Skip to main content

RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2019)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11954))

Included in the following conference series:

Abstract

Semantic segmentation of surgical instruments plays a crucial role in robot-assisted surgery. However, accurate segmentation of cataract surgical instruments is still a challenge due to specular reflection and class imbalance issues. In this paper, an attention-guided network is proposed to segment the cataract surgical instrument. A new attention module is designed to learn discriminative features and address the specular reflection issue. It captures global context and encodes semantic dependencies to emphasize key semantic features, boosting the feature representation. This attention module has very few parameters, which helps to save memory. Thus, it can be flexibly plugged into other networks. Besides, a hybrid loss is introduced to train our network for addressing the class imbalance issue, which merges cross entropy and logarithms of Dice loss. A new dataset named Cata7 is constructed to evaluate our network. To the best of our knowledge, this is the first cataract surgical instrument dataset for semantic segmentation. Based on this dataset, RAUNet achieves state-of-the-art performance 97.71\(\%\) mean Dice and 95.62\(\%\) mean IOU.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sarikaya, D., Corso, J.J., Guru, K.A.: Detection and localization of robotic tools in robot-assisted surgery videos using deep neural networks for region proposal and detection. IEEE Trans. Med. Imaging 36(7), 1542–1549 (2017)

    Article  Google Scholar 

  2. Trikha, S., Turnbull, A., Morris, R., Anderson, D., Hossain, P.: The journey to femtosecond laser-assisted cataract surgery: new beginnings or a false dawn? Eye 27(4), 461 (2013)

    Article  Google Scholar 

  3. García-Peraza-Herrera, L.C., et al.: Real-time segmentation of non-rigid surgical tools based on deep learning and tracking. In: Peters, T., et al. (eds.) CARE 2016. LNCS, vol. 10170, pp. 84–95. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54057-3_8

    Chapter  Google Scholar 

  4. Ni, Z.L., Bian, G.B., Xie, X.L., Hou, Z.G., Zhou, X.H., Zhou, Y.J.: RASNet: segmentation for tracking surgical instruments in surgical videos using refined attention segmentation network. arXiv preprint arXiv:1905.08663 (2019)

  5. Laina, I., et al.: Concurrent segmentation and localization for tracking of surgical instruments. In: Descoteaux, M., Maier-Hein, L., Franz, A., Jannin, P., Collins, D.L., Duchesne, S. (eds.) MICCAI 2017. LNCS, vol. 10434, pp. 664–672. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66185-8_75

    Chapter  Google Scholar 

  6. Attia, M., Hossny, M., Nahavandi, S., Asadi, H.: Surgical tool segmentation using a hybrid deep CNN-RNN auto encoder-decoder. In: 2017 IEEE International Conference on Systems, Man, and Cybernetics (SMC), pp. 3373–3378. IEEE (2017)

    Google Scholar 

  7. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778, June 2016

    Google Scholar 

  8. Ronneberger, O., Fischer, P., Brox, T.: U-Net: convolutional networks for biomedical image segmentation. In: Navab, N., Hornegger, J., Wells, W.M., Frangi, A.F. (eds.) MICCAI 2015. LNCS, vol. 9351, pp. 234–241. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-24574-4_28

    Chapter  Google Scholar 

  9. Milletari, F., Navab, N., Ahmadi, S.: V-Net: fully convolutional neural networks for volumetric medical image segmentation. In: 2016 Fourth International Conference on 3D Vision (3DV), pp. 565–571, October 2016

    Google Scholar 

  10. Iglovikov, V., Shvets, A.: TernausNet: U-Net with VGG11 encoder pre-trained on ImageNet for image segmentation. arXiv preprint arXiv:1801.05746 (2018)

  11. Li, H., Xiong, P., An, J., Wang, L.: Pyramid attention network for semantic segmentation. arXiv preprint arXiv:1805.10180 (2018)

  12. Chaurasia, A., Culurciello, E.: LinkNet: exploiting encoder representations for efficient semantic segmentation. In: 2017 IEEE Visual Communications and Image Processing (VCIP), pp. 1–4. IEEE (2017)

    Google Scholar 

Download references

Acknowledgment

This research is supported by the National Key Research and Development Program of China (Grant 2017YFB1302704), the National Natural Science Foundation of China (Grants 61533016, U1713220), the Beijing Science and Technology Plan (Grant Z191100002019013) and the Strategic Priority Research Program of CAS (Grant XDBS01040100).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gui-Bin Bian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ni, ZL. et al. (2019). RAUNet: Residual Attention U-Net for Semantic Segmentation of Cataract Surgical Instruments. In: Gedeon, T., Wong, K., Lee, M. (eds) Neural Information Processing. ICONIP 2019. Lecture Notes in Computer Science(), vol 11954. Springer, Cham. https://doi.org/10.1007/978-3-030-36711-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-36711-4_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-36710-7

  • Online ISBN: 978-3-030-36711-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics