Skip to main content

Accurate Particle-Based Reaction Algorithms for Fixed Timestep Simulators

  • Chapter
  • First Online:
2018 MATRIX Annals

Abstract

Particle-based simulators are widely used to study biochemical systems involving spatial transport and chemical reactions on sub-cellular length scales. Fixed time step methods can often offer good performance even when simulating complex many-particle systems. However, current reaction algorithms approximate more detailed molecular dynamics models either inaccurately or slowly. Here, we present new reaction algorithms that better approximate microscopic molecular dynamics models while maintaining good computational efficiency. A “Brownian bridge” algorithm samples reactions using reactant positions both before and after each diffusive step; its simulated dynamics exactly match those of appropriate underlying idealised models. Simpler but less accurate “RDF-matching” algorithms sample reactions by only using reactant positions after diffusive steps; they accurately reproduce the steady-state radial distribution function of the underlying idealised model. These algorithms can accurately approximate both commonly used reaction models and more realistic models that account for intermolecular potentials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agbanusi, I.C., Isaacson, S.A.: A comparison of bimolecular reaction models for stochastic reaction–diffusion systems. Bulletin of Mathematical Biology 76(4), 922–946 (2014)

    Google Scholar 

  2. Aldridge, B.B., Burke, J.M., Lauffenburger, D.A., Sorger, P.K.: Physicochemical modelling of cell signalling pathways. Nature Cell Biology 8(11), 1195 (2006)

    Google Scholar 

  3. Andrews, S.S.: Serial rebinding of ligands to clustered receptors as exemplified by bacterial chemotaxis. Phys. Biol. 2, 111–122 (2005)

    Google Scholar 

  4. Andrews, S.S.: Spatial and stochastic cellular modeling with the Smoldyn simulator. In: Bacterial Molecular Networks, pp. 519–542. Springer (2012)

    Google Scholar 

  5. Andrews, S.S.: Smoldyn: particle-based simulation with rule-based modeling, improved molecular interaction and a library interface. Bioinformatics 33(5), 710–717 (2017)

    Google Scholar 

  6. Andrews, S.S.: Particle-based stochastic simulators. Encyclopedia of Computational Neuroscience (2018)

    Google Scholar 

  7. Andrews, S.S., Addy, N.J., Brent, R., Arkin, A.P.: Detailed simulations of cell biology with Smoldyn 2.1. PLoS Comput. Biol. 6, e1000,705 (2010)

    Google Scholar 

  8. Andrews, S.S., Arkin, A.P.: Simulating cell biology. Current Biology 16(14), R523–R527 (2006)

    Google Scholar 

  9. Andrews, S.S., Bray, D.: Stochastic simulation of chemical reactions with spatial resolution and single molecule detail. Physical Biology 1(3), 137 (2004)

    Google Scholar 

  10. Andrews, S.S., Dinh, T., Arkin, A.P.: Stochastic models of biological processes. In: Encyclopedia of Complexity and Systems Science, pp. 8730–8749. Springer (2009)

    Google Scholar 

  11. Carslaw, H., Jaeger, J.: Conduction of Heat in Solids. Oxford University Press, Oxford, England (1959)

    Google Scholar 

  12. Clifford, P., Green, N.: On the simulation of the Smoluchowski boundary condition and the interpolation of Brownian paths. Molecular Physics 57(1), 123–128 (1986)

    Google Scholar 

  13. Collins, F.C., Kimball, G.E.: Diffusion-controlled reaction rates. Journal of Colloid Science 4(4), 425–437 (1949)

    Google Scholar 

  14. Doi, M.: Stochastic theory of diffusion-controlled reaction. Journal of Physics A: Mathematical and General 9(9), 1479 (1976)

    Google Scholar 

  15. Donovan, R.M., Tapia, J.J., Sullivan, D.P., Faeder, J.R., Murphy, R.F., Dittrich, M., Zuckerman, D.M.: Unbiased rare event sampling in spatial stochastic systems biology models using a weighted ensemble of trajectories. PLOS Comput Biol 12(2), e1004,611 (2016)

    Google Scholar 

  16. ElKalaawy, N., Amr, W.: Methodologies for the modeling and simulation of biochemical networks, illustrated for signal transduction pathways: A primer. Biosystems 129, 1–18 (2015)

    Google Scholar 

  17. Erban, R.: From molecular dynamics to brownian dynamics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 470(2167), 20140,036 (2014)

    Google Scholar 

  18. Erban, R., Chapman, J., Maini, P.: A practical guide to stochastic simulations of reaction-diffusion processes. arXiv preprint arXiv:0704.1908 (2007)

  19. Erban, R., Chapman, S.J.: Stochastic modelling of reaction–diffusion processes: algorithms for bimolecular reactions. Physical Biology 6(4), 046,001 (2009)

    Google Scholar 

  20. Grima, R., Schnell, S.: Modelling reaction kinetics inside cells. Essays in Biochemistry 45, 41–56 (2008)

    Google Scholar 

  21. Karplus, M., McCammon, J.A.: Molecular dynamics simulations of biomolecules. Nature Structural and Molecular Biology 9(9), 646 (2002)

    Google Scholar 

  22. Kerr, R.A., Bartol, T.M., Kaminsky, B., Dittrich, M., Chang, J.C.J., Baden, S.B., Sejnowski, T.J., Stiles, J.R.: Fast Monte Carlo simulation methods for biological reaction-diffusion systems in solution and on surfaces. SIAM Journal on Scientific Computing 30(6), 3126–3149 (2008)

    Google Scholar 

  23. Mogilner, A., Allard, J., Wollman, R.: Cell polarity: quantitative modeling as a tool in cell biology. Science 336(6078), 175–179 (2012)

    Google Scholar 

  24. Rice, S.A.: Diffusion-Limited Reactions. Elsevier (1985)

    Google Scholar 

  25. Robinson, M., Andrews, S.S., Erban, R.: Multiscale reaction-diffusion simulations with Smoldyn. Bioinformatics 31, 2406–2408 (2015)

    Google Scholar 

  26. Robinson, M., Flegg, M., Erban, R.: Adaptive two-regime method: application to front propagation. The Journal of Chemical Physics 140(12), 124,109 (2014)

    Google Scholar 

  27. Schöneberg, J., Ullrich, A., Noé, F.: Simulation tools for particle-based reaction-diffusion dynamics in continuous space. BMC Biophysics 7(1), 11 (2014)

    Google Scholar 

  28. Smoluchowski, M.v.: Versuch einer mathematischen theorie der koagulationskinetik kolloider lösungen. Z. Phys. Chem 92(129–168), 9 (1917)

    Google Scholar 

  29. Tournier, A.L., Fitzjohn, P.W., Bates, P.A.: Probability-based model of protein-protein interactions on biological timescales. Algorithms for Molecular Biology 1(1), 25 (2006)

    Google Scholar 

  30. Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28(3), 165–178 (2004)

    Google Scholar 

  31. Tyson, J.J., Chen, K.C., Novak, B.: Sniffers, buzzers, toggles and blinkers: dynamics of regulatory and signaling pathways in the cell. Current Opinion in Cell Biology 15(2), 221–231 (2003)

    Google Scholar 

  32. van Zon, J.S., Ten Wolde, P.R.: Simulating biochemical networks at the particle level and in time and space: Green’s function reaction dynamics. Physical Review Letters 94(12), 128,103 (2005)

    Google Scholar 

Download references

Acknowledgements

We thank Mark Flegg, Kevin Burrage, Ruth Baker, Samuel Isaacson, and Hans Othmer for organising the 2018 MATRIX workshop on “Spatio-temporal stochastic systems in biology”, where we began this work. SNVA was partially supported by JSPS KAKENHI Challenging Research (Pioneering) Grant No. 18H05371. SAI was partially supported by National Science Foundation award DMS-1255408.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Steven S. Andrews .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Johnston, S.T. et al. (2020). Accurate Particle-Based Reaction Algorithms for Fixed Timestep Simulators. In: de Gier, J., Praeger, C., Tao, T. (eds) 2018 MATRIX Annals. MATRIX Book Series, vol 3. Springer, Cham. https://doi.org/10.1007/978-3-030-38230-8_11

Download citation

Publish with us

Policies and ethics