Skip to main content

Epigenetics of Circulating Tumor Cells in Breast Cancer

  • Chapter
  • First Online:
Circulating Tumor Cells in Breast Cancer Metastatic Disease

Abstract

Liquid biopsy based on the analysis of circulating tumor cells (CTCs) has emerged as an important field of research. Molecular characterization of CTCs can provide insights into cancer biology and biomarkers for the clinic, representing a non-invasive powerful tool for monitoring breast cancer metastasis and predict the therapeutic response. Epigenetic mechanisms play a key role in the control of gene expression and their alteration contributes to cancer development and progression. These epigenetic modifications in CTCs have been described mainly related to modifications of the DNA methylation pattern and changes in the expression profile of noncoding RNAs. Here we summarize the recent findings on the epigenetic characterization of CTCs in breast cancer and their clinical value as tumor biomarkers, and discuss challenges and opportunities in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 2018;68(6):394–424. https://doi.org/10.3322/caac.21492.

    Article  PubMed  Google Scholar 

  2. Redig AJ, McAllister SS. Breast cancer as a systemic disease: a view of metastasis. J Intern Med. 2013;274(2):113–26. https://doi.org/10.1111/joim.12084.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Martin AM, Weber BL. Genetic and hormonal risk factors in breast cancer. J Natl Cancer Inst. 2000;92(14):1126–35. https://doi.org/10.1093/jnci/92.14.1126.

    Article  CAS  PubMed  Google Scholar 

  4. Crujeiras AB, Diaz-Lagares A, Stefansson OA, Macias-Gonzalez M, Sandoval J, Cueva J, et al. Obesity and menopause modify the epigenomic profile of breast cancer. Endocr Relat Cancer. 2017;24(7):351–63. https://doi.org/10.1530/ERC-16-0565.

    Article  CAS  PubMed  Google Scholar 

  5. Sorlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene expression patterns of breast carcinomas distinguish tumor subclasses with clinical implications. Proc Natl Acad Sci USA. 2001;98(19):10869–74. https://doi.org/10.1073/pnas.191367098.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dai X, Li T, Bai Z, Yang Y, Liu X, Zhan J, et al. Breast cancer intrinsic subtype classification, clinical use and future trends. Am J Cancer Res. 2015;5(10):2929–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Sturgeon CM, Duffy MJ, Stenman UH, Lilja H, Brunner N, Chan DW, et al. National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem. 2008;54(12):e11–79. https://doi.org/10.1373/clinchem.2008.105601.

    Article  CAS  PubMed  Google Scholar 

  8. Siravegna G, Marsoni S, Siena S, Bardelli A. Integrating liquid biopsies into the management of cancer. Nat Rev Clin Oncol. 2017;14(9):531–48. https://doi.org/10.1038/nrclinonc.2017.14.

    Article  CAS  PubMed  Google Scholar 

  9. Mari-Alexandre J, Diaz-Lagares A, Villalba M, Juan O, Crujeiras AB, Calvo A, et al. Translating cancer epigenomics into the clinic: focus on lung cancer. Trans Res J Lab Clin Med. 2017;189:76–92. https://doi.org/10.1016/j.trsl.2017.05.008.

    Article  CAS  Google Scholar 

  10. Diaz LA Jr, Bardelli A. Liquid biopsies: genotyping circulating tumor DNA. J Clin Oncol Off J Am Soc Clin Oncol. 2014;32(6):579–86. https://doi.org/10.1200/JCO.2012.45.2011.

    Article  Google Scholar 

  11. Cristofanilli M, Budd GT, Ellis MJ, Stopeck A, Matera J, Miller MC, et al. Circulating tumor cells, disease progression, and survival in metastatic breast cancer. N Engl J Med. 2004;351(8):781–91. https://doi.org/10.1056/NEJMoa040766.

    Article  CAS  PubMed  Google Scholar 

  12. Diehl F, Li M, Dressman D, He Y, Shen D, Szabo S, et al. Detection and quantification of mutations in the plasma of patients with colorectal tumors. Proc Natl Acad Sci USA. 2005;102(45):16368–73. https://doi.org/10.1073/pnas.0507904102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Ren S, Wang F, Shen J, Sun Y, Xu W, Lu J, et al. Long non-coding RNA metastasis associated in lung adenocarcinoma transcript 1 derived miniRNA as a novel plasma-based biomarker for diagnosing prostate cancer. Eur J Cancer. 2013;49(13):2949–59. https://doi.org/10.1016/j.ejca.2013.04.026.

    Article  CAS  PubMed  Google Scholar 

  14. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B, Moreno-Bueno G, et al. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat Med. 2012;18(6):883–91. https://doi.org/10.1038/nm.2753.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Lianidou ES, Markou A, Strati A. Molecular characterization of circulating tumor cells in breast cancer: challenges and promises for individualized cancer treatment. Cancer Metastasis Rev. 2012;31(3-4):663–71. https://doi.org/10.1007/s10555-012-9366-8.

    Article  CAS  PubMed  Google Scholar 

  16. Yap TA, Lorente D, Omlin A, Olmos D, de Bono JS. Circulating tumor cells: a multifunctional biomarker. Clin Cancer Res. 2014;20(10):2553–68. https://doi.org/10.1158/1078-0432.CCR-13-2664.

    Article  CAS  PubMed  Google Scholar 

  17. Parkinson DR, Dracopoli N, Petty BG, Compton C, Cristofanilli M, Deisseroth A, et al. Considerations in the development of circulating tumor cell technology for clinical use. J Transl Med. 2012;10:138. https://doi.org/10.1186/1479-5876-10-138.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Young R, Pailler E, Billiot F, Drusch F, Barthelemy A, Oulhen M, et al. Circulating tumor cells in lung cancer. Acta Cytol. 2012;56(6):655–60. https://doi.org/10.1159/000345182.

    Article  CAS  PubMed  Google Scholar 

  19. Aceto N, Bardia A, Miyamoto DT, Donaldson MC, Wittner BS, Spencer JA, et al. Circulating tumor cell clusters are oligoclonal precursors of breast cancer metastasis. Cell. 2014;158(5):1110–22. https://doi.org/10.1016/j.cell.2014.07.013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Allard WJ, Matera J, Miller MC, Repollet M, Connelly MC, Rao C, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases. Clin Cancer Res. 2004;10(20):6897–904. https://doi.org/10.1158/1078-0432.CCR-04-0378.

    Article  PubMed  Google Scholar 

  21. Alix-Panabieres C. EPISPOT assay: detection of viable DTCs/CTCs in solid tumor patients. Recent results in cancer research Fortschritte der Krebsforschung Progres dans les recherches sur le cancer. 2012;195:69–76. https://doi.org/10.1007/978-3-642-28160-0_6.

    Article  PubMed  Google Scholar 

  22. Maertens Y, Humberg V, Erlmeier F, Steffens S, Steinestel J, Bogemann M, et al. Comparison of isolation platforms for detection of circulating renal cell carcinoma cells. Oncotarget. 2017;8(50):87710–7. https://doi.org/10.18632/oncotarget.21197.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Mastoraki S, Strati A, Tzanikou E, Chimonidou M, Politaki E, Voutsina A, et al. ESR1 methylation: a liquid biopsy-based epigenetic assay for the follow-up of patients with metastatic breast cancer receiving endocrine treatment. Clin Cancer Res. 2018;24(6):1500–10. https://doi.org/10.1158/1078-0432.CCR-17-1181.

    Article  CAS  PubMed  Google Scholar 

  24. Chimonidou M, Strati A, Tzitzira A, Sotiropoulou G, Malamos N, Georgoulias V, et al. DNA methylation of tumor suppressor and metastasis suppressor genes in circulating tumor cells. Clin Chem. 2011;57(8):1169–77. https://doi.org/10.1373/clinchem.2011.165902.

    Article  CAS  PubMed  Google Scholar 

  25. Sieuwerts AM, Mostert B, Bolt-de Vries J, Peeters D, de Jongh FE, Stouthard JM, et al. mRNA and microRNA expression profiles in circulating tumor cells and primary tumors of metastatic breast cancer patients. Clin Cancer Res. 2011;17(11):3600–18. https://doi.org/10.1158/1078-0432.CCR-11-0255.

    Article  CAS  PubMed  Google Scholar 

  26. de Mello VD, Pulkkinen L, Lalli M, Kolehmainen M, Pihlajamaki J, Uusitupa M. DNA methylation in obesity and type 2 diabetes. Ann Med. 2014;46(3):103–13. https://doi.org/10.3109/07853890.2013.857259.

    Article  CAS  PubMed  Google Scholar 

  27. Lujambio A, Esteller M. How epigenetics can explain human metastasis: a new role for microRNAs. Cell Cycle. 2009;8(3):377–82. https://doi.org/10.4161/cc.8.3.7526.

    Article  CAS  PubMed  Google Scholar 

  28. Widschwendter M, Jones PA. DNA methylation and breast carcinogenesis. Oncogene. 2002;21(35):5462–82. https://doi.org/10.1038/sj.onc.1205606.

    Article  CAS  PubMed  Google Scholar 

  29. Lianidou ES, Markou A, Strati A. The role of CTCs as tumor biomarkers. Adv Exp Med Biol. 2015;867:341–67. https://doi.org/10.1007/978-94-017-7215-0_21.

    Article  CAS  PubMed  Google Scholar 

  30. Pixberg CF, Schulz WA, Stoecklein NH, Neves RP. Characterization of DNA methylation in circulating tumor cells. Genes. 2015;6(4):1053–75. https://doi.org/10.3390/genes6041053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Waddington CH. The epigenotype. 1942. Int J Epidemiol. 2012;41(1):10–3. https://doi.org/10.1093/ije/dyr184.

    Article  CAS  PubMed  Google Scholar 

  32. Berger SL, Kouzarides T, Shiekhattar R, Shilatifard A. An operational definition of epigenetics. Genes Dev. 2009;23(7):781–3. https://doi.org/10.1101/gad.1787609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Holliday R. The inheritance of epigenetic defects. Science. 1987;238(4824):163–70. https://doi.org/10.1126/science.3310230.

    Article  CAS  PubMed  Google Scholar 

  34. Rodriguez-Paredes M, Esteller M. Cancer epigenetics reaches mainstream oncology. Nat Med. 2011;17(3):330–9. https://doi.org/10.1038/nm.2305.

    Article  CAS  PubMed  Google Scholar 

  35. Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28(10):1057–68. https://doi.org/10.1038/nbt.1685.

    Article  CAS  PubMed  Google Scholar 

  36. Gowher H, Jeltsch A. Molecular enzymology of the catalytic domains of the Dnmt3a and Dnmt3b DNA methyltransferases. J Biol Chem. 2002;277(23):20409–14. https://doi.org/10.1074/jbc.M202148200.

    Article  CAS  PubMed  Google Scholar 

  37. Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet. 2003;33(Suppl):245–54. https://doi.org/10.1038/ng1089.

    Article  CAS  PubMed  Google Scholar 

  38. Herceg Z, Vaissiere T. Epigenetic mechanisms and cancer: an interface between the environment and the genome. Epigenetics. 2011;6(7):804–19. https://doi.org/10.4161/epi.6.7.16262.

    Article  CAS  PubMed  Google Scholar 

  39. Diaz-Lagares A, Mendez-Gonzalez J, Hervas D, Saigi M, Pajares MJ, Garcia D, et al. A novel epigenetic signature for early diagnosis in lung cancer. Clin Cancer Res. 2016;22(13):3361–71. https://doi.org/10.1158/1078-0432.CCR-15-2346.

    Article  CAS  PubMed  Google Scholar 

  40. Diaz-Lagares A, Crujeiras AB, Lopez-Serra P, Soler M, Setien F, Goyal A, et al. Epigenetic inactivation of the p53-induced long noncoding RNA TP53 target 1 in human cancer. Proc Natl Acad Sci USA. 2016;113(47):E7535–E44. https://doi.org/10.1073/pnas.1608585113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Sheaffer KL, Elliott EN, Kaestner KH. DNA Hypomethylation contributes to genomic instability and intestinal cancer initiation. Cancer Prev Res. 2016;9(7):534–46. https://doi.org/10.1158/1940-6207.CAPR-15-0349.

    Article  CAS  Google Scholar 

  42. Esteller M. Epigenetics in cancer. N Engl J Med. 2008;358(11):1148–59. https://doi.org/10.1056/NEJMra072067.

    Article  CAS  PubMed  Google Scholar 

  43. Dammann R, Yang G, Pfeifer GP. Hypermethylation of the cpG island of Ras association domain family 1A (RASSF1A), a putative tumor suppressor gene from the 3p21.3 locus, occurs in a large percentage of human breast cancers. Cancer Res. 2001;61(7):3105–9.

    CAS  PubMed  Google Scholar 

  44. Evron E, Umbricht CB, Korz D, Raman V, Loeb DM, Niranjan B, et al. Loss of cyclin D2 expression in the majority of breast cancers is associated with promoter hypermethylation. Cancer Res. 2001;61(6):2782–7.

    CAS  PubMed  Google Scholar 

  45. Spitzwieser M, Holzweber E, Pfeiler G, Hacker S, Cichna-Markl M. Applicability of HIN-1, MGMT and RASSF1A promoter methylation as biomarkers for detecting field cancerization in breast cancer. Breast Cancer Res: BCR. 2015;17:125. https://doi.org/10.1186/s13058-015-0637-5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Esteller M, Corn PG, Urena JM, Gabrielson E, Baylin SB, Herman JG. Inactivation of glutathione S-transferase P1 gene by promoter hypermethylation in human neoplasia. Cancer Res. 1998;58(20):4515–8.

    CAS  PubMed  Google Scholar 

  47. Bovenzi V, Le NL, Cote S, Sinnett D, Momparler LF, Momparler RL. DNA methylation of retinoic acid receptor beta in breast cancer and possible therapeutic role of 5-aza-2′-deoxycytidine. Anti-Cancer Drugs. 1999;10(5):471–6.

    Article  CAS  PubMed  Google Scholar 

  48. Paz MF, Avila S, Fraga MF, Pollan M, Capella G, Peinado MA, et al. Germ-line variants in methyl-group metabolism genes and susceptibility to DNA methylation in normal tissues and human primary tumors. Cancer Res. 2002;62(15):4519–24.

    CAS  PubMed  Google Scholar 

  49. Hesson LB, Cooper WN, Latif F. The role of RASSF1A methylation in cancer. Dis Markers. 2007;23(1-2):73–87. https://doi.org/10.1155/2007/291538.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Dejeux E, Ronneberg JA, Solvang H, Bukholm I, Geisler S, Aas T, et al. DNA methylation profiling in doxorubicin treated primary locally advanced breast tumours identifies novel genes associated with survival and treatment response. Mol Cancer. 2010;9:68. https://doi.org/10.1186/1476-4598-9-68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H, Brudno Y, et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science. 2009;324(5929):930–5. https://doi.org/10.1126/science.1170116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Chen JY, Luo CW, Lai YS, Wu CC, Hung WC. Lysine demethylase KDM2A inhibits TET2 to promote DNA methylation and silencing of tumor suppressor genes in breast cancer. Oncogene. 2017;6(8):e369. https://doi.org/10.1038/oncsis.2017.71.

    Article  CAS  Google Scholar 

  53. Berdasco M, Esteller M. Clinical epigenetics: seizing opportunities for translation. Nat Rev Genet. 2019;20(2):109–27. https://doi.org/10.1038/s41576-018-0074-2.

    Article  CAS  PubMed  Google Scholar 

  54. Quintas-Cardama A, Santos FP, Garcia-Manero G. Therapy with azanucleosides for myelodysplastic syndromes. Nat Rev Clin Oncol. 2010;7(8):433–44. https://doi.org/10.1038/nrclinonc.2010.87.

    Article  CAS  PubMed  Google Scholar 

  55. Dragomir M, Mafra ACP, Dias SMG, Vasilescu C, Calin GA. Using microRNA networks to understand cancer. Int J Mol Sci. 2018;19(7) https://doi.org/10.3390/ijms19071871.

  56. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ, et al. Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature. 2010;464(7291):1071–6. https://doi.org/10.1038/nature08975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R, Willingham AT, et al. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science. 2007;316(5830):1484–8. https://doi.org/10.1126/science.1138341.

    Article  CAS  PubMed  Google Scholar 

  58. Taft RJ, Pang KC, Mercer TR, Dinger M, Mattick JS. Non-coding RNAs: regulators of disease. J Pathol. 2010;220(2):126–39. https://doi.org/10.1002/path.2638.

    Article  CAS  PubMed  Google Scholar 

  59. Esteller M. Non-coding RNAs in human disease. Nat Rev Genet. 2011;12(12):861–74. https://doi.org/10.1038/nrg3074.

    Article  CAS  PubMed  Google Scholar 

  60. Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, et al. Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 2013;495(7441):333–8. https://doi.org/10.1038/nature11928.

    Article  CAS  PubMed  Google Scholar 

  61. Lee SK, Calin GA. Non-coding RNAs and cancer: new paradigms in oncology. Discov Med. 2011;11(58):245–54.

    CAS  PubMed  Google Scholar 

  62. Garzon R, Calin GA, Croce CM. MicroRNAs in cancer. Annu Rev Med. 2009;60:167–79. https://doi.org/10.1146/annurev.med.59.053006.104707.

    Article  CAS  PubMed  Google Scholar 

  63. Bayraktar R, Pichler M, Kanlikilicer P, Ivan C, Bayraktar E, Kahraman N, et al. MicroRNA 603 acts as a tumor suppressor and inhibits triple-negative breast cancer tumorigenesis by targeting elongation factor 2 kinase. Oncotarget. 2017;8(7):11641–58. https://doi.org/10.18632/oncotarget.14264.

    Article  PubMed  Google Scholar 

  64. Volinia S, Calin GA, Liu CG, Ambs S, Cimmino A, Petrocca F, et al. A microRNA expression signature of human solid tumors defines cancer gene targets. Proc Natl Acad Sci USA. 2006;103(7):2257–61. https://doi.org/10.1073/pnas.0510565103.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Lu J, Getz G, Miska EA, Alvarez-Saavedra E, Lamb J, Peck D, et al. MicroRNA expression profiles classify human cancers. Nature. 2005;435(7043):834–8. https://doi.org/10.1038/nature03702.

    Article  CAS  PubMed  Google Scholar 

  66. Hon CC, Ramilowski JA, Harshbarger J, Bertin N, Rackham OJ, Gough J, et al. An atlas of human long non-coding RNAs with accurate 5′ ends. Nature. 2017;543(7644):199–204. https://doi.org/10.1038/nature21374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S, Tilgner H, et al. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 2012;22(9):1775–89. https://doi.org/10.1101/gr.132159.111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Guttman M, Amit I, Garber M, French C, Lin MF, Feldser D, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–7. https://doi.org/10.1038/nature07672.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Kotake Y, Nakagawa T, Kitagawa K, Suzuki S, Liu N, Kitagawa M, et al. Long non-coding RNA ANRIL is required for the PRC2 recruitment to and silencing of p15(INK4B) tumor suppressor gene. Oncogene. 2011;30(16):1956–62. https://doi.org/10.1038/onc.2010.568.

    Article  CAS  PubMed  Google Scholar 

  70. Leveille N, Melo CA, Rooijers K, Diaz-Lagares A, Melo SA, Korkmaz G, et al. Genome-wide profiling of p53-regulated enhancer RNAs uncovers a subset of enhancers controlled by a lncRNA. Nat Commun. 2015;6:6520. https://doi.org/10.1038/ncomms7520.

    Article  CAS  PubMed  Google Scholar 

  71. Gutschner T, Hammerle M, Eissmann M, Hsu J, Kim Y, Hung G, et al. The noncoding RNA MALAT1 is a critical regulator of the metastasis phenotype of lung cancer cells. Cancer Res. 2013;73(3):1180–9. https://doi.org/10.1158/0008-5472.CAN-12-2850.

    Article  CAS  PubMed  Google Scholar 

  72. Marin-Bejar O, Mas AM, Gonzalez J, Martinez D, Athie A, Morales X, et al. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol. 2017;18(1):202. https://doi.org/10.1186/s13059-017-1331-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Iorio MV, Ferracin M, Liu CG, Veronese A, Spizzo R, Sabbioni S, et al. MicroRNA gene expression deregulation in human breast cancer. Cancer Res. 2005;65(16):7065–70. https://doi.org/10.1158/0008-5472.CAN-05-1783.

    Article  CAS  PubMed  Google Scholar 

  74. Klinge CM. Non-coding RNAs in breast cancer: intracellular and intercellular communication. Non-Coding RNA. 2018;4(4) https://doi.org/10.3390/ncrna4040040.

  75. Roscigno G, Quintavalle C, Donnarumma E, Puoti I, Diaz-Lagares A, Iaboni M, et al. MiR-221 promotes stemness of breast cancer cells by targeting DNMT3b. Oncotarget. 2016;7(1):580–92. https://doi.org/10.18632/oncotarget.5979.

    Article  PubMed  Google Scholar 

  76. Liu LC, Wang YL, Lin PL, Zhang X, Cheng WC, Liu SH, et al. Long noncoding RNA HOTAIR promotes invasion of breast cancer cells through chondroitin sulfotransferase CHST15. Int J Cancer. 2019; https://doi.org/10.1002/ijc.32319.

  77. Ding W, Ren J, Ren H, Wang D. Long noncoding RNA HOTAIR modulates MiR-206-mediated Bcl-w signaling to facilitate cell proliferation in breast cancer. Sci Rep. 2017;7(1):17261. https://doi.org/10.1038/s41598-017-17492-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Mourtada-Maarabouni M, Pickard MR, Hedge VL, Farzaneh F, Williams GT. GAS5, a non-protein-coding RNA, controls apoptosis and is downregulated in breast cancer. Oncogene. 2009;28(2):195–208. https://doi.org/10.1038/onc.2008.373.

    Article  CAS  PubMed  Google Scholar 

  79. Davalos V, Martinez-Cardus A, Esteller M. The Epigenomic revolution in breast cancer: from single-gene to genome-wide next-generation approaches. Am J Pathol. 2017;187(10):2163–74. https://doi.org/10.1016/j.ajpath.2017.07.002.

    Article  CAS  PubMed  Google Scholar 

  80. Yokoi K, Yamashita K, Watanabe M. Analysis of DNA methylation status in bodily fluids for early detection of cancer. Int J Mol Sci. 2017;18(4) https://doi.org/10.3390/ijms18040735.

  81. Hunt EA, Broyles D, Head T, Deo SK. MicroRNA detection: current technology and research strategies. Annu Rev Anal Chem. 2015;8:217–37. https://doi.org/10.1146/annurev-anchem-071114-040343.

    Article  CAS  Google Scholar 

  82. Lai F, Blumenthal E, Shiekhattar R. Detection and analysis of long noncoding RNAs. Methods Enzymol. 2016;573:421–44. https://doi.org/10.1016/bs.mie.2016.03.010.

    Article  CAS  PubMed  Google Scholar 

  83. Consortium B. Quantitative comparison of DNA methylation assays for biomarker development and clinical applications. Nat Biotechnol. 2016;34(7):726–37. https://doi.org/10.1038/nbt.3605.

    Article  CAS  Google Scholar 

  84. Werner RJ, Kelly AD, Issa JJ. Epigenetics and precision oncology. Cancer J. 2017;23(5):262–9. https://doi.org/10.1097/PPO.0000000000000281.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Klughammer J, Kiesel B, Roetzer T, Fortelny N, Nemc A, Nenning KH, et al. The DNA methylation landscape of glioblastoma disease progression shows extensive heterogeneity in time and space. Nat Med. 2018;24(10):1611–24. https://doi.org/10.1038/s41591-018-0156-x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Moran S, Arribas C, Esteller M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics. 2016;8(3):389–99. https://doi.org/10.2217/epi.15.114.

    Article  CAS  PubMed  Google Scholar 

  87. Wojdacz TK, Dobrovic A. Methylation-sensitive high resolution melting (MS-HRM): a new approach for sensitive and high-throughput assessment of methylation. Nucleic Acids Res. 2007;35(6):e41. https://doi.org/10.1093/nar/gkm013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Eads CA, Danenberg KD, Kawakami K, Saltz LB, Blake C, Shibata D, et al. MethyLight: a high-throughput assay to measure DNA methylation. Nucleic Acids Res. 2000;28(8):E32. https://doi.org/10.1093/nar/28.8.e32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Jeronimo C, Usadel H, Henrique R, Oliveira J, Lopes C, Nelson WG, et al. Quantitation of GSTP1 methylation in non-neoplastic prostatic tissue and organ-confined prostate adenocarcinoma. J Natl Cancer Inst. 2001;93(22):1747–52. https://doi.org/10.1093/jnci/93.22.1747.

    Article  CAS  PubMed  Google Scholar 

  90. Herman JG, Graff JR, Myohanen S, Nelkin BD, Baylin SB. Methylation-specific PCR: a novel PCR assay for methylation status of CpG islands. Proc Natl Acad Sci USA. 1996;93(18):9821–6. https://doi.org/10.1073/pnas.93.18.9821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Li M, Chen WD, Papadopoulos N, Goodman SN, Bjerregaard NC, Laurberg S, et al. Sensitive digital quantification of DNA methylation in clinical samples. Nat Biotechnol. 2009;27(9):858–63. https://doi.org/10.1038/nbt.1559.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Pichler M, Stiegelbauer V, Vychytilova-Faltejskova P, Ivan C, Ling H, Winter E, et al. Genome-wide miRNA analysis identifies miR-188-3p as a novel prognostic marker and molecular factor involved in colorectal carcinogenesis. Clin Cancer Res. 2017;23(5):1323–33. https://doi.org/10.1158/1078-0432.CCR-16-0497.

    Article  CAS  PubMed  Google Scholar 

  93. Calin GA, Liu CG, Sevignani C, Ferracin M, Felli N, Dumitru CD, et al. MicroRNA profiling reveals distinct signatures in B cell chronic lymphocytic leukemias. Proc Natl Acad Sci USA. 2004;101(32):11755–60. https://doi.org/10.1073/pnas.0404432101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Lawrie CH, Gal S, Dunlop HM, Pushkaran B, Liggins AP, Pulford K, et al. Detection of elevated levels of tumour-associated microRNAs in serum of patients with diffuse large B-cell lymphoma. Br J Haematol. 2008;141(5):672–5. https://doi.org/10.1111/j.1365-2141.2008.07077.x.

    Article  PubMed  Google Scholar 

  95. Kurdyukov S, Bullock M. DNA methylation analysis: choosing the right method. Biology. 2016;5(1) https://doi.org/10.3390/biology5010003.

  96. Chimonidou M, Strati A, Malamos N, Georgoulias V, Lianidou ES. SOX17 promoter methylation in circulating tumor cells and matched cell-free DNA isolated from plasma of patients with breast cancer. Clin Chem. 2013;59(1):270–9. https://doi.org/10.1373/clinchem.2012.191551.

    Article  CAS  PubMed  Google Scholar 

  97. Ogunwobi OO, Puszyk W, Dong HJ, Liu C. Epigenetic upregulation of HGF and c-Met drives metastasis in hepatocellular carcinoma. PLoS One. 2013;8(5):e63765. https://doi.org/10.1371/journal.pone.0063765.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Pixberg CF, Raba K, Muller F, Behrens B, Honisch E, Niederacher D, et al. Analysis of DNA methylation in single circulating tumor cells. Oncogene. 2017;36(23):3223–31. https://doi.org/10.1038/onc.2016.480.

    Article  CAS  PubMed  Google Scholar 

  99. Olek A, Oswald J, Walter J. A modified and improved method for bisulphite based cytosine methylation analysis. Nucleic Acids Res. 1996;24(24):5064–6. https://doi.org/10.1093/nar/24.24.5064.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Friedlander TW, Ngo VT, Dong H, Premasekharan G, Weinberg V, Doty S, et al. Detection and characterization of invasive circulating tumor cells derived from men with metastatic castration-resistant prostate cancer. Int J Cancer. 2014;134(10):2284–93. https://doi.org/10.1002/ijc.28561.

    Article  CAS  PubMed  Google Scholar 

  101. Gkountela S, Castro-Giner F, Szczerba BM, Vetter M, Landin J, Scherrer R, et al. Circulating tumor cell clustering shapes DNA methylation to enable metastasis seeding. Cell. 2019;176(1-2):98–112. e14. https://doi.org/10.1016/j.cell.2018.11.046.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Markou A, Zavridou M, Sourvinou I, Yousef G, Kounelis S, Malamos N, et al. Direct comparison of metastasis-related miRNAs expression levels in circulating tumor cells, corresponding plasma, and primary tumors of breast cancer patients. Clin Chem. 2016;62(7):1002–11. https://doi.org/10.1373/clinchem.2015.253716.

    Article  CAS  PubMed  Google Scholar 

  103. Leong SM, Tan KM, Chua HW, Huang MC, Cheong WC, Li MH, et al. Paper-based MicroRNA expression profiling from plasma and circulating tumor cells. Clin Chem. 2017;63(3):731–41. https://doi.org/10.1373/clinchem.2016.264432.

    Article  CAS  PubMed  Google Scholar 

  104. Dobbs LJ, Madigan MN, Carter AB, Earls L. Use of FTA gene guard filter paper for the storage and transportation of tumor cells for molecular testing. Arch Pathol Lab Med. 2002;126(1):56–63. https://doi.org/10.1043/0003-9985(2002)126<0056:UOFGGF>2.0.CO;2.

    Article  CAS  PubMed  Google Scholar 

  105. Ortega FG, Lorente JA, Garcia Puche JL, Ruiz MP, Sanchez-Martin RM, de Miguel-Perez D, et al. miRNA in situ hybridization in circulating tumor cells—MishCTC. Sci Rep. 2015;5:9207. https://doi.org/10.1038/srep09207.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Gasch C, Plummer PN, Jovanovic L, McInnes LM, Wescott D, Saunders CM, et al. Heterogeneity of miR-10b expression in circulating tumor cells. Sci Rep. 2015;5:15980. https://doi.org/10.1038/srep15980.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Kubota K, Ohashi A, Imachi H, Harada H. Improved in situ hybridization efficiency with locked-nucleic-acid-incorporated DNA probes. Appl Environ Microbiol. 2006;72(8):5311–7. https://doi.org/10.1128/AEM.03039-05.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Chimonidou M, Kallergi G, Georgoulias V, Welch DR, Lianidou ES. Breast cancer metastasis suppressor-1 promoter methylation in primary breast tumors and corresponding circulating tumor cells. Molecular Cancer Res: MCR. 2013;11(10):1248–57. https://doi.org/10.1158/1541-7786.MCR-13-0096.

    Article  CAS  Google Scholar 

  109. Paolillo C, Londin E, Fortina P. Single-cell genomics. Clin Chem. 2019; https://doi.org/10.1373/clinchem.2017.283895.

  110. Park JW, Han JW. Targeting epigenetics for cancer therapy. Arch Pharm Res. 2019;42(2):159–70. https://doi.org/10.1007/s12272-019-01126-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in metastatic breast cancer: its regulation and implications in diagnosis, prognosis and therapeutics. Curr Cancer Drug Targets. 2019;19(2):82–100. https://doi.org/10.2174/1568009618666180430130248.

    Article  CAS  PubMed  Google Scholar 

  112. Ai L, Kim WJ, Kim TY, Fields CR, Massoll NA, Robertson KD, et al. Epigenetic silencing of the tumor suppressor cystatin M occurs during breast cancer progression. Cancer Res. 2006;66(16):7899–909. https://doi.org/10.1158/0008-5472.CAN-06-0576.

    Article  CAS  PubMed  Google Scholar 

  113. Jin L, Zhang Y, Li H, Yao L, Fu D, Yao X, et al. Differential secretome analysis reveals CST6 as a suppressor of breast cancer bone metastasis. Cell Res. 2012;22(9):1356–73. https://doi.org/10.1038/cr.2012.90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Fu DY, Wang ZM, Li C, Wang BL, Shen ZZ, Huang W, et al. Sox17, the canonical Wnt antagonist, is epigenetically inactivated by promoter methylation in human breast cancer. Breast Cancer Res Treat. 2010;119(3):601–12. https://doi.org/10.1007/s10549-009-0339-8.

    Article  CAS  PubMed  Google Scholar 

  115. Hurst DR, Xie Y, Vaidya KS, Mehta A, Moore BP, Accavitti-Loper MA, et al. Alterations of BRMS1-ARID4A interaction modify gene expression but still suppress metastasis in human breast cancer cells. J Biol Chem. 2008;283(12):7438–44. https://doi.org/10.1074/jbc.M709446200.

    Article  CAS  PubMed  Google Scholar 

  116. Meehan WJ, Samant RS, Hopper JE, Carrozza MJ, Shevde LA, Workman JL, et al. Breast cancer metastasis suppressor 1 (BRMS1) forms complexes with retinoblastoma-binding protein 1 (RBP1) and the mSin3 histone deacetylase complex and represses transcription. J Biol Chem. 2004;279(2):1562–9. https://doi.org/10.1074/jbc.M307969200.

    Article  CAS  PubMed  Google Scholar 

  117. Chimonidou M, Strati A, Malamos N, Kouneli S, Georgoulias V, Lianidou E. Direct comparison study of DNA methylation markers in EpCAM-positive circulating tumour cells, corresponding circulating tumour DNA, and paired primary tumours in breast cancer. Oncotarget. 2017;8(42):72054–68. https://doi.org/10.18632/oncotarget.18679.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Jones PA. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nat Rev Genet. 2012;13(7):484–92. https://doi.org/10.1038/nrg3230.

    Article  CAS  PubMed  Google Scholar 

  119. Balakrishnan A, Koppaka D, Anand A, Deb B, Grenci G, Viasnoff V, et al. Circulating Tumor Cell cluster phenotype allows monitoring response to treatment and predicts survival. Sci Rep. 2019;9(1):7933. https://doi.org/10.1038/s41598-019-44404-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Murlidhar V, Reddy RM, Fouladdel S, Zhao L, Ishikawa MK, Grabauskiene S, et al. Poor prognosis indicated by venous circulating tumor cell clusters in early-stage lung cancers. Cancer Res. 2017;77(18):5194–206. https://doi.org/10.1158/0008-5472.CAN-16-2072.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Dart A. Methylated clusters. Nat Rev Cancer. 2019;19(3):125. https://doi.org/10.1038/s41568-019-0114-z.

    Article  CAS  PubMed  Google Scholar 

  122. Kim J, Siverly AN, Chen D, Wang M, Yuan Y, Wang Y, et al. Ablation of miR-10b suppresses oncogene-induced mammary tumorigenesis and metastasis and reactivates tumor-suppressive pathways. Cancer Res. 2016;76(21):6424–35. https://doi.org/10.1158/0008-5472.CAN-16-1571.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Weidle UH, Dickopf S, Hintermair C, Kollmorgen G, Birzele F, Brinkmann U. The role of micro RNAs in breast cancer metastasis: preclinical validation and potential therapeutic targets. Cancer Genomics Proteomics. 2018;15(1):17–39. https://doi.org/10.21873/cgp.20062.

    Article  CAS  PubMed  Google Scholar 

  124. Shaw JA, Brown J, Coombes RC, Jacob J, Payne R, Lee B, et al. Circulating tumor cells and plasma DNA analysis in patients with indeterminate early or metastatic breast cancer. Biomark Med. 2011;5(1):87–91. https://doi.org/10.2217/bmm.10.118.

    Article  CAS  PubMed  Google Scholar 

  125. Shaw JA, Guttery DS, Hills A, Fernandez-Garcia D, Page K, Rosales BM, et al. Mutation analysis of cell-free DNA and single circulating tumor cells in metastatic breast cancer patients with high circulating tumor cell counts. Clin Cancer Res. 2017;23(1):88–96. https://doi.org/10.1158/1078-0432.CCR-16-0825.

    Article  CAS  PubMed  Google Scholar 

  126. Strauss WM, Carter C, Simmons J, Klem E, Goodman N, Vahidi B, et al. Analysis of tumor template from multiple compartments in a blood sample provides complementary access to peripheral tumor biomarkers. Oncotarget. 2016;7(18):26724–38. https://doi.org/10.18632/oncotarget.8494.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Van der Auwera I, Elst HJ, Van Laere SJ, Maes H, Huget P, van Dam P, et al. The presence of circulating total DNA and methylated genes is associated with circulating tumour cells in blood from breast cancer patients. Br J Cancer. 2009;100(8):1277–86. https://doi.org/10.1038/sj.bjc.6605013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Schwarzenbach H, Alix-Panabieres C, Muller I, Letang N, Vendrell JP, Rebillard X, et al. Cell-free tumor DNA in blood plasma as a marker for circulating tumor cells in prostate cancer. Clin Cancer Res. 2009;15(3):1032–8. https://doi.org/10.1158/1078-0432.CCR-08-1910.

    Article  CAS  PubMed  Google Scholar 

  129. Zhang Y, Ye L, Tan Y, Sun P, Ji K, Jiang WG. Expression of breast cancer metastasis suppressor-1, BRMS-1, in human breast cancer and the biological impact of BRMS-1 on the migration of breast cancer cells. Anticancer Res. 2014;34(3):1417–26.

    CAS  PubMed  Google Scholar 

  130. Matuschek C, Bolke E, Lammering G, Gerber PA, Peiper M, Budach W, et al. Methylated APC and GSTP1 genes in serum DNA correlate with the presence of circulating blood tumor cells and are associated with a more aggressive and advanced breast cancer disease. Eur J Med Res. 2010;15:277–86. https://doi.org/10.1186/2047-783x-15-7-277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Madhavan D, Zucknick M, Wallwiener M, Cuk K, Modugno C, Scharpff M, et al. Circulating miRNAs as surrogate markers for circulating tumor cells and prognostic markers in metastatic breast cancer. Clin Cancer Res. 2012;18(21):5972–82. https://doi.org/10.1158/1078-0432.CCR-12-1407.

    Article  CAS  PubMed  Google Scholar 

  132. Garcia-Gimenez JL, Seco-Cervera M, Tollefsbol TO, Roma-Mateo C, Peiro-Chova L, Lapunzina P, et al. Epigenetic biomarkers: current strategies and future challenges for their use in the clinical laboratory. Crit Rev Clin Lab Sci. 2017;54(7-8):529–50. https://doi.org/10.1080/10408363.2017.1410520.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Roychowdhury S, Chinnaiyan AM. Translating cancer genomes and transcriptomes for precision oncology. CA Cancer J Clin. 2016;66(1):75–88. https://doi.org/10.3322/caac.21329.

    Article  PubMed  Google Scholar 

  134. Jain KK. Cancer biomarkers: current issues and future directions. Curr Opin Mol Ther. 2007;9(6):563–71.

    CAS  PubMed  Google Scholar 

  135. Pasculli B, Barbano R, Parrella P. Epigenetics of breast cancer: biology and clinical implication in the era of precision medicine. Semin Cancer Biol. 2018;51:22–35. https://doi.org/10.1016/j.semcancer.2018.01.007.

    Article  PubMed  Google Scholar 

  136. Leygo C, Williams M, Jin HC, Chan MWY, Chu WK, Grusch M, et al. DNA methylation as a noninvasive epigenetic biomarker for the detection of cancer. Dis Markers. 2017;2017:3726595. https://doi.org/10.1155/2017/3726595.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Hansmann T, Pliushch G, Leubner M, Kroll P, Endt D, Gehrig A, et al. Constitutive promoter methylation of BRCA1 and RAD51C in patients with familial ovarian cancer and early-onset sporadic breast cancer. Hum Mol Genet. 2012;21(21):4669–79. https://doi.org/10.1093/hmg/dds308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Dulaimi E, Hillinck J, Ibanez de Caceres I, Al-Saleem T, Cairns P. Tumor suppressor gene promoter hypermethylation in serum of breast cancer patients. Clin Cancer Res. 2004;10(18 Pt 1):6189–93. https://doi.org/10.1158/1078-0432.CCR-04-0597.

    Article  CAS  PubMed  Google Scholar 

  139. Han JG, Jiang YD, Zhang CH, Yang YM, Pang D, Song YN, et al. A novel panel of serum miR-21/miR-155/miR-365 as a potential diagnostic biomarker for breast cancer. Ann Surg Treat Res. 2017;92(2):55–66. https://doi.org/10.4174/astr.2017.92.2.55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Zhang L, Song X, Wang X, Xie Y, Wang Z, Xu Y, et al. Circulating DNA of HOTAIR in serum is a novel biomarker for breast cancer. Breast Cancer Res Treat. 2015;152(1):199–208. https://doi.org/10.1007/s10549-015-3431-2.

    Article  CAS  PubMed  Google Scholar 

  141. Fang F, Turcan S, Rimner A, Kaufman A, Giri D, Morris LG, et al. Breast cancer methylomes establish an epigenomic foundation for metastasis. Sci Transl Med. 2011;3(75):75ra25. https://doi.org/10.1126/scitranslmed.3001875.

    Article  PubMed  PubMed Central  Google Scholar 

  142. Buhmeida A, Merdad A, Al-Maghrabi J, Al-Thobaiti F, Ata M, Bugis A, et al. RASSF1A methylation is predictive of poor prognosis in female breast cancer in a background of overall low methylation frequency. Anticancer Res. 2011;31(9):2975–81.

    CAS  PubMed  Google Scholar 

  143. Asaga S, Kuo C, Nguyen T, Terpenning M, Giuliano AE, Hoon DS. Direct serum assay for microRNA-21 concentrations in early and advanced breast cancer. Clin Chem. 2011;57(1):84–91. https://doi.org/10.1373/clinchem.2010.151845.

    Article  CAS  PubMed  Google Scholar 

  144. Wang Y, Xue D, Li Y, Pan X, Zhang X, Kuang B, et al. The long noncoding RNA MALAT-1 is a novel biomarker in various cancers: a meta-analysis based on the GEO database and literature. J Cancer. 2016;7(8):991–1001. https://doi.org/10.7150/jca.14663.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Veeck J, Ropero S, Setien F, Gonzalez-Suarez E, Osorio A, Benitez J et al. BRCA1 CpG island hypermethylation predicts sensitivity to poly(adenosine diphosphate)-ribose polymerase inhibitors. J Clin Oncol Off J Am Soc Clin Oncol. 2010;28(29):e563–4; author reply e5–6. doi:https://doi.org/10.1200/JCO.2010.30.1010.

  146. Ter Brugge P, Kristel P, van der Burg E, Boon U, de Maaker M, Lips E, et al. Mechanisms of therapy resistance in patient-derived xenograft models of BRCA1-deficient breast cancer. J Natl Cancer Inst. 2016;108(11) https://doi.org/10.1093/jnci/djw148.

  147. Pineda B, Diaz-Lagares A, Perez-Fidalgo JA, Burgues O, Gonzalez-Barrallo I, Crujeiras AB, et al. A two-gene epigenetic signature for the prediction of response to neoadjuvant chemotherapy in triple-negative breast cancer patients. Clin Epigenetics. 2019;11(1):33. https://doi.org/10.1186/s13148-019-0626-0.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Brumback RA. Koiloplasia in cervical cytology. Hum Pathol. 1988;19(7):874.

    Article  CAS  PubMed  Google Scholar 

  149. Tang S, Zheng K, Tang Y, Li Z, Zou T, Liu D. Overexpression of serum exosomal HOTAIR is correlated with poor survival and poor response to chemotherapy in breast cancer patients. J Biosci. 2019;44:2.

    Article  Google Scholar 

  150. Benezeder T, Tiran V, Treitler AAN, Suppan C, Rossmann C, Stoeger H, et al. Multigene methylation analysis of enriched circulating tumor cells associates with poor progression-free survival in metastatic breast cancer patients. Oncotarget. 2017;8(54):92483–96. https://doi.org/10.18632/oncotarget.21426.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cohen SJ, Punt CJ, Iannotti N, Saidman BH, Sabbath KD, Gabrail NY, et al. Relationship of circulating tumor cells to tumor response, progression-free survival, and overall survival in patients with metastatic colorectal cancer. J Clin Oncol Off J Am Soc Clin Oncol. 2008;26(19):3213–21. https://doi.org/10.1200/JCO.2007.15.8923.

    Article  Google Scholar 

  152. Wu L, Wu D, Ning J, Liu W, Zhang D. Changes of N6-methyladenosine modulators promote breast cancer progression. BMC Cancer. 2019;19(1):326. https://doi.org/10.1186/s12885-019-5538-z.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The work of the authors is supported by a grant from the ISCIII (PI18/00307) co-funded by FEDER. ADL is funded by a contract “Juan Rodés” (JR17/00016) from ISCIII. ABC is funded by a predoctoral grant from “Xunta de Galicia” and “Fondo Social Europeo de Galicia”, and ARC is supported by Roche-Chus Joint Unit (IN853B 2018/03) funded by GAIN, “Consellería de Economía, Emprego e Industria”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Angel Diaz-Lagares .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bao-Caamano, A., Rodriguez-Casanova, A., Diaz-Lagares, A. (2020). Epigenetics of Circulating Tumor Cells in Breast Cancer. In: Piñeiro, R. (eds) Circulating Tumor Cells in Breast Cancer Metastatic Disease. Advances in Experimental Medicine and Biology, vol 1220. Springer, Cham. https://doi.org/10.1007/978-3-030-35805-1_8

Download citation

Publish with us

Policies and ethics