Skip to main content

Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals Using the Discrete Time Fourier Transform (DTFT)

  • Conference paper
  • First Online:
Supercomputing (ISUM 2019)

Abstract

A method for the calculation of spectrum samples of discrete, aperiodic and finite signals based on the DTFT is proposed. This method is based on a flexible discretization of the frequency variable that could produce equidistant, sparse or unique spectrum samples. It is implemented in a GPU platform as a Matrix-Vector product, being able to be applied on modern HPC systems. As a result, a general use tool is developed for the frequency analysis that achieves execution times in a linear relation with the length of the vector to be processed and the number of samples required. Finally, it is shown that the required execution time for the computation of equally spaced spectrum samples is competitive to the achievements of other tools for frequency analysis based on sequential execution.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Oppenheim, A.V., Willsky, A.S.: Señales y Sistemas 2da. ed. Prentice Hall Hispanoamericana, México (1997)

    Google Scholar 

  2. Opepnheim, A.V., Shafer, R.W.: Tratamiento de señales en tiempo discreto. Pearson Educacion, Madrid (2011)

    Google Scholar 

  3. Proakis, J.G., Manolakis, D.G.: Digital Signal Processing. Principles, Algorithms, and Applications. Prentice Hall, Upper Saddle River (1996)

    Google Scholar 

  4. Cooley, J.W., Tukey, J.W.: An algorithm for the machine calculation of complex fourier series. Am. Math. Soc. 301, 297 (1965)

    MathSciNet  MATH  Google Scholar 

  5. Alves, R.G., Osorio, P.L., Swamy, M.N.S.: General FFT pruning algorithm. In: Proceedings of 43rd IEEE MidWest Symposium on Circuits and Systems, Lansing (2000)

    Google Scholar 

  6. Angulo Rios, J., Castro Palazuelos, D., Medina Melendrez, M., Santiesteban Cos, R.: A GPU based implementation of input and output prunning of composite length FFT using DIF DIT transform decomposition. In: Congreso Internacional de Ingenieria Electromecanica y de Sistemas CIEES, Ciudad de Mexico (2016)

    Google Scholar 

  7. Melendrez, M.M., Estrada, M.A., Castro, A.: Input and/or output pruning of composite length FFTs using a DIF-DIT transform decomposition. IEEE Trans. Sig. Process. 57(10), 4124–4128 (2009)

    Article  MathSciNet  Google Scholar 

  8. Markel, J.D.: FFT prunning. IEEE Trans. Audio Electroacust. 4, 305–311 (1971)

    Article  Google Scholar 

  9. Goertzel, G.: An algorithm for the evaluation of finite trigonometric series. Am. Math. Monthly 65(1), 34–35 (1958)

    Article  MathSciNet  Google Scholar 

  10. Stokfiszewski, K., Yatsymirskyy, M., Puchala, D.: Effectiveness of fast fourier transform implementations on GPU and CPU. In: International Conference on Computational Problems of Electric Engineerings (CPEE), pp. 162–164 (2015)

    Google Scholar 

  11. Shu, L.: Parallel implementation of arbitrary-sized discrete fourier transform on FPGA. In: 2016 3rd International Conference on Advanced Computing and Communication Systems (ICACCS), Coimbatore, India (2016)

    Google Scholar 

  12. Nvidia (2018). https://www.nvidia.com/en-us/high-performance-computing/. Accessed 17 Nov 2018

  13. Oak Ridge National Laboratory (2018). https://www.ornl.gov/news/ornl-launches-summit-supercomputer. Accessed 17 Nov 2018

  14. Evangelho, J.: AMD Claims Radeon Is #1 Gaming Platform – Here’s Their Proof, Forbes, 23 April 2018. https://www.forbes.com/sites/jasonevangelho/2018/04/23/radeon-vs-geforce-which-brand-is-truly-the-1-gaming-platform/#4cfb19276a95. Accessed 17 Dec 2018

  15. Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance comparison of CUDA and OpenCL. In: 2011 International Conference on Parallel Processing, Taipei (2011)

    Google Scholar 

  16. Karimi, K., Dickson, N.G., Hamze, F.: A performance comparison of CUDA and OpenCL, arXiv (2010)

    Google Scholar 

Download references

Acknowledgment

The authors of this paper are grateful to the Tecnológico Nacional de México, Campus Culiacán, especially to the Division of Postgraduate Studies and Research for the facilities provided. I would also like to express my gratitude to the Consejo Nacional de Ciencia y Tecnología (Conacyt) for the support given during the course of the master’s degree studies.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Julio Cesar Taboada-Echave .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Taboada-Echave, J.C., Medina-Melendrez, M., Gaxiola-Sánchez, L.N. (2019). Spectrum Sample Calculation of Discrete, Aperiodic and Finite Signals Using the Discrete Time Fourier Transform (DTFT). In: Torres, M., Klapp, J. (eds) Supercomputing. ISUM 2019. Communications in Computer and Information Science, vol 1151. Springer, Cham. https://doi.org/10.1007/978-3-030-38043-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-38043-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-38042-7

  • Online ISBN: 978-3-030-38043-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics