google Scholar 

  493. Estellés A, Woischnig AK, Liu K et al (2016) A high-affinity native human antibody disrupts biofilm from Staphylococcus aureus bacteria and potentiates antibiotic efficacy in a mouse implant infection model. Antimicrob Agents Chemother 60(4):2292–2301. https://doi.org/10.1128/AAC.02588-15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  494. Pitt WG, McBride MO, Lunceford JK et al (1994) Ultrasonic enhancement of antibiotic action on gram-negative bacteria. Antimicrob Agents Chemother 38:2577–2582. https://doi.org/10.1128/AAC.38.11.2577

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  495. Del Pozo JL, Rouse MS, Euba G et al (2009) The electricidal effect is active in an experimental model of Staphylococcus epidermidis chronic foreign body osteomyelitis. Antimicrob Agents Chemother 53:4064–4068. https://doi.org/10.1128/AAC.00432-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  496. Del Pozo JL, Rouse MS, Patel R (2008) Bioelectric effect and bacterial biofilms. A systematic review. Int J Artif Organs 31:786–795

    Article  PubMed  Google Scholar 

  497. del Pozo JL, Rouse MS, Mandrekar JN et al (2009) The electricidal effect: reduction of Staphylococcus and pseudomonas biofilms by prolonged exposure to low-intensity electrical current. Antimicrob Agents Chemother 53:41–45. https://doi.org/10.1128/AAC.00680-08

    Article  CAS  PubMed  Google Scholar 

  498. Pickering SAW, Bayston R, Scammell BE (2003) Electromagnetic augmentation of antibiotic efficacy in infection of orthopaedic implants. J Bone Joint Surg Br 85B:588–593. https://doi.org/10.1302/0301-620x.85b4.12644

    Article  Google Scholar 

  499. Lauderdale KJ, Malone CL, Boles BR et al (2009) Biofilm dispersal of community-associated methicillin-resistant Staphylococcus aureus on orthopedic implant material. J Orthop Res 28(1):55–61. https://doi.org/10.1002/jor.20943

    Article  CAS  Google Scholar 

  500. Brackman G, Cos P, Maes L et al (2011) Quorum sensing inhibitors increase the susceptibility of bacterial biofilms to antibiotics in vitro and in vivo. Antimicrob Agents Chemother 55:2655–2661. https://doi.org/10.1128/AAC.00045-11

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  501. Brackman G, Coenye T (2015) Inhibition of quorum sensing in Staphylococcus spp. Curr Pharm Des 21:2101–2108. https://doi.org/10.2174/1381612821666150310101014

    Article  CAS  PubMed  Google Scholar 

  502. Francolini I, Norris P, Piozzi A et al (2004) Usnic acid, a natural antimicrobial agent able to inhibit bacterial biofilm formation on polymer surfaces. Antimicrob Agents Chemother 48:4360–4365. https://doi.org/10.1128/AAC.48.11.4360-4365.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  503. Balaban N, Cirioni O, Giacometti A et al (2007) Treatment of Staphylococcus aureus biofilm infection by the quorum-sensing inhibitor RIP. Antimicrob Agents Chemother 51:2226–2229. https://doi.org/10.1128/AAC.01097-06

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  504. O’Loughlin CT, Miller LC, Siryaporn A et al (2013) A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. Proc Natl Acad Sci 110(44):17981–17986. https://doi.org/10.1073/pnas.1316981110

    Article  PubMed  PubMed Central  Google Scholar 

  505. Dusane DH, Kyrouac D, Petersen I et al (2017) Targeting intracellular Staphylococcus aureus to lower recurrence of orthopaedic infection. J Orthop Res 36:1086–1092. https://doi.org/10.1002/jor.23723

    Article  CAS  PubMed  Google Scholar 

  506. Zahid M, Robbins P (2015) Cell-Type Specific Penetrating Peptides: Therapeutic Promises and Challenges. Molecules 20:13055–13070. https://doi.org/10.3390/molecules200713055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  507. Donovan D (2013) Fusion of peptidoglycan hydrolase enzymes to a protein tranduction domain allow eradication of broth extracellular and intracellular Gram positive pathogens. Patent No: US 8,383,102 B2 https://patents.google.com/patent/US8383102B2/en. Accessed 25-01-2019

  508. Donovan DM, Dong S, Garrett W et al (2006) Peptidoglycan hydrolase fusions maintain their parental specificities. Appl Environ Microbiol 72:2988–2996. https://doi.org/10.1128/AEM.72.4.2988-2996.2006

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  509. Rukavina Z, Vanić Ž (2016) Current trends in development of liposomes for targeting bacterial biofilms. Pharmaceutics 8(2). https://doi.org/10.3390/pharmaceutics8020018

  510. Forier K, Raemdonck K, De Smedt SC et al (2014) Lipid and polymer nanoparticles for drug delivery to bacterial biofilms. J Control Release 190:607–623. https://doi.org/10.1016/J.JCONREL.2014.03.055

    Article  CAS  PubMed  Google Scholar 

  511. WHO (2014) Surveillance of antimicrobial resistance for local and global action. http://www.who.int/drugresistance/events/SwedenMeeting/en/. Accessed 1 Dec 2014

  512. Li B, Webster TJ (2018) Bacteria antibiotic resistance: new challenges and opportunities for implant-associated orthopedic infections. J Orthop Res 36:22–32. https://doi.org/10.1002/jor.23656

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. T. Jerry Tsang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tsang, S.T.J., Simpson, A.H.R.W. (2020). Pathogenesis of Biomaterial-Associated Infection. In: Li, B., Moriarty, T., Webster, T., Xing, M. (eds) Racing for the Surface. Springer, Cham. https://doi.org/10.1007/978-3-030-34475-7_6

Download citation

Publish with us

Policies and ethics