Skip to main content

Beyond the Oracle: Opportunities of Piecewise Differentiation

  • Chapter
  • First Online:
Numerical Nonsmooth Optimization

Abstract

For more than 30 years much of the research and development in nonsmooth optimization has been predicated on the assumption that the user provides an oracle that evaluates at any given \({\boldsymbol x} \in \mathbb {R}^n\) the objective function value φ(x) and a generalized gradient g ∈ ∂φ(x) in the sense of Clarke. We will argue here that, if there is a realistic possibility of computing a vector g that is guaranteed to be a generalized gradient, then one must know so much about the way \(\varphi : \mathbb {R}^n \to \mathbb {R}\) is calculated that more information about the behavior of φ in a neighborhood of the evaluation point can be extracted. Moreover, the latter can be achieved with reasonable effort and in a stable manner so that the derivative information provided varies Lipschitz continuously with respect to x. In particular we describe the calculation of directionally active generalized gradients, generalized ε-gradients and the checking of first and second order optimality conditions. All this is based on the abs-linearization of a piecewise smooth objective in abs-normal form.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Absil, P.A., Mahony, R., Andrews, B.: Convergence of the iterates of descent methods for analytic cost functions. SIAM J. Optim. 16(2), 531–547 (2005)

    Article  MathSciNet  Google Scholar 

  2. Attouch, H., Bolte, J.: On the convergence of the proximal algorithm for nonsmooth functions involving analytic features. Math. Program. 116(1–2, Ser. B), 5–16 (2009)

    Google Scholar 

  3. Bagirov, A., Karmitsa, N., Mäkelä, M.: Introduction to Nonsmooth Optimization: Theory, Practice and Software. Springer, Berlin (2014)

    Google Scholar 

  4. Barton, P., Khan, K., Stechlinski, P., Watson, H.: Computationally relevant generalized derivatives: theory, evaluation and applications. Optim. Methods Softw. 33(4–6), 1030–1072 (2018)

    Article  MathSciNet  Google Scholar 

  5. Bell, B.: CppAD. https://www.coin-or.org/CppAD/

  6. Burke, J., Henrion, D., Lewis, A., Overton, M.: Stabilization via nonsmooth, nonconvex optimization. IEEE Trans. Autom. Control 51(11), 1760–1769 (2006)

    Article  MathSciNet  Google Scholar 

  7. Clarke, F.: Optimization and Nonsmooth Analysis. SIAM, Philadelphia (1990)

    Book  Google Scholar 

  8. Facchinei, F., Pang, J.S.: Finite-Dimensional Variational Inequalities and Complementarity Problems, vol. II. Springer, Berlin (2003)

    MATH  Google Scholar 

  9. Fiege, S., Walther, A., Griewank, A.: An algorithm for nonsmooth optimization by successive piecewise linearization. Math. Program. Ser. A (2018). https://doi.org/10.1007/s10107-018-1273-5

  10. Foucart, S., Rauhut, H.: A Mathematical Introduction to Compressive Sensing. Birkhäuser/Springer, Basel (2013)

    Google Scholar 

  11. Griewank, A.: The modification of Newton’s method for unconstrained optimization by bounding cubic terms. Technical Report NA/12, University of Cambridge (1981)

    Google Scholar 

  12. Griewank, A.: Automatic directional differentiation of nonsmooth composite functions. In: Recent Developments in Optimization. 7th French-German Conference on Optimization, Dijon, June 27–July 2, 1994, pp. 155–169. Springer, Berlin (1995)

    Google Scholar 

  13. Griewank, A.: On stable piecewise linearization and generalized algorithmic differentiation. Optim. Methods Softw. 28(6), 1139–1178 (2013)

    Article  MathSciNet  Google Scholar 

  14. Griewank, A., Walther, A.: Evaluating Derivatives: Principles and Techniques of Algorithmic Differentiation. SIAM, Philadelphia (2008)

    Book  Google Scholar 

  15. Griewank, A., Walther, A.: First and second order optimality conditions for piecewise smooth objective functions. Optim. Methods Softw. 31(5), 904–930 (2016)

    Article  MathSciNet  Google Scholar 

  16. Griewank, A., Walther, A.: Finite convergence of an active signature method to local minima of piecewise linear functions. Optim. Methods Softw. 34, 1035–1055 (2018). https://doi.org/10.1080/10556788.2018.1546856

    Article  MathSciNet  Google Scholar 

  17. Griewank, A., Fischer, J., Bosse, T.: Cubic overestimation and secant updating for unconstrained optimization of C 2, 1 functions. Optim. Methods Softw. 29(5), 1075–1089 (2014)

    Article  MathSciNet  Google Scholar 

  18. Griewank, A., Streubel, T., Lehmann, L., Radons, M., Hasenfelder, R.: Piecewise linear secant approximation via algorithmic piecewise differentiation. Optim. Methods Softw. 33(4–6), 1108–1126 (2018)

    Article  MathSciNet  Google Scholar 

  19. Hamacher, H., Nickel, S.: Classification of location models. Locat. Sci. 6(1–4), 229–242 (1998)

    Article  Google Scholar 

  20. Hascoët, L., Pascual, V.: The Tapenade automatic differentiation tool: principles, model, and specification. ACM Trans. Math. Softw. 39(3), 20:1–20:43 (2013)

    Google Scholar 

  21. Hegerhorst-Schultchen, L., Kirches, C., Steinbach, M.: On the relation between mpecs and optimization problems in abs-normal form. Technical Report, Universität Hannover (2018). Available at optimization-online

    Google Scholar 

  22. Hintermüller, M.: Semismooth newton methods and applications. Technical Report, Department of Mathematics, Humboldt-University Berlin (2010)

    Google Scholar 

  23. Hintermüller, M., Stadler, G.: A semi-smooth Newton method for constrained linear-quadratic control problems. ZAMM. Z. Angew. Math. Mech. 83(4), 219–237 (2003)

    Article  MathSciNet  Google Scholar 

  24. Karmitsa, N., Mäkelä, M.: Limited memory bundle method for large bound constrained nonsmooth optimization: convergence analysis. Optim. Methods Softw. 25(6), 895–916 (2010)

    Article  MathSciNet  Google Scholar 

  25. Khan, K.: Branch-locking ad techniques for nonsmooth composite functions and nonsmooth implicit functions. Optim. Methods Softw. (2017). https://doi.org/10.1080/10556788.2017.1341506

  26. Khan, K., Barton, P.: Evaluating an element of the Clarke generalized Jacobian of a composite piecewise differentiable function. ACM Trans. Math. Softw. 39(4), 28 (2013)

    Article  MathSciNet  Google Scholar 

  27. Khan, K., Barton, P.: A vector forward mode of automatic differentiation for generalized derivative evaluation. Optim. Methods Softw. 30(6), 1185–1212 (2015)

    Article  MathSciNet  Google Scholar 

  28. Klatte, D., Kummer, B.: Nonsmooth equations in optimization. In: Regularity, Calculus, Methods and Applications. Kluwer Academic Publishers, Amsterdam (2002)

    MATH  Google Scholar 

  29. Lewis, A.: Active sets, nonsmoothness, and sensitivity. SIAM J. Optim. 13(3), 702–725 (2002)

    Article  MathSciNet  Google Scholar 

  30. Lewis, A., Overton, M.: Nonsmooth optimization via quasi-Newton methods. Math. Program. 141(1–2, Ser. A), 135–163 (2013)

    Google Scholar 

  31. Leyffer, S.: Mathematical programs with complementarity constraints. SIAG/OPTViews-and-News 14(1), 15–18 (2003)

    MathSciNet  MATH  Google Scholar 

  32. Liberti, L., Lavor, C., Maculan, N., Mucherino, A.: Euclidean distance geometry and applications. SIAM Rev. 56(1), 3–69 (2014)

    Article  MathSciNet  Google Scholar 

  33. Mifflin, R., Sagastizábal, C.: A science fiction story in nonsmooth optimization originating at IIASA. Doc. Math. Extra Vol, 291–300 (2012)

    Google Scholar 

  34. Nesterov, Y.: Lexicographic differentiation of nonsmooth functions. Math. Program. 104(2–3, Ser. A), 669–700 (2005)

    Google Scholar 

  35. Rockafellar, R., Wets, R.B.: Variational Analysis. Springer, Berlin (1998)

    Book  Google Scholar 

  36. Scholtes, S.: Introduction to Piecewise Differentiable Functions. Springer, Berlin (2012)

    Book  Google Scholar 

  37. Tibshirani, R.: Regression shrinkage and selection via the LASSO. J. R. Stat. Soc. Ser. B 58(1), 267–288 (1996)

    MathSciNet  MATH  Google Scholar 

  38. Walther, A., Griewank, A.: Combinatorial Scientific Computing, Chapter Getting Started with ADOL-C, pp. 181–202. Chapman-Hall CRC Computational Science, Boca Raton (2012)

    Google Scholar 

  39. Walther, A., Griewank, A.: Characterizing and testing subdifferential regularity for piecewise smooth objective functions. SIAM J. Optim. 29(2), 1473–1501 (2019)

    Article  MathSciNet  Google Scholar 

  40. Weber, A.: Über den Standort der Industrien. J.C.B. Mohr (Paul Siebeck), Tübingen (1922)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Walther .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Griewank, A., Walther, A. (2020). Beyond the Oracle: Opportunities of Piecewise Differentiation. In: Bagirov, A., Gaudioso, M., Karmitsa, N., Mäkelä, M., Taheri, S. (eds) Numerical Nonsmooth Optimization. Springer, Cham. https://doi.org/10.1007/978-3-030-34910-3_10

Download citation

Publish with us

Policies and ethics