Skip to main content

Malignant Epithelial Tumors of the Lung

  • Chapter
  • First Online:
Diagnostic Thoracic Pathology
  • 1508 Accesses

Abstract

Lung cancer is an aggressive type of malignancy with a relative 5-year survival rate of 18.1% (2007–2013). On the brighter side, rates for new lung cancer cases have been falling on average 2% each year over the last 10 years, while death rates have been falling on average 2.5% each year from 2005 to 2014. This changing landscape of lung cancer histology not only facilitates the understanding of lung cancer etiology but also has important implications for the selection of targeted therapies and patient management underscoring the need for most accurate histopathological evaluation. It is hoped that in the future, better educational campaigns, earlier disease detection, and newer treatment options will decrease the incidence of lung cancer and improve patient survival.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Surveillance, epidemiology and end results program (SEER). https://seer.cancer.gov/statfacts/html/lungb.html. Accessed 07/25/17.

  2. Aronchick JM. Lung cancer: epidemiology and risk factors. Semin Roentgenol. 1990;25:5–11.

    Article  CAS  PubMed  Google Scholar 

  3. Garfinkel L, Silverberg E. Lung cancer and smoking trends in the United States over the past 25 years. CA Cancer J Clin. 1991;41:137–45.

    Article  CAS  PubMed  Google Scholar 

  4. Stanley K, Stjernswärd J. Lung cancer in developed and developing countries. Cancer Treat Res. 1989;45:1–14.

    Article  CAS  PubMed  Google Scholar 

  5. Samet JM, Nero AV Jr. Indoor radon and lung cancer. N Engl J Med. 1989;320:591–4.

    Article  CAS  PubMed  Google Scholar 

  6. Matthews MJ. Morphology of lung cancer. Semin Oncol. 1974;1:175–82.

    CAS  PubMed  Google Scholar 

  7. Wahbah M, Boroumand N, Castro C, et al. Changing trends in the distribution of the histologic types of lung cancer: a review of 4,439 cases. Ann Diagn Pathol. 2007;11:89–96.

    Article  PubMed  Google Scholar 

  8. Ginsberg MS. Epidemiology of lung cancer. Semin Roentgenol. 2005;40:83–9.

    Article  PubMed  Google Scholar 

  9. Scagliotti GV, Parikh P, von Pawel J, et al. Phase III study comparing cisplatin plus gemcitabine with cisplatin plus pemetrexed in chemotherapy-naive patients with advanced-stage non-small-cell lung cancer. J Clin Oncol. 2008;26:3543–51.

    Article  CAS  PubMed  Google Scholar 

  10. Sandler A, Gray R, Perry MC, et al. Paclitaxel-carboplatin alone or with bevacizumab for non-small-cell lung cancer. N Engl J Med. 2006;355:2542–50.

    Article  CAS  PubMed  Google Scholar 

  11. Nicholson A, Brambilla E, Baesley MD, et al. Large cell carcinoma. In: Travis WD, Brambilla E, Burke AP, et al., editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press; 2015. p. 80–5.

    Google Scholar 

  12. Weissferdt A. Large cell carcinoma of lung: on the verge of extinction? Semin Diagn Pathol. 2014;31:278–88.

    Article  PubMed  Google Scholar 

  13. Weissferdt A, Kalhor N, Rodriguez Canales J, et al. Spindle cell and pleomorphic (“sarcomatoid”) carcinomas of the lung: an immunohistochemical analysis of 86 cases. Hum Pathol. 2017;59:1–9.

    Article  CAS  PubMed  Google Scholar 

  14. Weissferdt A, Kalhor N, Correa AM, et al. “Sarcomatoid” carcinomas of the lung: a clinicopathological study of 86 cases with a new perspective on tumor classification. Hum Pathol. 2017;63:14–26.

    Article  PubMed  Google Scholar 

  15. Meza R, Meernik C, Jeon J, et al. Lung cancer incidence trends by gender, race and histology in the United States, 1973–2010. PLoS One. 2015;10:e0121323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Centers for Disease Control and Prevention (CDC). Smoking-attributable mortality, years of potential life lost, and productivity losses—United States, 2000–2004. MMWR Morb Mortal Wkly Rep. 2008;57:1226–8.

    Google Scholar 

  17. Kenfield SA, Wei EK, Stampfer MJ, et al. Comparison of aspects of smoking among the four histological types of lung cancer. Tob Control. 2008;17:198–204.

    Article  CAS  PubMed  Google Scholar 

  18. Haiman CA, Stram DO, Wilkens LR, et al. Ethnic and racial differences in the smoking-related risk of lung cancer. N Engl J Med. 2006;354:333–42.

    Article  CAS  PubMed  Google Scholar 

  19. Yun YH, Lim MK, Jung KW, et al. Relative and absolute risks of cigarette smoking on major histologic types of lung cancer in Korean men. Cancer Epidemiol Biomark Prev. 2005;14:2125–30.

    Article  CAS  Google Scholar 

  20. Morabia A, Wynder EL. Cigarette smoking and lung cancer cell types. Cancer. 1991;68:2074–8.

    Article  CAS  PubMed  Google Scholar 

  21. Grippi MA. Clinical aspects of lung cancer. Semin Roentgenol. 1990;25:12–24.

    Article  CAS  PubMed  Google Scholar 

  22. McClelland MT. Paraneoplastic syndromes related to lung cancer. Clin J Oncol Nurs. 2010;14:357–64.

    Article  PubMed  Google Scholar 

  23. Cohen R, Mena D, Carbajal-Mendoza R, et al. Superior vena cava syndrome: a medical emergency? Int J Angiol. 2008;17:43–6.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Panagopoulos N, Leivaditis V, Koletsis E, et al. Pancoast tumors: characteristics and preoperative assessment. J Thorac Dis. 2014;6(Suppl 1):S108–15.

    PubMed  PubMed Central  Google Scholar 

  25. Liang HY, Li XL, Yu XS, et al. Facts and fiction of the relationship between preexisting tuberculosis and lung cancer risk: a systematic review. Int J Cancer. 2009;125:2936–44.

    Article  CAS  PubMed  Google Scholar 

  26. Samet JM. Does idiopathic pulmonary fibrosis increase lung cancer risk? Am J Respir Crit Care Med. 2000;161:1–2.

    Article  CAS  PubMed  Google Scholar 

  27. Chung WS, Lin CL, Hsu WH, et al. Increased risk of lung cancer among patients with bronchiectasis: a nationwide cohort study. QJM. 2016;109:17–25.

    Article  PubMed  Google Scholar 

  28. Rosado-de-Christenson ML, Templeton PA, Moran CA. Bronchogenic carcinoma: radiologic-pathologic correlation. Radiographics. 1994;14:429–46.

    Article  CAS  PubMed  Google Scholar 

  29. Sider L. Radiographic manifestations of primary bronchogenic carcinoma. Radiol Clin N Am. 1990;28:583–97.

    CAS  PubMed  Google Scholar 

  30. Theros EG, Feigin DS. Pleural tumors and pulmonary tumors: differential diagnosis. Semin Roentgenol. 1977;12:239–47.

    Article  CAS  PubMed  Google Scholar 

  31. Kishi K, Homma S, Kurosaki A, et al. Small lung tumors with the size of 1cm or less in diameter: clinical, radiological, and histopathological characteristics. Lung Cancer. 2004;44:43–51.

    Article  PubMed  Google Scholar 

  32. Kondo D, Yamada K, Kitayama Y, et al. Peripheral lung adenocarcinomas: 10 mm or less in diameter. Ann Thorac Surg. 2003;76:350–5.

    Article  PubMed  Google Scholar 

  33. Suzuki K, Kusumoto M, Watanabe S, et al. Radiologic classification of small adenocarcinoma of the lung: radiologic-pathologic correlation and its prognostic impact. Ann Thorac Surg. 2006;81:413–9.

    Article  PubMed  Google Scholar 

  34. Byrd RB, Carr DT, Miller WE, et al. Radiographic abnormalities in carcinoma of the lung as related to histological cell type. Thorax. 1969;24:573–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Filderman AE, Shaw C, Matthay RA. Lung cancer. Part I: Etiology, pathology, natural history, manifestations, and diagnostic techniques. Investig Radiol. 1986;21:80–90.

    Article  CAS  Google Scholar 

  36. Shin MS, Anderson SD, Myers J, et al. Pitfalls in CT evaluation of chest wall invasion by lung cancer. J Comput Assist Tomogr. 1986;10:136–8.

    Article  CAS  PubMed  Google Scholar 

  37. Fletcher JW, Kymes SM, Gould M, et al. VA SNAP Cooperative Studies Group. A comparison of the diagnostic accuracy of 18F-FDG PET and CT in the characterization of solitary pulmonary nodules. J Nucl Med. 2008;49:179–85.

    Article  PubMed  Google Scholar 

  38. Marom EM, Erasmus JJ, Patz EF. Lung cancer and positron emission tomography with fluorodeoxyglucose. Lung Cancer. 2000;28:187–202.

    Article  CAS  PubMed  Google Scholar 

  39. Francolini G, Ferrari K, Scotti V. Neoadjuvant approach for non-small cell lung cancer: overview of the current issues. Curr Opin Oncol. 2017;29:123–8.

    Article  CAS  PubMed  Google Scholar 

  40. Smith DA, Conkling P, Richards DA, et al. Antitumor activity and safety of combination therapy with the Toll-like receptor 9 agonist IMO-2055, erlotinib, and bevacizumab in advanced or metastatic non-small cell lung cancer patients who have progressed following chemotherapy. Cancer Immunol Immunother. 2014;63:787–96.

    Article  CAS  PubMed  Google Scholar 

  41. Shaw AT, Engelman JA. ALK in lung cancer: past, present, and future. J Clin Oncol. 2013;31:1105–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dal Bello MG, Alama A, Coco S, et al. Understanding the checkpoint blockade in lung cancer immunotherapy. Drug Discov Today. 2017;22:1266–73.

    Article  CAS  PubMed  Google Scholar 

  43. van Klaveren RJ, Oudkerk M, Prokop M, et al. Management of lung nodules detected by volume CT scanning. N Engl J Med. 2009;361:2221–9.

    Article  PubMed  Google Scholar 

  44. Becker N, Motsch E, Gross ML, et al. Randomized study on early detection of lung cancer with MSCT in Germany: study design and results of the first screening round. J Cancer Res Clin Oncol. 2012;138:1475–86.

    Article  CAS  PubMed  Google Scholar 

  45. Rami-Porta R, Bolejack V, Giroux DJ, et al. International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Board Members and Participating Institutions. The IASLC lung cancer staging project: the new database to inform the eighth edition of the TNM classification of lung cancer. J Thorac Oncol. 2014;9:1618–24.

    Article  CAS  PubMed  Google Scholar 

  46. Brierley JD, Gospodarowicz MK, Wittekind CH, et al., editors. TNM classification of malignant tumours. 8th ed. Oxford, UK: Wiley; 2016.

    Google Scholar 

  47. Amin MB, Edge SB, Greene FL, et al., editors. AJCC cancer staging manual. 8th ed. New York: Springer; 2017.

    Google Scholar 

  48. Travis WD, Noguchi M, Yatabe Y, et al. Adenocarcinoma. In: Travis WD, Brambilla E, Burke AP, et al., editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press; 2015. p. 26–50.

    Google Scholar 

  49. Goldstraw P, Chansky K, Crowley J, et al. International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee, Advisory Boards, and Participating Institutions; International Association for the Study of Lung Cancer Staging and Prognostic Factors Committee Advisory Boards and Participating Institutions. The IASLC lung cancer staging project: proposals for revision of the TNM stage groupings in the forthcoming (eighth) edition of the TNM classification for lung cancer. J Thorac Oncol. 2016;11:39–51.

    Article  PubMed  Google Scholar 

  50. Detterbeck F. Stage classification and prediction of prognosis: difference between accountants and speculators. J Thorac Oncol. 2013;8:820–2.

    Article  PubMed  Google Scholar 

  51. Detterbeck FC, Boffa DJ, Kim AW, et al. The eighth edition lung cancer stage classification. Chest. 2017;151:193–203.

    Article  PubMed  Google Scholar 

  52. Kimula Y. A histochemical and ultrastructural study of adenocarcinoma of the lung. Am J Surg Pathol. 1978;2:253–64.

    Article  CAS  PubMed  Google Scholar 

  53. Ogata T, Endo K. Clara cell granules of peripheral lung cancers. Cancer. 1984;54:1635–44.

    Article  CAS  PubMed  Google Scholar 

  54. Travis WD, Brambilla E, Noguchi M, et al. International association for the study of lung cancer/American thoracic society/European respiratory society international multidisciplinary classification of lung adenocarcinoma. J Thorac Oncol. 2011;6:244–85.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Malassez L. Examen histologique d’un cas de cancer encephaloide du poumon (epithelioma). Arch Physiol Norm Pathol. 1876;3:352–72.

    Google Scholar 

  56. Musser JH. Primary cancer of the lung. U Penn Med Bull. 1903;16:289–96.

    Google Scholar 

  57. Sweany HC. A so-called alveolar cell cancer of the lung. Arch Pathol. 1935;19:203–7.

    Google Scholar 

  58. Casilli AR, White HJ. Rare forms of primary malignant lung tumors. Am J Clin Pathol. 1940;10:623–41.

    Article  Google Scholar 

  59. Geever KT. Alveolar cell tumor of the human lung. Arch Pathol. 1942;33:551–69.

    Google Scholar 

  60. Herbut PA. Bronchiolar origin of “Alveolar Cell Tumor” of the lung. Am J Pathol. 1944;20:911–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Wood DA, Pierson PH. Pulmonary alveolar adenomatosis in man. Am Rev Tuberc. 1945;51:205–23.

    Google Scholar 

  62. Ikeda K. Alveolar cell carcinoma of the lung. Am J Clin Pathol. 1945;15:50–63.

    Article  Google Scholar 

  63. Osserman KE, Neuhof H. Mucocellular papillary adenocarcinoma of the lung. J Thorac Surg. 1946;15:272–8.

    Article  CAS  PubMed  Google Scholar 

  64. Drymalski GW, Thompson R, Sweany HC. Pulmonary adenomatosis. Am J Pathol. 1948;20:1083–93.

    Google Scholar 

  65. Delarue NC, Graham EA. Alveolar cell carcinoma of the lung (pulmonary adenomatosis, Jaagsiekte?). J Thorac Surg. 1949;18(2):237–51.

    Article  CAS  PubMed  Google Scholar 

  66. Liebow AA. Bronchioloalveolar carcinoma. Adv Intern Med. 1960;10:329–58.

    CAS  PubMed  Google Scholar 

  67. Noguchi M, Morikawa A, Kawasaki M, et al. Small adenocarcinoma of the lung: histologic characteristics and prognosis. Cancer. 1995;75:2844–52.

    Article  CAS  PubMed  Google Scholar 

  68. Travis WD, Colby TV, Corrin B, et al., editors. WHO histological classification of tumours: histological typing of lung and pleural tumours. 3rd ed. Berlin: Springer; 1999.

    Google Scholar 

  69. Colby T, Noguchi M, Henschke C, et al. Adenocarcinoma. In: Travis WD, Brambilla E, Müller-Hermelink K, et al., editors. Tumours of the lung, pleura, thymus, and heart. In: Pathology & genetics, World Health Organization. Lyon, France: IARC Press; 2004. p. 35–44.

    Google Scholar 

  70. Hajdu SI. The story of bronchioloalveolar carcinoma. Ann Clin Lab Sci. 2005;35:336–8.

    PubMed  Google Scholar 

  71. Darvishian F, Roberts B, Teichberg S, et al. Ultrastructural comparison of “alveolar” and “solid” areas in bronchioloalveolar carcinoma. Ann Clin Lab Sci. 2002;32:225–30.

    PubMed  Google Scholar 

  72. Tan MA, Teichberg S, Roberts B, et al. Ultrastructural findings in metastatic bronchioloalveolar carcinoma. Ann Clin Lab Sci. 2003;33:289–94.

    PubMed  Google Scholar 

  73. Sidhu GS, Wieczorek R, Cassai ND, et al. The concept of bronchioloalveolar cell adenocarcinoma: redefinition, a critique of the 1999 WHO classification, and an ultrastructural analysis of 155 cases. Int J Surg Pathol. 2003;11:89–99.

    Article  PubMed  Google Scholar 

  74. Watanabe S, Watanabe T, Arai K, et al. Results of wedge resection for focal bronchioloalveolar carcinoma showing pure ground-glass attenuation on computed tomography. Ann Thorac Surg. 2002;73:1071–5.

    Article  PubMed  Google Scholar 

  75. Sakurai H, Dobashi Y, Mizutani E, et al. Bronchioloalveolar carcinoma of the lung 3 centimeters or less in diameter: a retrospective assessment. Ann Thorac Surg. 2004;78:1728–33.

    Article  PubMed  Google Scholar 

  76. Yamada S, Kohno T. Video-assisted thoracic surgery for pure ground-glass opacities 2 cm or less in diameter. Ann Thorac Surg. 2004;77:1911–5.

    Article  PubMed  Google Scholar 

  77. Yoshida J, Nagai K, Yokose T, et al. Limited resection trial for pulmonary ground-glass opacity nodules: fifty-case experience. J Thorac Cardiovasc Surg. 2004;129:991–6.

    Article  Google Scholar 

  78. Koike T, Togashi K, Shirato T, et al. Limited resection for non-invasive bronchioloalveolar carcinoma diagnosed by intraoperative pathologic examination. Ann Thorac Surg. 2009;88:1106–11.

    Article  PubMed  Google Scholar 

  79. Vazquez M, Carter D, Brambilla E, et al. Solitary and multiple resected adenocarcinomas after CT screening for lung cancer: histopathologic features and their prognostic implications. Lung Cancer. 2009;64:148–54.

    Article  PubMed  Google Scholar 

  80. Yamamoto Y, Tsuchida M, Watanabe T, et al. Early resection of a prospective study of limited resection for bronchioloalveolar adenocarcinoma of the lung. Ann Thorac Surg. 2001;71:971–4.

    Article  Google Scholar 

  81. Yim J, Zhu LC, Chiriboga L, et al. Histological features are important prognostic indicators in early stages lung adenocarcinoma. Mod Pathol. 2007;20:233–41.

    Article  CAS  PubMed  Google Scholar 

  82. Borczuk AC, Qian F, Kazeros A, et al. Invasive size is an independent predictor of survival in pulmonary adenocarcinoma. Am J Surg Pathol. 2009;33:462–9.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Yoshizawa A, Motoi N, Riely GJ, et al. Impact of proposed IASLC/ATS/ERS classification of lung adenocarcinoma: prognostic subgroups and implications for further revision of staging based on analysis of 514 stage I cases. Mod Pathol. 2011;24:653–64.

    Article  CAS  PubMed  Google Scholar 

  84. Boland JM, Froemming AT, Wampfler JA, et al. Adenocarcinoma in situ, minimally invasive adenocarcinoma, and invasive pulmonary adenocarcinoma–analysis of interobserver agreement, survival, radiographic characteristics, and gross pathology in 296 nodules. Hum Pathol. 2016;51:41–50.

    Article  PubMed  Google Scholar 

  85. Van Schil PE, Asamura H, Rusch VW, et al. Surgical implications of the new IASLC/ATS/ERS adenocarcinoma classification. Eur Respir J. 2012;39:478–86.

    Article  PubMed  Google Scholar 

  86. Shah PL, Singh S, Bower M, et al. The role of transbronchial fine needle aspiration in an integrated care pathway for the assessment of patients with suspected lung cancer. J Thorac Oncol. 2006;1:324–7.

    Article  PubMed  Google Scholar 

  87. Thunnissen E, Beasley MB, Borczuk AC, et al. Reproducibility of histopathological subtypes and invasion in pulmonary adenocarcinoma. An international interobserver study. Mod Pathol. 2012;25:1574–83.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Yanagawa N, Shiono S, Abiko M, et al. New IASLC/ATS/ERS classification and invasive tumor size are predictive of disease recurrence in stage I lung adenocarcinoma. J Thorac Oncol. 2013;8:612–8.

    Article  PubMed  Google Scholar 

  89. Warth A, Cortis J, Fink L, et al. Pulmonary Pathology Working Group of the German Society of Pathology. Training increases concordance in classifying pulmonary adenocarcinomas according to the novel IASLC/ATS/ERS classification. Virchows Arch. 2012;461:185–93.

    Article  PubMed  Google Scholar 

  90. Warth A, Stenzinger A, von Brünneck AC, et al. Interobserver variability in the application of the novel IASLC/ATS/ERS classification for pulmonary adenocarcinomas. Eur Respir J. 2012;40:1221–7.

    Article  PubMed  Google Scholar 

  91. Sakurai H, Asamura H, Miyaoka E, et al. Japanese Joint Committee of Lung Cancer Registry. Differences in the prognosis of resected lung adenocarcinoma according to the histological subtype: a retrospective analysis of Japanese lung cancer registry data. Eur J Cardiothorac Surg. 2014;45:100–7.

    Article  PubMed  Google Scholar 

  92. Yu Y, Jian H, Shen L, et al. Lymph node involvement influenced by lung adenocarcinoma subtypes in tumor size ≤3 cm disease: a study of 2268 cases. Eur J Surg Oncol. 2016;42:1714–9.

    Article  CAS  PubMed  Google Scholar 

  93. Nakagiri T, Sawabata N, Morii E, et al. Evaluation of the new IASLC/ATS/ERS proposed classification of adenocarcinoma based on lepidic pattern in patients with pathological stage IA pulmonary adenocarcinoma. Gen Thorac Cardiovasc Surg. 2014;62:671–7.

    Article  PubMed  Google Scholar 

  94. Kadota K, Villena-Vargas J, Yoshizawa A, et al. Prognostic significance of adenocarcinoma in situ, minimally invasive adenocarcinoma, and nonmucinous lepidic predominant invasive adenocarcinoma of the lung in patients with stage I disease. Am J Surg Pathol. 2014;38:448–60.

    Article  PubMed  PubMed Central  Google Scholar 

  95. Lee MC, Kadota K, Buitrago D, et al. Implementing the new IASLC/ATS/ERS classification of lung adenocarcinomas: results from international and Chinese cohorts. J Thorac Dis. 2014;6:S568–80.

    PubMed  PubMed Central  Google Scholar 

  96. Okada M. Subtyping lung adenocarcinoma according to the novel 2011 IASLC/ATS/ERS classification: correlation with patient prognosis. Thorac Surg Clin. 2013;23:179–86.

    Article  PubMed  Google Scholar 

  97. Woo T, Okudela K, Mitsui H, et al. Prognostic value of the IASLC/ATS/ERS classification of lung adenocarcinoma in stage I disease of Japanese cases. Pathol Int. 2012;62:785–91.

    Article  CAS  PubMed  Google Scholar 

  98. Yoshizawa A, Sumiyoshi S, Sonobe M, et al. Validation of the IASLC/ATS/ERS lung adenocarcinoma classification for prognosis and association with EGFR and KRAS gene mutations: analysis of 440 Japanese patients. J Thorac Oncol. 2013;8:52–61.

    Article  CAS  PubMed  Google Scholar 

  99. Russell PA, Wainer Z, Wright GM, et al. Does lung adenocarcinoma subtype predict patient survival?: a clinicopathologic study based on the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society international multidisciplinary lung adenocarcinoma classification. J Thorac Oncol. 2011;6:1496–504.

    Article  PubMed  Google Scholar 

  100. Zugazagoitia J, Enguita AB, Nuñez JA, et al. The new IASLC/ATS/ERS lung adenocarcinoma classification from a clinical perspective: current concepts and future prospects. J Thorac Dis. 2014;6:S526–36.

    PubMed  PubMed Central  Google Scholar 

  101. Weissferdt A, Kalhor N, Marom EM, et al. Early-stage pulmonary adenocarcinoma (T1N0M0): a clinical, radiological, surgical, and pathological correlation of 104 cases. The MD Anderson Cancer Center Experience. Mod Pathol. 2013;26:1065–75.

    Article  PubMed  Google Scholar 

  102. Urer HN, Kocaturk CI, Gunluoglu MZ, et al. Relationship between lung adenocarcinoma histological subtype and patient prognosis. Ann Thorac Cardiovasc Surg. 2014;20:12–8.

    Article  PubMed  Google Scholar 

  103. Westaway DD, Toon CW, Farzin M, et al. The International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society grading system has limited prognostic significance in advanced resected pulmonary adenocarcinoma. Pathology. 2013;45:553–8.

    Article  PubMed  Google Scholar 

  104. Oskarsdottir GN, Bjornsson J, Jonsson S, et al. Primary adenocarcinoma of the lung--histological subtypes and outcome after surgery, using the IASLC/ATS/ERS classification of lung adenocarcinoma. APMIS. 2016;124:384–92.

    Article  CAS  PubMed  Google Scholar 

  105. Gu J, Lu C, Guo J, et al. Prognostic significance of the IASLC/ATS/ERS classification in Chinese patients-a single institution retrospective study of 292 lung adenocarcinoma. J Surg Oncol. 2013;107:474–80.

    Article  PubMed  Google Scholar 

  106. Yeh YC, Wu YC, Chen CY, et al. Stromal invasion and micropapillary pattern in 212 consecutive surgically resected stage I lung adenocarcinomas: histopathological categories for prognosis prediction. J Clin Pathol. 2012;65:910–8.

    Article  PubMed  Google Scholar 

  107. Tsuta K, Kawago M, Inoue E, et al. The utility of the proposed IASLC/ATS/ERS lung adenocarcinoma subtypes for disease prognosis and correlation of driver gene alterations. Lung Cancer. 2013;81:371–6.

    Article  PubMed  Google Scholar 

  108. Hung JJ, Jeng WJ, Chou TY, et al. Prognostic value of the new International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society lung adenocarcinoma classification on death and recurrence in completely resected stage I lung adenocarcinoma. Ann Surg. 2013;258:1079–86.

    Article  PubMed  Google Scholar 

  109. Song Z, Zhu H, Guo Z, et al. Prognostic value of the IASLC/ATS/ERS classification in stage I lung adenocarcinoma patients--based on a hospital study in China. Eur J Surg Oncol. 2013;39:1262–8.

    Article  CAS  PubMed  Google Scholar 

  110. Zhang J, Wu J, Tan Q, et al. Why do pathological stage IA lung adenocarcinomas vary from prognosis?: a clinicopathologic study of 176 patients with pathological stage IA lung adenocarcinoma based on the IASLC/ATS/ERS classification. J Thorac Oncol. 2013;8:1196–202.

    Article  CAS  PubMed  Google Scholar 

  111. Hung JJ, Yeh YC, Jeng WJ, et al. Predictive value of the international association for the study of lung cancer/American Thoracic Society/European Respiratory Society classification of lung adenocarcinoma in tumor recurrence and patient survival. J Clin Oncol. 2014;32:2357–64.

    Article  PubMed  Google Scholar 

  112. Ito M, Miyata Y, Kushitani K, et al. Prediction for prognosis of resected pT1a-1bN0M0 adenocarcinoma based on tumor size and histological status: relationship of TNM and IASLC/ATS/ERS classifications. Lung Cancer. 2014;85:270–5.

    Article  PubMed  Google Scholar 

  113. Fujimoto N, Segawa Y, Takigawa N, et al. Clinical investigation of bronchioloalveolar carcinoma: a retrospective analysis of 53 patients in a single institution. Anticancer Res. 1999;19:1369–73.

    CAS  PubMed  Google Scholar 

  114. Ebright MI, Zakowski MF, Martin J, et al. Clinical pattern and pathologic stage but not histologic features predict outcome for bronchioloalveolar carcinoma. Ann Thorac Surg. 2002;74:1640–6.

    Article  PubMed  Google Scholar 

  115. Wells JM, Mukhopadhyay S, Mani H. Application of the new proposed adenocarcinoma classification: a reproducibility study. Mod Pathol. 2013;26(Suppl 2):469A.

    Google Scholar 

  116. Lee G, Lee HY, Jeong JY, et al. Clinical impact of minimal micropapillary pattern in invasive lung adenocarcinoma: prognostic significance and survival outcomes. Am J Surg Pathol. 2015;39:660–6.

    Article  PubMed  Google Scholar 

  117. Kadota K, Nitadori J, Sima CS, et al. Tumor spread through air spaces is an important pattern of invasion and impacts the frequency and location of recurrences after limited resection for small stage I lung adenocarcinomas. J Thorac Oncol. 2015;10:806–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Maeshima AM, Tochigi N, Yoshida A, et al. Histological scoring for small lung adenocarcinomas 2 cm or less in diameter: a reliable prognostic indicator. J Thorac Oncol. 2010;5:333–9.

    Article  PubMed  Google Scholar 

  119. Nakazato Y, Maeshima AM, Ishikawa Y, et al. Interobserver agreement in the nuclear grading of primary pulmonary adenocarcinoma. J Thorac Oncol. 2013;8:736–43.

    Article  PubMed  Google Scholar 

  120. von der Thüsen JH, Tham YS, Pattenden H, et al. Prognostic significance of predominant histologic pattern and nuclear grade in resected adenocarcinoma of the lung: potential parameters for a grading system. J Thorac Oncol. 2013;8:37–44.

    Article  PubMed  Google Scholar 

  121. Trejo Bittar HE, Incharoen P, Althouse AD, et al. Accuracy of the IASLC/ATS/ERS histological subtyping of stage I lung adenocarcinoma on intraoperative frozen sections. Mod Pathol. 2015;28:1058–63.

    Article  PubMed  Google Scholar 

  122. Yeh YC, Kadota K, Nitadori J, et al. International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification predicts occult lymph node metastasis in clinically mediastinal node-negative lung adenocarcinoma. Eur J Cardiothorac Surg. 2016;49:e9–e15.

    Article  PubMed  Google Scholar 

  123. Miller RR, Nelems B, Evans KG, et al. Glandular neoplasia of the lung. A proposed analogy to colonic tumors. Cancer. 1988;61:1009–14.

    Article  CAS  PubMed  Google Scholar 

  124. Mori M, Rao SK, Popper HH, et al. Atypical adenomatous hyperplasia of the lung: a probable forerunner in the development of adenocarcinoma of the lung. Mod Pathol. 2001;14:72–84.

    Article  CAS  PubMed  Google Scholar 

  125. Koga T, Hashimoto S, Sugio K, et al. Lung adenocarcinoma with bronchioloalveolar carcinoma component is frequently associated with foci of high-grade atypical adenomatous hyperplasia. Am J Clin Pathol. 2002;117:464–70.

    Article  PubMed  Google Scholar 

  126. Colby TV, Wistuba II, Gazdar A. Precursors to pulmonary neoplasia. Adv Anat Pathol. 1998;5:205–15.

    Article  CAS  PubMed  Google Scholar 

  127. Kerr KM, MacKenzie SJ, Ramasami S, et al. Expression of Fhit, cell adhesion molecules and matrix metalloproteinases in atypical adenomatous hyperplasia and pulmonary adenocarcinoma. J Pathol. 2004;203:638–44.

    Article  CAS  PubMed  Google Scholar 

  128. Sasatomi E, Johnson LR, Aldeeb DN, et al. Genetic profile of cumulative mutational damage associated with early pulmonary adenocarcinoma: bronchioloalveolar carcinoma vs. stage I invasive adenocarcinoma. Am J Surg Pathol. 2004;28:1280–8.

    Article  PubMed  Google Scholar 

  129. Kerr KM. Pulmonary preinvasive neoplasia. J Clin Pathol. 2001;54:257–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Yousem SA, Beasley MB. Bronchioloalveolar carcinoma: a review of current concepts and evolving issues. Arch Pathol Lab Med. 2007;131:1027–32.

    Article  PubMed  Google Scholar 

  131. Silver SA, Askin FB. True papillary carcinoma of the lung: a distinct clinicopathologic entity. Am J Surg Pathol. 1997;21:43–51.

    Article  CAS  PubMed  Google Scholar 

  132. Aida S, Shimazaki H, Sato K, et al. Prognostic analysis of pulmonary adenocarcinoma subclassification with special consideration of papillary and bronchioloalveolar types. Histopathology. 2004;45:468–76.

    Article  CAS  PubMed  Google Scholar 

  133. Moran CA, Jagirdar J, Suster S. Papillary lung carcinoma with prominent “morular” component. Am J Clin Pathol. 2004;122:106–9.

    Article  PubMed  Google Scholar 

  134. Amin MB, Tamboli P, Merchant SH, et al. Micropapillary component in lung adenocarcinoma: a distinctive histologic feature with possible prognostic significance. Am J Surg Pathol. 2002;26:358–64.

    Article  PubMed  Google Scholar 

  135. Makimoto Y, Nabeshima K, Iwasaki H, et al. Micropapillary pattern: a distinct pathological marker to subclassify tumours with a significantly poor prognosis within small peripheral lung adenocarcinoma (≤20 mm) with mixed bronchioloalveolar and invasive subtypes (Noguchi’s type C tumours). Histopathology. 2005;46:677–84.

    Article  CAS  PubMed  Google Scholar 

  136. Kuroda N, Hamaguchi N, Takeuchi E, et al. Lung adenocarcinoma with a micropapillary pattern: a clinicopathological study of 25 cases. APMIS. 2006;114:381–5.

    Article  CAS  PubMed  Google Scholar 

  137. Miyoshi T, Satoh Y, Okumura S, et al. Early-stage lung adenocarcinomas with a micropapillary pattern, a distinct pathologic marker for a significantly poor prognosis. Am J Surg Pathol. 2003;27:101–9.

    Article  PubMed  Google Scholar 

  138. Moran CA, Hochholzer L, Fishback N, et al. Mucinous (so-called colloid) carcinomas of lung. Mod Pathol. 1992;5:634–8.

    CAS  PubMed  Google Scholar 

  139. Kragel PJ, Devaney KO, Meth BM, et al. Mucinous cystadenoma of the lung. A report of two cases with immunohistochemical and ultrastructural analysis. Arch Pathol Lab Med. 1990;114:1053–6.

    CAS  PubMed  Google Scholar 

  140. Dixon AY, Moran JF, Wesselius LJ, et al. Pulmonary mucinous cystic tumor. Case report with review of the literature. Am J Surg Pathol. 1993;17:722–8.

    Article  CAS  PubMed  Google Scholar 

  141. Graeme-Cook F, Mark EJ. Pulmonary mucinous cystic tumors of borderline malignancy. Hum Pathol. 1991;22:185–90.

    Article  CAS  PubMed  Google Scholar 

  142. Young RH, Gilks CB, Scully RE. Mucinous tumors of the appendix associated with mucinous tumors of the ovary and pseudomyxoma peritonei. A clinicopathological analysis of 22 cases supporting an origin in the appendix. Am J Surg Pathol. 1991;15:415–29.

    Article  CAS  PubMed  Google Scholar 

  143. Fenoglio-Preiser CM, Pascal RR, Perzin K. Tumors of the intestines. Atlas of tumor pathology. Washington, D.C.: Armed Forces Institute of Pathology; 1990.

    Google Scholar 

  144. Scully RE, Young RH, Clement PB. Tumors of the ovary, maldeveloped gonads, fallopian tube, and broad ligament. Atlas of tumor pathology. Washington, D.C.: Armed Forces Institute of Pathology; 1979.

    Google Scholar 

  145. McDivitt RW, Stewart FW, Berg JW. Tumors of the breast. Atlas of Tumor Pathology. Washington, D.C.: Armed Forces Institute of Pathology; 1968.

    Google Scholar 

  146. Zenali MJ, Weissferdt A, Solis LM, et al. An update on clinicopathological, immunohistochemical, and molecular profiles of colloid carcinoma of the lung. Hum Pathol. 2015;46:836–42.

    Article  CAS  PubMed  Google Scholar 

  147. Tsao MS, Fraser RS. Primary pulmonary adenocarcinoma with enteric differentiation. Cancer. 1991;68:1754–7.

    Article  CAS  PubMed  Google Scholar 

  148. Li HC, Schmidt L, Greenson JK, et al. Primary pulmonary adenocarcinoma with intestinal differentiation mimicking metastatic colorectal carcinoma: case report and review of literature. Am J Clin Pathol. 2009;131:129–33.

    Article  PubMed  Google Scholar 

  149. Ishikura H, Kanda M, Ito M, et al. Hepatoid adenocarcinoma: a distinctive histological subtype of alpha-fetoprotein-producing lung carcinoma. Virchows Arch A Pathol Anat Histopathol. 1990;417:73–80.

    Article  CAS  PubMed  Google Scholar 

  150. Arnould L, Drouot F, Fargeot P, et al. Hepatoid adenocarcinoma of the lung: report of a case of an unusual alpha-fetoprotein-producing lung tumor. Am J Surg Pathol. 1997;21:1113–8.

    Article  CAS  PubMed  Google Scholar 

  151. Nasu M, Soma T, Fukushima H, et al. Hepatoid carcinoma of the lung with production of alpha-fetoprotein and abnormal prothrombin: an autopsy case report. Mod Pathol. 1997;10:1054–8.

    CAS  PubMed  Google Scholar 

  152. Carlinfante G, Foschini MP, Pasquinelli G, et al. Hepatoid carcinoma of the lung: a case report with immunohistochemical, ultrastructural and in-situ hybridization findings. Histopathology. 2000;37:88–9.

    Article  CAS  PubMed  Google Scholar 

  153. Yasunami R, Hashimoto Z, Ogura T, et al. Primary lung cancer producing alpha-fetoprotein: a case report. Cancer. 1981;47:926–9.

    Article  CAS  PubMed  Google Scholar 

  154. Hayashi Y, Takanashi Y, Ohsawa H, et al. Hepatoid adenocarcinoma in the lung. Lung Cancer. 2002;38:211–4.

    Article  PubMed  Google Scholar 

  155. Steinhauer JR, Moran CA, Suster S. ‘Secretory endometrioid-like’ adenocarcinoma of the lung. Histopathology. 2005;47:219–20.

    Article  CAS  PubMed  Google Scholar 

  156. Kish JK, Ro JY, Ayala AG, et al. Primary mucinous adenocarcinoma of the lung with signet-ring cells: a histochemical comparison with signet-ring cell carcinomas of other sites. Hum Pathol. 1989;20:1097–102.

    Article  CAS  PubMed  Google Scholar 

  157. Sarma DP, Hoffmann EO. Primary signet-ring cell carcinoma of the lung. Hum Pathol. 1990;21:459–60.

    Article  CAS  PubMed  Google Scholar 

  158. Hayashi H, Kitamura H, Nakatani Y, et al. Primary signet-ring cell carcinoma of the lung: histochemical and immunohistochemical characterization. Hum Pathol. 1999;30:378–83.

    Article  CAS  PubMed  Google Scholar 

  159. Butala RM, Moscovic EA. Neuroendocrine markers in pulmonary adenocarcinomas with signet-ring cells. Hum Pathol. 1990;21:1082.

    Article  CAS  PubMed  Google Scholar 

  160. Castro CY, Moran CA, Flieder DG, et al. Primary signet ring cell adenocarcinomas of the lung: a clinicopathological study of 15 cases. Histopathology. 2001;39:397–401.

    Article  CAS  PubMed  Google Scholar 

  161. Solis LM, Raso MG, Kalhor N, et al. Primary oncocytic adenocarcinomas of the lung: a clinicopathologic, immunohistochemical, and molecular biologic analysis of 16 cases. Am J Clin Pathol. 2010;133:133–40.

    Article  PubMed  Google Scholar 

  162. Kerr KM. Pulmonary adenocarcinomas: classification and reporting. Histopathology. 2009;54:12–27.

    Article  PubMed  Google Scholar 

  163. Kadota K, Yeh YC, Sima CS, et al. The cribriform pattern identifies a subset of acinar predominant tumors with poor prognosis in patients with stage I lung adenocarcinoma: a conceptual proposal to classify cribriform predominant tumors as a distinct histologic subtype. Mod Pathol. 2014;27:690–700.

    Article  PubMed  Google Scholar 

  164. Moreira AL, Joubert P, Downey RJ, et al. Cribriform and fused glands are patterns of high-grade pulmonary adenocarcinoma. Hum Pathol. 2014;45:213–20.

    Article  CAS  PubMed  Google Scholar 

  165. Mackinnon AC Jr, Luevano A, de Araujo LC, et al. Cribriform adenocarcinoma of the lung: clinicopathologic, immunohistochemical, and molecular analysis of 15 cases of a distinctive morphologic subtype of lung adenocarcinoma. Mod Pathol. 2014;27:1063–72.

    Article  CAS  PubMed  Google Scholar 

  166. Copeland JN, Amin MB, Humphrey PA, et al. The morphologic spectrum of metastatic prostatic adenocarcinoma to the lung: special emphasis on histologic features overlapping with other pulmonary neoplasms. Am J Clin Pathol. 2002;117:552–7.

    Article  PubMed  Google Scholar 

  167. Herbst J, Jenders R, McKenna R, et al. Evidence-based criteria to help distinguish metastatic breast cancer from primary lung adenocarcinoma on thoracic frozen section. Am J Clin Pathol. 2009;131:122–8.

    Article  PubMed  Google Scholar 

  168. Brambilla E, Pugatch B, Gesinger A, et al. Large cell carcinoma. In: Travis WD, Brambilla E, Müller-Hermelink K, et al., editors. Tumours of the lung, pleura, thymus, and heart. In: Pathology & genetics, World Health Organization. Lyon, France: IARC Press; 2004. p. 45–50.

    Google Scholar 

  169. Cavazza A, Colby TV, Tsokos M, et al. Lung tumors with a rhabdoid phenotype. Am J Clin Pathol. 1996;105:182–8.

    Article  CAS  PubMed  Google Scholar 

  170. Izquierdo-Garcia FM, Moreno-Mata N, Herranz-Aladro ML, et al. Lung carcinoma with rhabdoid component. A series of seven cases associated with uncommon types of non-small cell lung carcinomas and alveolar entrapment. Histol Histopathol. 2010;25:1287–95.

    PubMed  Google Scholar 

  171. Dettmer M, Hench J, Pang B, et al. Rhabdoid large cell carcinoma of lung, with illustrative immunohistochemical and molecular findings. Appl Immunohistochem Mol Morphol. 2012;20:208–13.

    Article  CAS  PubMed  Google Scholar 

  172. Rossi G, Mengoli MC, Cavazza A, et al. Large cell carcinoma of the lung: clinically oriented classification integrating immunohistochemistry and molecular biology. Virchows Arch. 2014;464:61–8.

    Article  CAS  PubMed  Google Scholar 

  173. Park WY, Kim MH, Shin DH, et al. Ciliated adenocarcinomas of the lung: a tumor of non-terminal respiratory unit origin. Mod Pathol. 2012;25:1265–74.

    Article  PubMed  Google Scholar 

  174. Edwards C, Carlile A. Clear cell carcinoma of the lung. J Clin Pathol. 1985;38:880–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  175. Gaffey MJ, Mills SE, Ritter JH. Clear cell tumors of the lower respiratory tract. Semin Diagn Pathol. 1997;14:222–32.

    CAS  PubMed  Google Scholar 

  176. Katzenstein AL, Prioleau PG, Askin FB. The histologic spectrum and significance of clear-cell change in lung carcinoma. Cancer. 1980;45:943–7.

    Article  CAS  PubMed  Google Scholar 

  177. Otis CN, Carter D, Cole S, et al. Immunohistochemical evaluation of pleural mesothelioma and pulmonary adenocarcinoma. A bi-institutional study of 47 cases. Am J Surg Pathol. 1987;11:445–56.

    Article  CAS  PubMed  Google Scholar 

  178. Wick MR, Loy T, Mills SE, et al. Malignant epithelioid pleural mesothelioma versus peripheral pulmonary adenocarcinoma: a histochemical, ultrastructural, and immunohistologic study of 103 cases. Hum Pathol. 1990;21:759–66.

    Article  CAS  PubMed  Google Scholar 

  179. Johansson L. Histopathologic classification of lung cancer: relevance of cytokeratin and TTF-1 immunophenotyping. Ann Diagn Pathol. 2004;8:259–67.

    Article  PubMed  Google Scholar 

  180. Comin CE, Novelli L, Boddi V, et al. Calretinin, thrombomodulin, CEA, and CD15: a useful combination of immunohistochemical markers for differentiating pleural epithelial mesothelioma from peripheral pulmonary adenocarcinoma. Hum Pathol. 2001;32:529–36.

    Article  CAS  PubMed  Google Scholar 

  181. Ordóñez NG. The immunohistochemical diagnosis of mesothelioma: a comparative study of epithelioid mesothelioma and lung adenocarcinoma. Am J Surg Pathol. 2003;27:1031–5.

    Article  PubMed  Google Scholar 

  182. Abutaily AS, Addis BJ, Roche WR. Immunohistochemistry in the distinction between malignant mesothelioma and pulmonary adenocarcinoma: a critical evaluation of new antibodies. J Clin Pathol. 2002;55:662–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Garcia-Prats MD, Ballestin C, Sotelo T, et al. A comparative evaluation of immunohistochemical markers for the differential diagnosis of malignant pleural tumours. Histopathology. 1998;32:462–72.

    Article  CAS  PubMed  Google Scholar 

  184. Roberts F, McCall AE, Burnett RA. Malignant mesothelioma: a comparison of biopsy and postmortem material by light microscopy and immunohistochemistry. J Clin Pathol. 2001;54:766–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Ordóñez NG. Value of the MOC-31 monoclonal antibody in differentiating epithelial pleural mesothelioma from lung adenocarcinoma. Hum Pathol. 1998;29:166–9.

    Article  PubMed  Google Scholar 

  186. Ordóñez NG. Value of the Ber-EP4 antibody in differentiating epithelial pleural mesothelioma from adenocarcinoma. The M.D. Anderson experience and a critical review of the literature. Am J Clin Pathol. 1998;109:85–9.

    Article  PubMed  Google Scholar 

  187. Morgan RL, De Young BR, McGaughy VR, et al. MOC-31 aids in the differentiation between adenocarcinoma and reactive mesothelial cells. Cancer. 1999;87:390–4.

    Article  CAS  PubMed  Google Scholar 

  188. Chu P, Wu E, Weiss LM. Cytokeratin 7 and cytokeratin 20 expression in epithelial neoplasms: a survey of 435 cases. Mod Pathol. 2000;13:962–72.

    Article  CAS  PubMed  Google Scholar 

  189. Kim DH, Joo JE, Kim EK, et al. The expressions of cytokeratin 7 and 20 in epithelial tumors: a survey of 91 cases. Cancer Res Treat. 2003;35:355–63.

    Article  PubMed  Google Scholar 

  190. Tot T. Cytokeratins 20 and 7 as biomarkers: usefulness in discriminating primary from metastatic adenocarcinoma. Eur J Cancer. 2002;38:758–63.

    Article  CAS  PubMed  Google Scholar 

  191. Nicholson AG, McCormick CJ, Shimosato Y, et al. The value of PE-10, a monoclonal antibody against pulmonary surfactant, in distinguishing primary and metastatic lung tumours. Histopathology. 1995;27:57–60.

    Article  CAS  PubMed  Google Scholar 

  192. Kaufmann O, Dietel M. Thyroid transcription factor-1 is the superior immunohistochemical marker for pulmonary adenocarcinomas and large cell carcinomas compared to surfactant proteins A and B. Histopathology. 2000;36:8–16.

    Article  CAS  PubMed  Google Scholar 

  193. Zamecnik J, Kodet R. Value of thyroid transcription factor-1 and surfactant apoprotein A in the differential diagnosis of pulmonary carcinomas: a study of 109 cases. Virchows Arch. 2002;440:353–61.

    Article  CAS  PubMed  Google Scholar 

  194. Yang M, Nonaka D. A study of immunohistochemical differential expression in pulmonary and mammary carcinomas. Mod Pathol. 2010;23:654–61.

    Article  CAS  PubMed  Google Scholar 

  195. Stahlman MT, Gray ME, Whitsett JA. Expression of thyroid transcription factor-1(TTF-1) in fetal and neonatal human lung. J Histochem Cytochem. 1996;44:673–8.

    Article  CAS  PubMed  Google Scholar 

  196. Khoor A, Whitsett JA, Stahlman MT, et al. Utility of surfactant protein B precursor and thyroid transcription factor 1 in differentiating adenocarcinoma of the lung from malignant mesothelioma. Hum Pathol. 1999;30:695–700.

    Article  CAS  PubMed  Google Scholar 

  197. Ordóñez NG. Value of thyroid transcription factor-1 immunostaining in tumor diagnosis: a review and update. Appl Immunohistochem Mol Morphol. 2012;20:429–44.

    Article  PubMed  CAS  Google Scholar 

  198. Ordóñez NG. Utilization of thyroid transcription factor-1 immunostaining in the diagnosis of lung tumors. Methods Mol Med. 2003;75:355–68.

    PubMed  Google Scholar 

  199. Ordóñez NG. Napsin A expression in lung and kidney neoplasia: a review and update. Adv Anat Pathol. 2012;19:66–73.

    Article  PubMed  CAS  Google Scholar 

  200. Hirano T, Auer G, Maeda M, et al. Human tissue distribution of TA02, which is homologous with a new type of aspartic proteinase, napsin A. Jpn J Cancer Res. 2000;91:1015–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Hirano T, Gong Y, Yoshida K, et al. Usefulness of TA02 (napsin A) to distinguish primary lung adenocarcinoma from metastatic lung adenocarcinoma. Lung Cancer. 2003;41:155–62.

    Article  PubMed  Google Scholar 

  202. Saad RS, Liu YL, Han H, et al. Prognostic significance of thyroid transcription factor-1 expression in both early-stage conventional adenocarcinoma and bronchioloalveolar carcinoma of the lung. Hum Pathol. 2004;35:3–7.

    Article  CAS  PubMed  Google Scholar 

  203. Nottegar A, Tabbò F, Luchini C, et al. Pulmonary adenocarcinoma with enteric differentiation: immunohistochemistry and molecular morphology. Appl Immunohistochem Mol Morphol. 2018;26(6):383–7.

    Article  CAS  PubMed  Google Scholar 

  204. Chang YL, Lee YC, Liao WY, et al. The utility and limitation of thyroid transcription factor-1 protein in primary and metastatic pulmonary neoplasms. Lung Cancer. 2004;44:149–57.

    Article  PubMed  Google Scholar 

  205. Lau SK, Desrochers MJ, Luthringer DJ. Expression of thyroid transcription factor-1, cytokeratin 7, and cytokeratin 20 in bronchioloalveolar carcinomas: an immunohistochemical evaluation of 67 cases. Mod Pathol. 2002;15:538–42.

    Article  PubMed  Google Scholar 

  206. Goldstein NS, Thomas M. Mucinous and nonmucinous bronchioloalveolar adenocarcinomas have distinct staining patterns with thyroid transcription factor and cytokeratin 20 antibodies. Am J Clin Pathol. 2001;116:319–25.

    Article  CAS  PubMed  Google Scholar 

  207. Simsir A, Wei XJ, Yee H, et al. Differential expression of cytokeratins 7 and 20 and thyroid transcription factor-1 in bronchioloalveolar carcinoma: an immunohistochemical study in fine-needle aspiration biopsy specimens. Am J Clin Pathol. 2004;121:350–7.

    Article  CAS  PubMed  Google Scholar 

  208. Stoll LM, Johnson MW, Gabrielson E, et al. The utility of napsin-A in the identification of primary and metastatic lung adenocarcinoma among cytologically poorly differentiated carcinomas. Cancer Cytopathol. 2010;118:441–9.

    Article  PubMed  Google Scholar 

  209. Agoff SN, Lamps LW, Philip AT, et al. Thyroid transcription factor-1 is expressed in extrapulmonary small cell carcinomas but not in other extrapulmonary neuroendocrine tumors. Mod Pathol. 2000;13:238–42.

    Article  CAS  PubMed  Google Scholar 

  210. Cheuk W, Chan JK. Thyroid transcription factor-1 is of limited value in practical distinction between pulmonary and extrapulmonary small cell carcinomas. Am J Surg Pathol. 2001;25:545–6.

    Article  CAS  PubMed  Google Scholar 

  211. Jones TD, Kernek KM, Yang XJ, et al. Thyroid transcription factor 1 expression in small cell carcinoma of the urinary bladder: an immunohistochemical profile of 44 cases. Hum Pathol. 2005;36:718–23.

    Article  CAS  PubMed  Google Scholar 

  212. Yao JL, Madeb R, Bourne P, et al. Small cell carcinoma of the prostate: an immunohistochemical study. Am J Surg Pathol. 2006;30:705–12.

    Article  PubMed  Google Scholar 

  213. Ordóñez NG. Value of thyroid transcription factor-1 immunostaining in distinguishing small cell lung carcinomas from other small cell carcinomas. Am J Surg Pathol. 2000;24:1217–23.

    Article  PubMed  Google Scholar 

  214. Fujiwara S, Nawa A, Nakanishi T, et al. Thyroid transcription factor 1 expression in ovarian carcinomas is an independent prognostic factor. Hum Pathol. 2010;41:560–5.

    Article  CAS  PubMed  Google Scholar 

  215. Siami K, McCluggage WG, Ordonez NG, et al. Thyroid transcription factor-1 expression in endometrial and endocervical adenocarcinomas. Am J Surg Pathol. 2007;31:1759–63.

    Article  PubMed  Google Scholar 

  216. Zhang PJ, Gao HG, Pasha TL, et al. TTF-1 expression in ovarian and uterine epithelial neoplasia and its potential significance, an immunohistochemical assessment with multiple monoclonal antibodies and different secondary detection systems. Int J Gynecol Pathol. 2009;28:10–8.

    Article  PubMed  Google Scholar 

  217. Han CP, Kok LF, Lee MY, et al. Five commonly used markers (p53, TTF1, CK7, CK20, and CK34betaE12) are of no use in distinguishing between primary endocervical and endometrial adenocarcinomas in a tissue microarray extension study. Arch Gynecol Obstet. 2010;281:317–23.

    Article  CAS  PubMed  Google Scholar 

  218. Robens J, Goldstein L, Gown AM, et al. Thyroid transcription factor-1 expression in breast carcinomas. Am J Surg Pathol. 2010;34:1881–5.

    Article  PubMed  Google Scholar 

  219. Compérat E, Zhang F, Perrotin C, et al. Variable sensitivity and specificity of TTF-1 antibodies in lung metastatic adenocarcinoma of colorectal origin. Mod Pathol. 2005;18:1371–6.

    Article  PubMed  CAS  Google Scholar 

  220. Matoso A, Singh K, Jacob R, et al. Comparison of thyroid transcription factor-1 expression by 2 monoclonal antibodies in pulmonary and nonpulmonary primary tumors. Appl Immunohistochem Mol Morphol. 2010;18:142–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  221. Bisceglia M, Ragazzi M, Galliani CA, et al. TTF-1 expression in nephroblastoma. Am J Surg Pathol. 2009;33:454–61.

    Article  PubMed  Google Scholar 

  222. Ueno T, Linder S, Elmberger G. Aspartic proteinase napsin is a useful marker for diagnosis of primary lung adenocarcinoma. Br J Cancer. 2003;88:1229–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  223. Inamura K, Satoh Y, Okumura S, et al. Pulmonary adenocarcinomas with enteric differentiation: histologic and immunohistochemical characteristics compared with metastatic colorectal cancers and usual pulmonary adenocarcinomas. Am J Surg Pathol. 2005;29:660–5.

    Article  PubMed  Google Scholar 

  224. Fatima N, Cohen C, Lawson D, et al. TTF-1 and Napsin A double stain: a useful marker for diagnosing lung adenocarcinoma on fine-needle aspiration cell blocks. Cancer Cytopathol. 2011;119:127–33.

    Article  CAS  PubMed  Google Scholar 

  225. Ye J, Findeis-Hosey JJ, Yang Q, et al. Combination of napsin A and TTF-1 immunohistochemistry helps in differentiating primary lung adenocarcinoma from metastatic carcinoma in the lung. Appl Immunohistochem Mol Morphol. 2011;19:313–7.

    Article  CAS  PubMed  Google Scholar 

  226. Dejmek A, Naucler P, Smedjeback A, et al. Napsin A (TA02) is a useful alternative to thyroid transcription factor-1 (TTF-1) for the identification of pulmonary adenocarcinoma cells in pleural effusions. Diagn Cytopathol. 2007;35:493–7.

    Article  PubMed  Google Scholar 

  227. Bishop JA, Sharma R, Illei PB. Napsin A and thyroid transcription factor-1 expression in carcinomas of the lung, breast, pancreas, colon, kidney, thyroid, and malignant mesothelioma. Hum Pathol. 2010;41:20–5.

    Article  CAS  PubMed  Google Scholar 

  228. Terry J, Leung S, Laskin J, et al. Optimal immunohistochemical markers for distinguishing lung adenocarcinomas from squamous cell carcinomas in small tumor samples. Am J Surg Pathol. 2010;34:1805–11.

    Article  PubMed  Google Scholar 

  229. Kim JH, Kim YS, Choi YD, et al. Utility of napsin A and thyroid transcription factor 1 in differentiating metastatic pulmonary from non-pulmonary adenocarcinoma in pleural effusion. Acta Cytol. 2011;55:266–70.

    Article  CAS  PubMed  Google Scholar 

  230. Mukhopadhyay S, Katzenstein AL. Subclassification of non-small cell lung carcinomas lacking morphologic differentiation on biopsy specimens: utility of an immunohistochemical panel containing TTF-1, napsin A, p63, and CK5/6. Am J Surg Pathol. 2011;35:15–25.

    Article  PubMed  Google Scholar 

  231. Turner BM, Cagle PT, Sainz IM, et al. Napsin A, new marker for lung adenocarcinoma, is complementary and more sensitive and specific than thyroid transcription factor 1 in the differential diagnosis of primary pulmonary carcinoma: evaluation of 1674 cases by tissue microarray. Arch Pathol Lab Med. 2012;136:163–71.

    Article  PubMed  Google Scholar 

  232. Mukhopadhyay S, Katzenstein AL. Comparison of monoclonal napsin A, polyclonal napsin A, and TTF-1 for determining lung origin in metastatic adenocarcinomas. Am J Clin Pathol. 2012;138:703–11.

    Article  PubMed  Google Scholar 

  233. Aulakh KS, Chisholm CD, Smith DA, et al. TTF-1 and napsin A do not differentiate metastatic lung adenocarcinomas from primary esophageal adenocarcinomas: proposal of a novel staining panel. Arch Pathol Lab Med. 2013;137:1094–8.

    Article  PubMed  Google Scholar 

  234. Kim MY, Go H, Koh J, et al. Napsin A is a useful marker for metastatic adenocarcinomas of pulmonary origin. Histopathology. 2014;65:195–206.

    Article  PubMed  Google Scholar 

  235. Pelosi G, Pasini F, Olsen Stenholm C, et al. p63 immunoreactivity in lung cancer: yet another player in the development of squamous cell carcinomas? J Pathol. 2002;198:100–9.

    Article  CAS  PubMed  Google Scholar 

  236. Au NH, Gown AM, Cheang M, et al. p63 expression in lung carcinoma: a tissue microarray study of 408 cases. Appl Immunohistochem Mol Morphol. 2004;12:240–7.

    Article  CAS  PubMed  Google Scholar 

  237. Bishop JA, Teruya-Feldstein J, Westra WH, et al. p40 (ΔNp63) is superior to p63 for the diagnosis of pulmonary squamous cell carcinoma. Mod Pathol. 2012;25:405–15.

    Article  CAS  PubMed  Google Scholar 

  238. Nonaka D. A study of ΔNp63 expression in lung non-small cell carcinomas. Am J Surg Pathol. 2012;36:895–9.

    Article  PubMed  Google Scholar 

  239. Rekhtman N, Ang DC, Sima CS, et al. Immunohistochemical algorithm for differentiation of lung adenocarcinoma and squamous cell carcinoma based on large series of whole-tissue sections with validation in small specimens. Mod Pathol. 2011;24:1348–59.

    Article  PubMed  Google Scholar 

  240. Cowan ML, Li QK, Illei PB. CDX-2 Expression in primary lung adenocarcinoma. Appl Immunohistochem Mol Morphol. 2016;24:16–9.

    Article  CAS  PubMed  Google Scholar 

  241. Gerber DE, Gandhi L, Costa DB. Management and future directions in non-small cell lung cancer with known activating mutations. Am Soc Clin Oncol Educ Book. 2014;34(1):e353–65.

    Article  Google Scholar 

  242. Stoll LM. Biomarkers in lung adenocarcinoma: a decade of progress. Arch Pathol Lab Med. 2015;139:469–80.

    Article  Google Scholar 

  243. Casali C, Rossi G, Marchioni A, et al. A single institution-based retrospective study of surgically treated bronchioloalveolar adenocarcinoma of the lung: clinicopathologic analysis, molecular features, and possible pitfalls in routine practice. J Thorac Oncol. 2010;5:830–6.

    Article  PubMed  Google Scholar 

  244. Sharma SV, Bell DW, Settleman J, et al. Epidermal growth factor receptor mutations in lung cancer. Nat Rev Cancer. 2007;7:169–81.

    Article  CAS  PubMed  Google Scholar 

  245. Kim J, Jang SJ, Choi CM, et al. Correlation of histologic subtypes and molecular alterations in pulmonary adenocarcinoma: therapeutic and prognostic implications. Adv Anat Pathol. 2016;23:330–8.

    Article  CAS  PubMed  Google Scholar 

  246. Regales L, Gong Y, Shen R, et al. Dual targeting of EGFR can overcome a major drug resistance mutation in mouse models of EGFR mutant lung cancer. J Clin Invest. 2009;119:3000–10.

    CAS  PubMed  PubMed Central  Google Scholar 

  247. Zhou W, Ercan D, Chen L, et al. Novel mutant-selective EGFR kinase inhibitors against EGFR T790M. Nature. 2009;462:1070–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Yu HA, Arcila ME, Rekhtman N, et al. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  249. Bean J, Brennan C, Shih JY, et al. MET amplification occurs with or without T790M mutations in EGFR mutant lung tumors with acquired resistance to gefitinib or erlotinib. Proc Natl Acad Sci U S A. 2007;104:20932–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  250. Sequist LV, Waltman BA, Dias-Santagata D, et al. Genotypic and histological evolution of lung cancers acquiring resistance to EGFR inhibitors. Sci Transl Med. 2011;3:75ra26.

    Article  PubMed  PubMed Central  Google Scholar 

  251. Riely GJ, Kris MG, Rosenbaum D, et al. Frequency and distinctive spectrum of KRAS mutations in never smokers with lung adenocarcinoma. Clin Cancer Res. 2008;14:5731–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ying M, Zhu XX, Zhao Y, et al. KRAS mutation as a biomarker for survival in patients with non-small cell lung cancer, a meta-analysis of 12 randomized trials. Asian Pac J Cancer Prev. 2015;16:4439–45.

    Article  PubMed  Google Scholar 

  253. Finberg KE, Sequist LV, Joshi VA, et al. Mucinous differentiation correlates with absence of EGFR mutation and presence of KRAS mutation in lung adenocarcinomas with bronchioloalveolar features. J Mol Diagn. 2007;9:320–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  254. Yatabe Y. EGFR mutations and the terminal respiratory unit. Cancer Metastasis Rev. 2010;29:23–36.

    Article  CAS  PubMed  Google Scholar 

  255. Paik JH, Choi CM, Kim H, et al. Clinicopathologic implication of ALK rearrangement in surgically resected lung cancer: a proposal of diagnostic algorithm for ALK-rearranged adenocarcinoma. Lung Cancer. 2012;76:403–9.

    Article  PubMed  Google Scholar 

  256. Sasaki T, Rodig SJ, Chirieac LR, et al. The biology and treatment of EML4-ALK non-small cell lung cancer. Eur J Cancer. 2010;46:1773–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  257. Inamura K, Takeuchi K, Togashi Y, et al. EML4-ALK lung cancers are characterized by rare other mutations, a TTF-1 cell lineage, an acinar histology, and young onset. Mod Pathol. 2009;22:508–15.

    Article  CAS  PubMed  Google Scholar 

  258. Shaw AT, Yeap BY, Mino-Kenudson M, et al. Clinical features and outcome of patients with non-small-cell lung cancer who harbor EML4-ALK. J Clin Oncol. 2009;27:4247–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  259. Rodig SJ, Mino-Kenudson M, Dacic S, et al. Unique clinicopathologic features characterize ALK-rearranged lung adenocarcinoma in the western population. Clin Cancer Res. 2009;15:5216–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  260. Soda M, Choi YL, Enomoto M, et al. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–6.

    Article  CAS  PubMed  Google Scholar 

  261. Choi YL, Soda M, Yamashita Y, et al. ALK Lung Cancer Study Group. EML4-ALK mutations in lung cancer that confer resistance to ALK inhibitors. N Engl J Med. 2010;363:1734–9.

    Article  CAS  PubMed  Google Scholar 

  262. Ou SH, Chalmers ZR, Azada MC, et al. Identification of a novel TMEM106B-ROS1 fusion variant in lung adenocarcinoma by comprehensive genomic profiling. Lung Cancer. 2015;88:352–4.

    Article  PubMed  Google Scholar 

  263. Yoshida A, Kohno T, Tsuta K, Wakai S, Arai Y, Shimada Y, Asamura H, Furuta K, Shibata T, Tsuda H. ROS1-rearranged lung cancer: a clinicopathologic and molecular study of 15 surgical cases. Am J Surg Pathol. 2013;3:554–62.

    Article  Google Scholar 

  264. Shan L, Qiu T, Ling Y, et al. Prevalence and clinicopathological characteristics of HER2 and BRAF mutation in Chinese patients with lung adenocarcinoma. PLoS One. 2015;10:e0130447.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  265. Marchetti A, Felicioni L, Malatesta S, et al. Clinical features and outcome of patients with non-small-cell lung cancer harboring BRAF mutations. J Clin Oncol. 2011;29:3574–9.

    Article  CAS  PubMed  Google Scholar 

  266. Paik PK, Arcila ME, Fara M, et al. Clinical characteristics of patients with lung adenocarcinomas harboring BRAF mutations. J Clin Oncol. 2011;29:2046–51.

    Article  PubMed  PubMed Central  Google Scholar 

  267. Sánchez-Torres JM, Viteri S, Molina MA, et al. BRAF mutant non-small cell lung cancer and treatment with BRAF inhibitors. Transl Lung Cancer Res. 2013;2:244–50.

    PubMed  PubMed Central  Google Scholar 

  268. Yousem SA, Nikiforova M, Nikiforov Y. The histopathology of BRAF-V600E-mutated lung adenocarcinoma. Am J Surg Pathol. 2008;32:1317–21.

    Article  PubMed  Google Scholar 

  269. Ichimura E, Maeshima A, Nakajima T, et al. Expression of c-met/HGF receptor in human non-small cell lung carcinomas in vitro and in vivo and its prognostic significance. Jpn J Cancer Res. 1996;87:1063–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  270. Olivero M, Rizzo M, Madeddu R, et al. Overexpression and activation of hepatocyte growth factor/scatter factor in human non-small-cell lung carcinomas. Br J Cancer. 1996;74:1862–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Ma PC, Jagadeeswaran R, Jagadeesh S, et al. Functional expression and mutations of c-Met and its therapeutic inhibition with SU11274 and small interfering RNA in non-small cell lung cancer. Cancer Res. 2005;65:1479–88.

    Article  CAS  PubMed  Google Scholar 

  272. Frampton GM, Ali SM, Rosenzweig M, et al. Activation of MET via diverse exon 14 splicing alterations occurs in multiple tumor types and confers clinical sensitivity to MET inhibitors. Cancer Discov. 2015;5:850–9.

    Article  CAS  PubMed  Google Scholar 

  273. Kohno T, Ichikawa H, Totoki Y, et al. KIF5B-RET fusions in lung adenocarcinoma. Nat Med. 2012;18:375–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  274. Fernandez-Cuesta L, Plenker D, Osada H, et al. CD74-NRG1 fusions in lung adenocarcinoma. Cancer Discov. 2014;4:415–22.

    Article  CAS  PubMed  Google Scholar 

  275. Gong J, Chehrazi-Raffle A, Reddi S, et al. Development of PD-1 and PD-L1 inhibitors as a form of cancer immunotherapy: a comprehensive review of registration trials and future considerations. J Immunother Cancer. 2018;6:8.

    Article  PubMed  PubMed Central  Google Scholar 

  276. Melosky B, Chu Q, Juergens RA, et al. Breaking the biomarker code: PD-L1 expression and checkpoint inhibition in advanced NSCLC. Cancer Treat Rev. 2018;65:65–77.

    Article  CAS  PubMed  Google Scholar 

  277. Assi HI, Kamphorst AO, Moukalled NM, et al. Immune checkpoint inhibitors in advanced non-small cell lung cancer. Cancer. 2018;124:248–61.

    Article  PubMed  Google Scholar 

  278. Büttner R, Gosney JR, Skov BG, et al. Programmed death-ligand 1 immunohistochemistry testing: a review of analytical assays and clinical implementation in non-small-cell lung cancer. J Clin Oncol. 2017;35:3867–76.

    Article  PubMed  Google Scholar 

  279. Duruisseaux M, Martínez-Cardús A, Calleja-Cervantes ME, et al. Epigenetic prediction of response to anti-PD-1 treatment in non-small-cell lung cancer: a multicentre, retrospective analysis. Lancet Respir Med. 2018;6:771–81.

    Article  CAS  PubMed  Google Scholar 

  280. Granier C, De Guillebon E, Blanc C, et al. Mechanisms of action and rationale for the use of checkpoint inhibitors in cancer. ESMO Open. 2017;2:e000213.

    Article  PubMed  PubMed Central  Google Scholar 

  281. Kerr KM, Thunnissen E, Dafni U, et al. Lungscape Consortium. A retrospective cohort study of PD-L1 prevalence, molecular associations and clinical outcomes in patients with NSCLC: results from the European Thoracic Oncology Platform (ETOP) Lungscape Project. Lung Cancer. 2019;131:95–103.

    Article  PubMed  Google Scholar 

  282. Sun JM, Zhou W, Choi YL, et al. Prognostic significance of pd-l1 in patients with non-small cell lung cancer: a large cohort study of surgically resected cases. J Thorac Oncol. 2016;11:1003–11.

    Article  CAS  PubMed  Google Scholar 

  283. Borghaei H, Paz-Ares L, Horn L, et al. Nivolumab versus docetaxel in advanced nonsquamous non-small-cell lung cancer. N Engl J Med. 2015;373:1627–39.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  284. Herbst RS, Baas P, Kim DW, et al. Pembrolizumab versus docetaxel for previously treated, PD-L1-positive, advanced non-small-cell lung cancer (KEYNOTE-010): a randomised controlled trial. Lancet. 2016;387:1540–50.

    Article  CAS  PubMed  Google Scholar 

  285. Reck M, Rodríguez-Abreu D, Robinson AG, et al. KEYNOTE-024 Investigators. Pembrolizumab versus chemotherapy for PD-L1-positive non-small-cell lung cancer. N Engl J Med. 2016;375:1823–33.

    Article  CAS  PubMed  Google Scholar 

  286. Kao CJ, Wurz GT, Lin YC, et al. Assessing the effects of concurrent versus sequential cisplatin/radiotherapy on immune status in lung tumor-bearing C57BL/6 Mice. Cancer Immunol Res. 2015;3:741–50.

    Article  CAS  PubMed  Google Scholar 

  287. Ma G, Deng Y, Jiang H, et al. The prognostic role of programmed cell death-ligand 1 expression in non-small cell lung cancer patients: an updated meta-analysis. Clin Chim Acta. 2018;482:101–7.

    Article  CAS  PubMed  Google Scholar 

  288. Bhargava R, Dabbs DJ. Use of immunohistochemistry in diagnosis of breast epithelial lesions. Adv Anat Pathol. 2007;14:93–107.

    Article  PubMed  Google Scholar 

  289. Fritzsche FR, Thomas A, Winzer KJ, et al. Co-expression and prognostic value of gross cystic disease fluid protein 15 and mammaglobin in primary breast cancer. Histol Histopathol. 2007;22:1221–30.

    CAS  PubMed  Google Scholar 

  290. Sasaki E, Tsunoda N, Hatanaka Y, et al. Breast-specific expression of MGB1/mammaglobin: an examination of 480 tumors from various organs and clinicopathological analysis of MGB1-positive breast cancers. Mod Pathol. 2007;20:208–14.

    Article  CAS  PubMed  Google Scholar 

  291. Wick MR, Lillemoe TJ, Copland GT, et al. Gross cystic disease fluid protein-15 as a marker for breast cancer: immunohistochemical analysis of 690 human neoplasms and comparison with alpha-lactalbumin. Hum Pathol. 1989;20:281–7.

    Article  CAS  PubMed  Google Scholar 

  292. Liu H, Shi J, Wilkerson ML, et al. Immunohistochemical evaluation of GATA3 expression in tumors and normal tissues: a useful immunomarker for breast and urothelial carcinomas. Am J Clin Pathol. 2012;138:57–64.

    Article  PubMed  Google Scholar 

  293. Miettinen M, McCue PA, Sarlomo-Rikala M, et al. GATA3: a multispecific but potentially useful marker in surgical pathology: a systematic analysis of 2500 epithelial and nonepithelial tumors. Am J Surg Pathol. 2014;38:13–22.

    Article  PubMed  PubMed Central  Google Scholar 

  294. Carter D. Squamous cell carcinoma of the lung: an update. Semin Diagn Pathol. 1985;2:226–34.

    CAS  PubMed  Google Scholar 

  295. Funai K, Yokose T, Ishii G, et al. Clinicopathologic characteristics of peripheral squamous cell carcinoma of the lung. Am J Surg Pathol. 2003;27:978–84.

    Article  PubMed  Google Scholar 

  296. Liao RG, Watanabe H, Meyerson M, et al. Targeted therapy for squamous cell lung cancer. Lung Cancer Manag. 2012;1:293–300.

    Article  CAS  PubMed  Google Scholar 

  297. Lam S, MacAulay C, Hung J, et al. Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscope device. J Thorac Cardiovasc Surg. 1993;105:1035–40.

    Article  CAS  PubMed  Google Scholar 

  298. Yousem SA. Peripheral squamous cell carcinoma of lung: patterns of growth with particular focus on airspace filling. Hum Pathol. 2009;40:861–7.

    Article  PubMed  Google Scholar 

  299. Sherwin RP, Laforet EG, Strieder JW. Exophytic endobronchial carcinoma. J Thorac Cardiovasc Surg. 1962;43:716–30.

    Article  CAS  PubMed  Google Scholar 

  300. Cooper L, Hagenschneider JK, Banky S, et al. Papillary endobronchial squamous cell carcinoma. Ann Diagn Pathol. 2005;9:284–8.

    Article  PubMed  Google Scholar 

  301. Dulmet-Brender E, Jaubert F, Huchon G. Exophytic endobronchial epidermoid carcinoma. Cancer. 1986;57:1358–64.

    Article  CAS  PubMed  Google Scholar 

  302. Flehinger BJ, Melamed MR, Zaman MB, et al. Early lung cancer detection: results of the initial (prevalence) radiologic and cytologic screening in the Memorial Sloan-Kettering study. Am Rev Respir Dis. 1984;130:555–60.

    CAS  PubMed  Google Scholar 

  303. Brambilla E, Moro D, Veale D, et al. Basal cell (basaloid) carcinoma of the lung: a new morphologic and phenotypic entity with separate prognostic significance. Hum Pathol. 1992;23:993–1003.

    Article  CAS  PubMed  Google Scholar 

  304. Moro D, Brichon PY, Brambilla E, et al. Basaloid bronchial carcinoma. A histologic group with a poor prognosis. Cancer. 1994;73:2734–9.

    Article  CAS  PubMed  Google Scholar 

  305. Moro-Sibilot D, Lantuejoul S, Diab S, et al. Lung carcinomas with a basaloid pattern: a study of 90 cases focusing on their poor prognosis. Eur Respir J. 2008;31:854–9.

    Article  CAS  PubMed  Google Scholar 

  306. Kim DJ, Kim KD, Shin DH, et al. Basaloid carcinoma of the lung: a really dismal histologic variant? Ann Thorac Surg. 2003;76:1833–7.

    Article  PubMed  Google Scholar 

  307. Han AJ, Xiong M, Gu YY, et al. Lymphoepithelioma-like carcinoma of the lung with a better prognosis. A clinicopathologic study of 32 cases. Am J Clin Pathol. 2001;115:841–50.

    Article  CAS  PubMed  Google Scholar 

  308. Chan JK, Hui PK, Tsang WY, et al. Primary lymphoepithelioma-like carcinoma of the lung. A clinicopathologic study of 11 cases. Cancer. 1995;76:413–22.

    Article  CAS  PubMed  Google Scholar 

  309. Chang YL, Wu CT, Shih JY, et al. New aspects in clinicopathologic and oncogene studies of 23 pulmonary lymphoepithelioma-like carcinomas. Am J Surg Pathol. 2002;26:715–23.

    Article  PubMed  Google Scholar 

  310. Ho JC, Wong MP, Lam WK. Lymphoepithelioma-like carcinoma of the lung. Respirology. 2006;11:539–45.

    Article  PubMed  Google Scholar 

  311. Castro CY, Ostrowski ML, Barrios R, et al. Relationship between Epstein-Barr virus and lymphoepithelioma-like carcinoma of the lung: a clinicopathologic study of 6 cases and review of the literature. Hum Pathol. 2001;32:863–72.

    Article  CAS  PubMed  Google Scholar 

  312. Chirieac LR, Chang YL, Yatabe Y, et al. Lymphoepithelioma-like carcinoma. In: Travis WD, Brambilla E, Burke AP, et al., editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press; 2015. p. 95–6.

    Google Scholar 

  313. Bégin LR, Eskandari J, Joncas J, et al. Epstein-Barr virus related lymphoepithelioma-like carcinoma of lung. J Surg Oncol. 1987;36:280–3.

    Article  PubMed  Google Scholar 

  314. Weissferdt A, Moran CA. Microcystic squamous cell carcinoma of the lung: a clinicopathologic study of three cases. Am J Clin Pathol. 2011;136:436–41.

    Article  PubMed  Google Scholar 

  315. Moran CA, Suster S. Non-small cell carcinomas of the lung. In: Moran CA, Suster S, editors. Tumors and tumor-like lesions of the lung and pleura. Philadelphia: Saunders, Elsevier; 2010. p. 51–110.

    Google Scholar 

  316. Moll R. Cytokeratins as markers of differentiation in the diagnosis of epithelial tumors. Subcell Biochem. 1998;31:205–62.

    CAS  PubMed  Google Scholar 

  317. Gown AM, Vogel AM. Monoclonal antibodies to human intermediate filament proteins. III. Analysis of tumors. Am J Clin Pathol. 1985;84:413–24.

    Article  CAS  PubMed  Google Scholar 

  318. Kaufmann O, Fietze E, Mengs J, et al. Value of p63 and cytokeratin 5/6 as immunohistochemical markers for the differential diagnosis of poorly differentiated and undifferentiated carcinomas. Am J Clin Pathol. 2001;116:823–30.

    Article  CAS  PubMed  Google Scholar 

  319. Zhang H, Liu J, Cagle PT, et al. Distinction of pulmonary small cell carcinoma from poorly differentiated squamous cell carcinoma: an immunohistochemical approach. Mod Pathol. 2005;18:111–8.

    Article  CAS  PubMed  Google Scholar 

  320. Reis-Filho JS, Simpson PT, Martins A, et al. Distribution of p63, cytokeratins 5/6 and cytokeratin 14 in 51 normal and 400 neoplastic human tissue samples using TARP-4 multi-tumor tissue microarray. Virchows Arch. 2003;443:122–32.

    Article  CAS  PubMed  Google Scholar 

  321. Wang BY, Gil J, Kaufman D, et al. p63 in pulmonary epithelium, pulmonary squamous neoplasms, and other pulmonary tumors. Hum Pathol. 2002;33:921–6.

    Article  CAS  PubMed  Google Scholar 

  322. Ordóñez NG. Thyroid transcription factor-1 is not expressed in squamous cell carcinomas of the lung: an immunohistochemical study with review of the literature. Appl Immunohistochem Mol Morphol. 2012;20:525–30.

    Article  PubMed  CAS  Google Scholar 

  323. Maleki Z. Diagnostic issues with cytopathologic interpretation of lung neoplasms displaying high-grade basaloid or neuroendocrine morphology. Diagn Cytopathol. 2011;39:159–67.

    Article  PubMed  Google Scholar 

  324. Butnor KJ, Burchette JL. p40 (ΔNp63) and keratin 34βE12 provide greater diagnostic accuracy than p63 in the evaluation of small cell lung carcinoma in small biopsy samples. Hum Pathol. 2013;44:1479–86.

    Article  CAS  PubMed  Google Scholar 

  325. Adkins PC, Wesselhoeft CW Jr, Newman W, et al. Thoracotomy on the patient with previous malignancy: metastasis or new primary? J Thorac Cardiovasc Surg. 1968;56:351–61.

    Article  CAS  PubMed  Google Scholar 

  326. Askin FB. Something old? Something new? Second primary or pulmonary metastasis in the patient with known extrathoracic carcinoma. Am J Clin Pathol. 1993;100:4–5.

    Article  CAS  PubMed  Google Scholar 

  327. Begum S, Gillison ML, Nicol TL, et al. Detection of human papillomavirus-16 in fine-needle aspirates to determine tumor origin in patients with metastatic squamous cell carcinoma of the head and neck. Clin Cancer Res. 2007;13:1186–91.

    Article  CAS  PubMed  Google Scholar 

  328. Cubilla AL, Lloveras B, Alejo M, et al. The basaloid cell is the best tissue marker for human papillomavirus in invasive penile squamous cell carcinoma: a study of 202 cases from Paraguay. Am J Surg Pathol. 2010;34:104–14.

    Article  PubMed  Google Scholar 

  329. Kurman RJ, Toki T, Schiffman MH. Basaloid and warty carcinomas of the vulva. Distinctive types of squamous cell carcinoma frequently associated with human papillomaviruses. Am J Surg Pathol. 1993;17:133–45.

    Article  CAS  PubMed  Google Scholar 

  330. Frisch M. On the etiology of anal squamous carcinoma. Dan Med Bull. 2002;49:194–209.

    PubMed  Google Scholar 

  331. Weichert W, Schewe C, Denkert C, et al. Molecular HPV typing as a diagnostic tool to discriminate primary from metastatic squamous cell carcinoma of the lung. Am J Surg Pathol. 2009;33:513–20.

    Article  PubMed  Google Scholar 

  332. Bishop JA, Ogawa T, Chang X, et al. HPV analysis in distinguishing second primary tumors from lung metastases in patients with head and neck squamous cell carcinoma. Am J Surg Pathol. 2012;36:142–8.

    Article  PubMed  PubMed Central  Google Scholar 

  333. The Cancer Genome Atlas Network. Comprehensive genomic characterization of squamous cell lung cancer. Nature. 2012;489:519–25.

    Article  CAS  Google Scholar 

  334. Haura EB, Camidge DR, Reckamp K, et al. Molecular origins of lung cancer: prospects for personalized prevention and therapy. J Thorac Oncol. 2010;5:S207–13.

    Article  PubMed  Google Scholar 

  335. Hammerman PS, Sos ML, Ramos AH, et al. Mutations in the DDR2 kinase gene identify a novel therapeutic target in squamous cell lung cancer. Cancer Discov. 2011;1:78–89.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  336. Kushitani K, Amatya VJ, Okada Y, et al. Utility and pitfalls of immunohistochemistry in the differential diagnosis between epithelioid mesothelioma and poorly differentiated lung squamous cell carcinoma. Histopathology. 2017;70:375–84.

    Article  PubMed  Google Scholar 

  337. Soini Y, Kinnula V, Kahlos K, et al. Claudins in differential diagnosis between mesothelioma and metastatic adenocarcinoma of the pleura. J Clin Pathol. 2006;59:250–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  338. Facchetti F, Lonardi S, Gentili F, et al. Claudin 4 identifies a wide spectrum of epithelial neoplasms and represents a very useful marker for carcinoma versus mesothelioma diagnosis in pleural and peritoneal biopsies and effusions. Virchows Arch. 2007;451:669–80.

    Article  CAS  PubMed  Google Scholar 

  339. Churg A, Sheffield BS, Galateau-Salle F. New markers for separating benign from malignant mesothelial proliferations: are we there yet? Arch Pathol Lab Med. 2016;140:318–21.

    Article  CAS  PubMed  Google Scholar 

  340. Weissferdt A, Kalhor N, Moran CA. Cutaneous basal cell carcinoma with distant metastasis to thorax and bone: a clinicopathological and immunohistochemical study of 15 cases. Virchows Arch. 2017;470:687–94.

    Article  PubMed  Google Scholar 

  341. Yatabe Y, Brambilla E, Rekhtman N, et al. Adenosquamous carcinoma. In: Travis WD, Brambilla E, Burke AP, et al., editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press; 2015. p. 86–7.

    Google Scholar 

  342. Ashley DJ, Davies HD. Mixed glandular and squamous-cell carcinoma of the bronchus. Thorax. 1967;22:431–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  343. Auerbach O, Frasca JM, Parks VR, et al. A comparison of World Health Organization (WHO) classification of lung tumors by light and electron microscopy. Cancer. 1982;50:2079–88.

    Article  CAS  PubMed  Google Scholar 

  344. Fitzgibbons PL, Kern WH. Adenosquamous carcinoma of the lung: a clinical and pathologic study of seven cases. Hum Pathol. 1985;16:463–6.

    Article  CAS  PubMed  Google Scholar 

  345. Nakagawa K, Yasumitu T, Fukuhara K, et al. Poor prognosis after lung resection for patients with adenosquamous carcinoma of the lung. Ann Thorac Surg. 2003;75:1740–4.

    Article  PubMed  Google Scholar 

  346. Filosso PL, Ruffini E, Asioli S, et al. Adenosquamous lung carcinomas: a histologic subtype with poor prognosis. Lung Cancer. 2011;74:25–9.

    Article  PubMed  Google Scholar 

  347. Watanabe Y, Tsuta K, Kusumoto M, et al. Clinicopathologic features and computed tomographic findings of 52 surgically resected adenosquamous carcinomas of the lung. Ann Thorac Surg. 2014;97:245–51.

    Article  PubMed  Google Scholar 

  348. Steele VE, Nettesheim P. Unstable cellular differentiation in adenosquamous cell carcinoma. J Natl Cancer Inst. 1981;67:149–54.

    CAS  PubMed  Google Scholar 

  349. Ichinose Y, Hara N, Takamori S, et al. DNA ploidy pattern of each carcinomatous component in adenosquamous lung carcinoma. Ann Thorac Surg. 1993;55:593–6.

    Article  CAS  PubMed  Google Scholar 

  350. Vassella E, Langsch S, Dettmer MS, et al. Molecular profiling of lung adenosquamous carcinoma: hybrid or genuine type? Oncotarget. 2015;6:23905–16.

    Article  PubMed  PubMed Central  Google Scholar 

  351. Kang SM, Kang HJ, Shin JH, et al. Identical epidermal growth factor receptor mutations in adenocarcinomatous and squamous cell carcinomatous components of adenosquamous carcinoma of the lung. Cancer. 2007;109:581–7.

    Article  CAS  PubMed  Google Scholar 

  352. Tochigi N, Dacic S, Nikiforova M, et al. Adenosquamous carcinoma of the lung: a microdissection study of KRAS and EGFR mutational and amplification status in a western patient population. Am J Clin Pathol. 2011;135:783–9.

    Article  PubMed  Google Scholar 

  353. Song Z, Lin B, Shao L, et al. Therapeutic efficacy of gefitinib and erlotinib in patients with advanced lung adenosquamous carcinoma. J Chin Med Assoc. 2013;76:481–5.

    Article  CAS  PubMed  Google Scholar 

  354. Gawrychowski J, Bruliński K, Malinowski E, et al. Prognosis and survival after radical resection of primary adenosquamous lung carcinoma. Eur J Cardiothorac Surg. 2005;27:686–92.

    Article  PubMed  Google Scholar 

  355. Mordant P, Grand B, Cazes A, et al. Adenosquamous carcinoma of the lung: surgical management, pathologic characteristics, and prognostic implications. Ann Thorac Surg. 2013;95:1189–95.

    Article  PubMed  Google Scholar 

  356. Cooke DT, Nguyen DV, Yang Y, et al. Survival comparison of adenosquamous, squamous cell, and adenocarcinoma of the lung after lobectomy. Ann Thorac Surg. 2010;90:943–8.

    Article  PubMed  Google Scholar 

  357. Takamori S, Noguchi M, Morinaga S, et al. Clinicopathologic characteristics of adenosquamous carcinoma of the lung. Cancer. 1991;67:649–54.

    Article  CAS  PubMed  Google Scholar 

  358. Pardo J, Martinez-Peñuela AM, Sola JJ, et al. Large cell carcinoma of the lung: an endangered species? Appl Immunohistochem Mol Morphol. 2009;17:383–92.

    Article  PubMed  Google Scholar 

  359. Travis WD, Brambilla E, Noguchi M, et al. Diagnosis of lung cancer in small biopsies and cytology: implications of the 2011 International Association for the Study of Lung Cancer/American Thoracic Society/European Respiratory Society classification. Arch Pathol Lab Med. 2013;137:668–84.

    Article  PubMed  Google Scholar 

  360. Stoll LM. Large-cell carcinoma of the lung: a diagnostic category redefined by immunohistochemistry and genomics. Curr Opin Pulm Med. 2014;20:324–31.

    Article  CAS  Google Scholar 

  361. Kodama T, Shimosato Y, Koide T, et al. Large cell carcinoma of the lung–ultrastructural and immunohistochemical studies. Jpn J Clin Oncol. 1985;15:431–41.

    CAS  PubMed  Google Scholar 

  362. Hwang DH, Szeto DP, Perry AS, et al. Pulmonary large cell carcinoma lacking squamous differentiation is clinicopathologically indistinguishable from solid-subtype adenocarcinoma. Arch Pathol Lab Med. 2014;138:626–35.

    Article  PubMed  Google Scholar 

  363. Rekhtman N, Tafe LJ, Chaft JE, et al. Distinct profile of driver mutations and clinical features in immunomarker-defined subsets of pulmonary large-cell carcinoma. Mod Pathol. 2013;26:511–22.

    Article  CAS  PubMed  Google Scholar 

  364. Clinical Lung Cancer Genome Project (CLCGP), Network Genomic Medicine (NGM). A genomics-based classification of human lung tumors. Sci Transl Med. 2013;5:209ra153.

    Article  CAS  Google Scholar 

  365. Corrin B, Chang YL, Rossi G, et al. Sarcomatoid carcinoma. In: Travis WD, Brambilla E, Müller-Hermelink K, et al., editors. Tumours of the lung, pleura, thymus, and heart. In: Pathology & genetics, World Health Organization. Lyon, France: IARC Press; 2004. p. 53–8.

    Google Scholar 

  366. Kerr KM, Pelosi G, Austin JHM, et al. Pleomorphic, spindle cell and giant cell carcinoma. In: Travis WD, Brambilla E, Burke AP, et al., editors. Pathology and genetics of tumours of the lung, pleura, thymus and heart. Lyon, France: IARC Press; 2015. p. 88–94.

    Google Scholar 

  367. Wick MR, Ritter JH, Humphrey PA. Sarcomatoid carcinomas of the lung: a clinicopathologic review. Am J Clin Pathol. 1997;108:40–53.

    Article  CAS  PubMed  Google Scholar 

  368. Matsui K, Kitagawa M, Miwa A. Lung carcinoma with spindle cell components: sixteen cases examined by immunohistochemistry. Hum Pathol. 1992;23:1289–97.

    Article  CAS  PubMed  Google Scholar 

  369. Suster S, Huszar M, Herczeg E. Spindle cell squamous carcinoma of the lung. Immunocytochemical and ultrastructural study of a case. Histopathology. 1987;11:871–8.

    Article  CAS  PubMed  Google Scholar 

  370. Fishback NF, Travis WD, Moran CA, et al. Pleomorphic (spindle/giant cell) carcinoma of the lung. A clinicopathologic correlation of 78 cases. Cancer. 1994;73:2936–45.

    Article  CAS  PubMed  Google Scholar 

  371. Pelosi G, Sonzogni A, De Pas T, et al. Review article: pulmonary sarcomatoid carcinomas: a practical overview. Int J Surg Pathol. 2010;18:103–20.

    Article  PubMed  Google Scholar 

  372. Humphrey PA, Scroggs MW, Roggli VL, et al. Pulmonary carcinomas with a sarcomatoid element: an immunocytochemical and ultrastructural analysis. Hum Pathol. 1988;19:155–65.

    Article  CAS  PubMed  Google Scholar 

  373. Nappi O, Glasner SD, Swanson PE, et al. Biphasic and monophasic sarcomatoid carcinomas of the lung. A reappraisal of ‘carcinosarcomas’ and ‘spindle-cell carcinomas’. Am J Clin Pathol. 1994;102:331–40.

    Article  CAS  PubMed  Google Scholar 

  374. Nash AD, Stout AP. Giant cell carcinoma of the lung; report of 5 cases. Cancer. 1958;11:369–76.

    Article  CAS  PubMed  Google Scholar 

  375. Hellstrom HR, Fisher ER. Giant cell carcinoma of lung. Cancer. 1963;16:1080–8.

    Article  CAS  PubMed  Google Scholar 

  376. Herman DL, Bullock WK, Waken JK. Giant cell adenocarcinoma of the lung. Cancer. 1966;19:1337–46.

    Article  CAS  PubMed  Google Scholar 

  377. Koss MN, Hochholzer L, O’Leary T. Pulmonary blastomas. Cancer. 1991;67:2368–81.

    Article  CAS  PubMed  Google Scholar 

  378. Koss MN, Hochholzer L, Frommelt RA. Carcinosarcomas of the lung: a clinicopathologic study of 66 patients. Am J Surg Pathol. 1999;23:1514–26.

    Article  CAS  PubMed  Google Scholar 

  379. Nakatani Y, Miyagi Y, Takemura T, et al. Aberrant nuclear/cytoplasmic localization and gene mutation of beta-catenin in classic pulmonary blastoma: beta-catenin immunostaining is useful for distinguishing between classic pulmonary blastoma and a blastomatoid variant of carcinosarcoma. Am J Surg Pathol. 2004;28:921–7.

    Article  PubMed  Google Scholar 

  380. Lin Y, Yang H, Cai Q, et al. Characteristics and prognostic analysis of 69 patients with pulmonary sarcomatoid carcinoma. Am J Clin Oncol. 2016;39:215–22.

    Article  CAS  PubMed  Google Scholar 

  381. Terra SB, Jang JS, Bi L, et al. Molecular characterization of pulmonary sarcomatoid carcinoma: analysis of 33 cases. Mod Pathol. 2016;29:824–31.

    Article  CAS  PubMed  Google Scholar 

  382. Forest F, Yvorel V, Karpathiou G, et al. Histomolecular profiling of pleomorphic, spindle cell, and giant cell carcinoma of the lung for targeted therapies. Hum Pathol. 2016;49:99–106.

    Article  PubMed  Google Scholar 

  383. Weissferdt A, Moran CA. Primary giant cell carcinomas of the lung: a clinicopathological and immunohistochemical analysis of seven cases. Histopathology. 2016;68:680–5.

    Article  PubMed  Google Scholar 

  384. Italiano A, Cortot AB, Ilie M, et al. EGFR and KRAS status of primary sarcomatoid carcinomas of the lung: implications for anti-EGFR treatment of a rare lung malignancy. Int J Cancer. 2009;125:2479–82.

    Article  CAS  PubMed  Google Scholar 

  385. Jiang X, Liu Y, Chen C, et al. The value of biomarkers in patients with sarcomatoid carcinoma of the lung: molecular analysis of 33 cases. Clin Lung Cancer. 2012;13:288–96.

    Article  CAS  PubMed  Google Scholar 

  386. Terra SB, Aubry MC, Yi ES, et al. Immunohistochemical study of 36 cases of pulmonary sarcomatoid carcinoma--sensitivity of TTF-1 is superior to napsin. Hum Pathol. 2014;45:294–302.

    Article  CAS  PubMed  Google Scholar 

  387. Vieira T, Antoine M, Ruppert AM, et al. Blood vessel invasion is a major feature and a factor of poor prognosis in sarcomatoid carcinoma of the lung. Lung Cancer. 2014;85:276–81.

    Article  PubMed  Google Scholar 

  388. Rossi G, Cavazza A, Sturm N, et al. Pulmonary carcinomas with pleomorphic, sarcomatoid, or sarcomatous elements: a clinicopathologic and immunohistochemical study of 75 cases. Am J Surg Pathol. 2003;27:311–24.

    Article  PubMed  Google Scholar 

  389. Takeshima Y, Amatya VJ, Kushitani K, et al. Value of immunohistochemistry in the differential diagnosis of pleural sarcomatoid mesothelioma from lung sarcomatoid carcinoma. Histopathology. 2009;54:667–76.

    Article  PubMed  Google Scholar 

  390. Lucas DR, Pass HI, Madan SK, et al. Sarcomatoid mesothelioma and its histological mimics: a comparative immunohistochemical study. Histopathology. 2003;42:270–9.

    Article  CAS  PubMed  Google Scholar 

  391. Martin LW, Correa AM, Ordonez NG, et al. Sarcomatoid carcinoma of the lung: a predictor of poor prognosis. Ann Thorac Surg. 2007;84:973–80.

    Article  PubMed  Google Scholar 

  392. Huang SY, Shen SJ, Li XY. Pulmonary sarcomatoid carcinoma: a clinicopathologic study and prognostic analysis of 51 cases. World J Surg Oncol. 2013;11:252.

    Article  PubMed  PubMed Central  Google Scholar 

  393. Mochizuki T, Ishii G, Nagai K, et al. Pleomorphic carcinoma of the lung: clinicopathologic characteristics of 70 cases. Am J Surg Pathol. 2008;32:1727–35.

    Article  PubMed  Google Scholar 

  394. Gu L, Xu Y, Chen Z, et al. Clinical analysis of 95 cases of pulmonary sarcomatoid carcinoma. Biomed Pharmacother. 2015;76:134–40.

    Article  PubMed  Google Scholar 

  395. Ung M, Rouquette I, Filleron T, et al. Characteristics and clinical outcomes of sarcomatoid carcinoma of the lung. Clin Lung Cancer. 2016;17:391–7.

    Article  PubMed  Google Scholar 

  396. Yendamuri S, Caty L, Pine M, et al. Outcomes of sarcomatoid carcinoma of the lung: a surveillance, epidemiology, and end results database analysis. Surgery. 2012;152:397–402.

    Article  PubMed  Google Scholar 

  397. Nakajima M, Kasai T, Hashimoto H, et al. Sarcomatoid carcinoma of the lung: a clinicopathologic study of 37 cases. Cancer. 1999;86:608–16.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annikka Weissferdt .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Weissferdt, A. (2020). Malignant Epithelial Tumors of the Lung. In: Diagnostic Thoracic Pathology. Springer, Cham. https://doi.org/10.1007/978-3-030-36438-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36438-0_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36437-3

  • Online ISBN: 978-3-030-36438-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics